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Gravitation

Newton’s theory:
Gravitation is a force and a force causes acceleration.
The gravitational force exerted by the Sun causes the Earth’s trajectory to curve.

Einstein’s theory:
Gravitation is interaction between geometry and matter.
The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.

A geometric theory of elasticity?
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Distance

A geometric object like a Riemannian manifold is fully determined by distance:
If you know the distance between any two points, you can compute areas, angles,
curvatures, and all else.
In elastic geometry

the object is an elastic body like the Earth and
the distance is the travel time of seismic waves.
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Particles

We can think of seismic or other elastic waves as point particles (phonons) in different
ways:

wave–particle duality,
wave packets, or
microlocal analysis.

We can then study how these particles travel.
Traditional view: The trajectory of a phonon is curved because wave speed varies.
Newer view: A phonon goes straight in a curved geometry (along a geodesic), and the
geometry is curved by variations in wave speed.
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Anisotropy

Anisotropy = wave speed is different in different directions.

Geometrically, these speeds can be described as a sphere. Each point on it describes
how far you can go in unit time.

Sometimes it is more convenient to look at phase velocity.

The cosphere describes the reciprocal of phase velocity.
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Anisotropy

Anisotropy.
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Anisotropy

Isotropy.
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Anisotropy

Anisotropy = wave speed is different in different directions.

Geometrically, these speeds can be described as a sphere. Each point on it describes
how far you can go in unit time.

The sphere corresponds to a cosphere in the dual space.

The cosphere (the slowness surface) describes the reciprocal of phase velocity.
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Anisotropy

Sphere and cosphere, anisotropic.
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Anisotropy

Sphere and cosphere, isotropic.
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Anisotropy

Isotropy = the sphere and cosphere are spheres.

Anisotropy = they might not be.

Elliptic anisotropy = the sphere and cosphere are ellipsoids.
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Anisotropy

Sphere and cosphere, elliptically anisotropic.

Joonas Ilmavirta (Tampere) Towards geometrization of geophysics 16 December 2020 12 / 22

.



Anisotropy

In R3 there are three polarizations and each polarization has its own sphere and
cosphere.

The spheres might not separate cleanly.

If the cosphere is not convex, the sphere can branch.
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Anisotropy

Three polarizations, all elliptically anisotropic.
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Anisotropy

In R3 there are three polarizations and each polarization has its own slowness sphere
and cosphere.

The spheres might not separate cleanly.
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Anisotropy

A non-convex cosphere.
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Anisotropy

A branched sphere.
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Slowness

The principal symbol of the elastic wave equation is the matrix

ω2[Γ(x, p)− I],

where
Γil(x, p) =

∑
j,k

aijkl(x)pjpk

is the Christoffel matrix and a is the stiffness tensor.
(Momentum ξ = ωp.)

The slowness surface consists of those slowness vectors p ∈ T ∗
xR3 where the symbol is

not invertible:
det[Γ(x, p)− I] = 0.

It has one branch for each of the three polarizations.

It is an algebraic variety in T ∗
xR3, parametrized by aijkl(x).
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Slowness

The slowness surface. Smaller slowness ⇐⇒ faster wave.
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Manifolds to model anisotropy

Types of manifolds:

A Riemannian manifold is a smooth manifold with an inner product on every tangent
space.

A Finsler manifold is a smooth manifold with a norm on every tangent space.

Different kinds of media can be modeled with different manifolds:

Isotropic and homogeneus = Euclidean space.

Isotropic and inhomogeneous = Conformally Euclidean space.

Elliptically anisotropic and inhomogeneous = Riemannian manifold.

General anistropy and inhomogeneity (when convex) ( Finsler manifolds.
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Inverse problems

Typical inverse problem:
Given some boundary data, find the stiffness tensor aijkl(x) everywhere.

A geometrized reformulation:
Given some boundary data, find the elastic Finsler manifold
(the cosphere or slowness surface at every point).
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Conclusion

Observation: Phonons follow Finsler geodesics.

Inverse problems goal: Solve geometric inverse problems on Finsler manifolds.

Modelling goal: Understand the differential and algebraic geometry of the elastic manifold.

http://users.jyu.fi/~jojapeil

joonas.ilmavirta@tuni.fi
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