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Geometric inverse problems arising from geophysics

physics
↓

PDE
↓

geometry
↓

inverse problems
↓

physics
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Outline

1 Mathematical modelling
Inverse modelling and imaging
Elastic geometry
Imaging with neutrinos

2 Geometrization of gravitation

3 Elastic waves

4 Elastic geometry

5 Inverse problems
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Inverse modelling and imaging

The goal
I want to make sure that the mathematical results I prove about imaging
and inverse problems correspond well to physical models.

I will give two examples.
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Elastic geometry

In certain kinds of “weak” anisotropy elastic waves follow Riemannian
geodesics.

In general anisotropy Riemannian geometry is not enough — we need
Finsler.

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)
An idealized travel time measurement from interior earthquakes
determines a Finsler metric arising from elasticity but not a fully general
Finsler metric.

Enough restrictions to provide a useful theory.

Enough generality to allow for known physical phenomena and maybe a
little more.
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Imaging with neutrinos

On cosmological scales most information is carried by electromagnetic or
gravitational waves. Speed of light leaves a conformal gauge freedom for
some geometrical measurements.

To fully determine the structure of the spacetime (a Lorentzian metric) one
needs particles that

are slow enough and fast enough,

are not disturbed by EM fields near detectors,

actually exist, and

can be detected.

The only such particle is the neutrino.

I am studying geometric neutrino data with Gunther Uhlmann.
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Outline

1 Mathematical modelling

2 Geometrization of gravitation
Newton’s theory
Einstein’s theory
The goal

3 Elastic waves

4 Elastic geometry

5 Inverse problems
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Newton’s theory

Gravitation is a force and a force causes acceleration.

The gravitational force exerted by the Sun causes the Earth’s
trajectory to curve.

The force is described by a simple formula and the equation of motion
is an ODE in Rn.

The Newtonian approach is straightforward to use and often a good
model.
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Einstein’s theory

Gravitation is interaction between geometry and matter.

The Sun causes the spacetime to curve and the Earth goes straight in
this curved geometry.

There is a relatively simple equation of motion for the planet: The
geodesic equation is a non-linear ODE.

There is a complicated equation of motion for the geometry itself:
Einstein’s field equation is a non-linear system of coupled PDEs.

This model is harder to use but can reach phenomena inaccessible to
Newtonian gravity and provides a more geometric way to see the
essential structures.
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The goal

A geometric theory of elasticity?

Untoy the model: Bring mathematics closer to the application.
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The stiffness tensor

When something in an elastic material is displaced from equilibrium, it
tends to return back.

The restoring force (stress) depends linearly on the displacement
relative to neighboring points (strain).

The “spring constant” of Hooke’s law is the stiffness “tensor” cijkl(x).
It fully describes the springiness of the material.

The tensor is very symmetric (cijkl = cjikl = cijlk = cklij) and quite
positive (cijklAjkAil & |A|2 for all symmetric A).

Density normalized: aijkl(x) = cijkl(x)/ρ(x).
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The elastic wave equation

Using Newton’s second law with a restoring force given by Hooke’s
law leads to the elastic wave equation (EWE)

∂j [cijkl(x)∂kul(x, t)]− ρ(x)∂2t ui(x, t) = 0,

where u(x, t) is a small displacement field.

If the material is anisotropic (c is no more symmetric than necessary
and wave speed depends on direction), then the vector nature of the
equation cannot be ignored.

Elastic waves arising from earthquakes (or marsquakes!) satisfy this
equation away from the focus of the event to great accuracy.
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The principal symbol

Suppose c and ρ are constant. The plane wave

ui(x, t) = Aie
iω(p·x−t)

solves the EWE if and only if

(aijklpjpk − δil)Al = 0.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWO is Γ(x, ξ)− ω2I, where ξ = ωp.
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Polarization

In isotropic elasticity (maximal symmetry of the stiffness tensor c) the
polarization vector is either parallel or normal to p.

The parallel polarized wave (P wave, pressure wave, primary wave) is
faster than the normally polarized one (S wave, shear wave,
secondary wave).

In anisotropic elasticity it does not work quite as nicely. The fastest
polarization is called quasi-P and the slower ones quasi-S.

Polarization vectors are eigenvectors of the Christoffel matrix Γ, so
they are orthogonal.

Decomposition to polarizations only works on the level of
singularities. The individual polarizations do not satisfy PDEs.
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Singularities and the slowness surface

We are interested in arrivals of wave fronts from a seismic event to a
detector.

Singularities of solutions to the EWE follow the Hamiltonian flow
determined by the principal symbol.

The slowness vector p and the polarization A of a singularity at x
must satisfy

[Γ(x, p)− I]A = 0.

The admissible slowness vectors p are on the slowness surface given
by the equation

det(Γ(x, p)− I) = 0.
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Singularities and the slowness surface

The slowness surface. Smaller slowness ⇐⇒ faster wave.
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Outline

1 Mathematical modelling

2 Geometrization of gravitation

3 Elastic waves

4 Elastic geometry
Distance
Ray tracing
Finsler manifolds

5 Inverse problems
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Distance

A geometric object like a Riemannian manifold is uniquely determined
by distance: If you know the distance between any two points, you
can compute areas, angles, curvatures, and all else.
In elastic geometry

the object is an elastic body like the Earth and
the distance is the travel time.

That is, we declare the distance between x and y to be the shortest
amount of time it takes for a wave to travel from x to y. (qP is fastest!)

Distance is measured in units of time.
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Ray tracing

We can think of seismic or other elastic waves as point particles
(phonons) in different ways:

wave–particle duality,
wave packets, or
microlocal analysis.

We can then study how these particles travel.
Traditional view: The trajectory of the phonon is curved because wave
speed varies.
Newer view: The phonon goes straight in a curved geometry
(geodesic), and the geometry is curved by variations in wave speed.
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Ray tracing

A metric induces a connection.

For every definition of “distance” there
is a natural definition of “straightness”.

In elastic geometry we measure distance in travel time, and the
waves go straight in this geometry.

Fermat’s principle: Phonons — the particles corresponding to elastic
waves — go straight in the geometry given by travel time.

Fermat’s principle is about going straight in the relevant geometry, not
about taking the shortest path. These are not the same thing over
long distances or for shear waves.
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Finsler manifolds

A Riemannian manifold is a smooth manifold with an inner product on
every tangent space.

A Finsler manifold is a smooth manifold with a norm on every tangent
space.
More specifically, there is a Finsler function F : TM → [0,∞) so that:

1 F is continuous everywhere and smooth on TM \ 0,
2 F is positively 1-homogeneous on every fiber, and
3 F 2 is strictly convex (positive definite Hessian) on every fiber.

Lengths of curves are defined in the usual way using the (Minkowski)
norm on every tangent space.

The norms on the dual spaces T ∗
xM satisfy the same conditions.
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Finsler manifolds

Elastic finsler geometry
The cosphere of the elastic geometry is the slowness surface. The “elastic
manifold” corresponding to qP waves is a Finsler manifold with special
properties. Phonons go straight in this geometry.

Other polarizations are problematic.
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Outline

1 Mathematical modelling

2 Geometrization of gravitation

3 Elastic waves

4 Elastic geometry

5 Inverse problems
Geometrization of the question
Herglotz (Mönkkönen)
Dix (de Hoop, Lassas)
Distance function (de Hoop, Lassas, Saksala)
Scattering data (de Hoop, Lassas, Saksala)
Ray tracing (Iversen, Ursin, Saksala, de Hoop)
And more. . .
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Geometrization of the question

Typical inverse problem: Given some boundary data, find the reduced
stiffness tensor ρ−1(x)cijkl(x) everywhere.

A more geometric formulation: Given some boundary data, find the
cosphere (slowness surface) at every point.

From the slowness surface one can then find the material parameters
— the components of the stiffness tensor.

Practical goal for a geometer: Given some boundary data, find the
Finsler manifold — or its cosphere bundle.
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Herglotz (Mönkkönen)

Herglotz solved an inverse problem for a spherically symmetric planet
in 1905: Assuming a natural condition, a radial isotropic wave speed
is uniquely determined by boundary distances.

A spherically symmetric non-trapping Riemannian manifold is always
of the Herglotz type. (de Hoop–I–Katsnelson, 2017)

This is not true for a spherically symmetric Finsler manifold.

There is still a Herglotz condition but it looks different.

Linearized travel time data leads to X-ray tomography.
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Dix (de Hoop, Lassas)

Imagine that we have (virtual) point sources everywhere in the planet
and we can measure the arriving wave fronts. Does this determine
the reduced stiffness tensor a everywhere without any kind of isotropy
assumption?

To geometrize the problem, consider a Finsler manifold (M,F ).

In some measurement set U ⊂M one can see spheres with any
center. The data consists of oriented surfaces with radii.

One can follow the geodesics backwards and find the metric on a
neighborhood of the lift.

With fiberwise analyticity this information can be globalized to give the
universal cover of (M,F ).

The “directionality” of Finsler geometry is a major complication in
comparison to the Riemannian version (de Hoop–Holman–
Iversen–Lassas–Ursin, 2015).
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To geometrize the problem, consider a Finsler manifold (M,F ).

In some measurement set U ⊂M one can see spheres with any
center. The data consists of oriented surfaces with radii.

One can follow the geodesics backwards and find the metric on a
neighborhood of the lift.

With fiberwise analyticity this information can be globalized to give the
universal cover of (M,F ).
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Distance function (de Hoop, Lassas, Saksala)

Consider a Finsler manifold (M,F ) with boundary — an anisotropic
elastic body with a surface.

Any point x ∈M determines a boundary distance function
rx : ∂M → R.

Question: Does the set {rx;x ∈M} determine (M,F )?

Part of the bundle is invisible: One can only hope to see the Finsler
function at a point v ∈ TM if the geodesic starting at v is minimizing
between its start point in M and endpoint on ∂M .

One can reconstruct M and F on the good set G ⊂ TM , but not
outside it. There is no such complication in Riemannian geometry
(Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

If F is fiberwise real analytic (elasticity or Riemann!), then F is
determined uniquely.
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Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is can be done with added assumptions:
reversibility (point symmetry) and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).
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Ray tracing (Iversen, Ursin, Saksala, de Hoop)

We follow seismic rays and study their variations.
There are different coordinates:

Cartesian coordinates where things are trivial to define but equations
are messy.
Ray-centered coordinates which are more complicated to use but more
structure arises.
Fermi coordinates and covariant derivatives of the corresponding
elastic geometry are tricky to set up but the equations are clean.

Variations in position (Q) and momentum (P ) satisfy an equation

∂t

(
Q(t)
P (t)

)
=

(
W T (t) V (t)
−U(t) −W (t)

)(
Q(t)
P (t)

)
.

Written in terms of a Jacobi field J and its covariant derivative, we
have instead

Dt

(
J(t)
DtJ(t)

)
=

(
0 I

−R(t) 0

)(
J(t)
DtJ(t)

)
.
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And more. . .

Spectral problems.

Geomathematics on Mars.

The slowness surface as an algebraic surface.

Linearized problems, including ray transforms with partial data.

Understanding coordinates.

Rough geometry.

Underlying a variety of inverse problems, both past and future:

Modelling goal
Building a complete theory of elastic geometry.
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Thank you!

Key ideas:

Pure mathematics for the sake of physics.

Geometrization.

Geomathematics.

http://users.jyu.fi/~jojapeil

joonas.ilmavirta@tuni.fi
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