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Inverse modelling and imaging

The goal
I want to make sure that the mathematical results I prove about imaging
and inverse problems correspond well to physical models.
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Elastic geometry

In certain kinds of “weak” anisotropy elastic waves follow Riemannian
geodesics.

In general anisotropy Riemannian geometry is not enough — we need
Finsler.

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)
An idealized travel time measurement from interior earthquakes
determines a Finsler metric arising from elasticity but not a fully general
Finsler metric.

Enough restrictions to provide a useful theory.

Enough generality to allow for known physical phenomena and maybe a
little more.
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Imaging with neutrinos

On cosmological scales most information is carried by electromagnetic or
gravitational waves. Speed of light leaves a conformal gauge freedom for
some geometrical measurements.

To fully determine the structure of the spacetime (a Lorentzian metric) one
needs particles that

are slow enough and fast enough,

are not disturbed by EM fields near detectors,

actually exist, and

can be detected.

The only such particle is the neutrino.

I am studying geometric neutrino data with Gunther Uhlmann.
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Newton’s theory

Gravitation is a force and a force causes acceleration.

The gravitational force exerted by the Sun causes the Earth’s
trajectory to curve.

The force is described by a simple formula and the equation of motion
is an ODE in Rn.

The Newtonian approach is straightforward to use and often a good
model.
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Einstein’s theory

Gravitation is interaction between geometry and matter.

The Sun causes the spacetime to curve and the Earth goes straight in
this curved geometry.

There is a relatively simple equation of motion for the planet: The
geodesic equation is a non-linear ODE.

There is a complicated equation of motion for the geometry itself:
Einstein’s field equation is a non-linear system of coupled PDEs.

This model is harder to use but can reach phenomena inaccessible to
Newtonian gravity and provides a more geometric way to see the
essential structures.
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The goal

A geometric theory of elasticity?

Untoy the model: Bring mathematics closer to the application.
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The elastic wave equation

The restoring forces in an elastic object are described by the stiffness
tensor cijkl(x) or the density normalized version
aijkl(x) = cijkl(x)/ρ(x).

Using Newton’s second law with a restoring force given by Hooke’s
law leads to the elastic wave equation (EWE)

∂j [cijkl(x)∂kul(x, t)]− ρ(x)∂2t ui(x, t) = 0,

where u(x, t) is a small displacement field.
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Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A, the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24



Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A,

the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24



Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A, the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24



Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A, the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t)

and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24



Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A, the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24



Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A, the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24



Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3 with frequency ω and polarization A, the condition
ω2[Γ(x, p)− I]A = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity),
corresponding to writing plane waves as Aeiω(p·x−t) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

The wave fronts (singularities) of solutions to the EWE follow the
Hamiltonian flow determined by the principal symbol ω2(Γ− I).

To have [Γ(x, p)− I]A = 0 for A 6= 0, the slowness vector p must
satisfy

det(Γ(x, p)− I) = 0.

These set of these ps is the slowness surface at x.
Joonas Ilmavirta (Tampere) Geometry from geophysics 10 Sep 2020 13 / 24

.



Microlocal analysis

The slowness surface. Smaller slowness ⇐⇒ faster wave.
The fastest one (quasi-pressure) is best behaved.
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Distance

A geometric object like a Riemannian manifold is uniquely determined
by distance: If you know the distance between any two points, you
can compute areas, angles, curvatures, and all else.
In elastic geometry

the object is an elastic body like the Earth and
the distance is the travel time.

That is, we declare the distance between x and y to be the shortest
amount of time it takes for a wave to travel from x to y.

This definition only sees the fastest polarization (qP), corresponding
to the innermost branch of the slowness surface. Other polarizations
are tricky.
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Phonons

We can think of seismic or other elastic waves as point particles
(phonons) in different ways:

wave–particle duality,
wave packets, or
microlocal analysis.

We can then study how these particles travel.
Traditional view: The trajectory of the phonon is curved because wave
speed varies.
Newer view: The phonon goes straight in a curved geometry
(geodesic), and the geometry is curved by variations in wave speed.
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Finsler manifolds

A Riemannian manifold is a smooth manifold with an inner product on
every tangent space.

A Finsler manifold is a smooth manifold with a norm on every tangent
space.

Lengths of curves are defined in the usual way using the (Minkowski)
norm on every tangent space TxM .

The norms on the dual spaces T ∗
xM satisfy the same conditions.
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Finsler manifolds

Elastic finsler geometry
The cosphere (dual unit sphere) of the elastic geometry is the slowness
surface. The “elastic manifold” corresponding to qP waves is a Finsler
manifold with special properties. Phonons go straight in this geometry.

Other polarizations are problematic.
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Outline

1 Mathematical modelling

2 Geometrization of gravitation

3 Elastic waves and geometry

4 Inverse problems
Geometrization of the question
Distance function (de Hoop, Lassas, Saksala)
Scattering data (de Hoop, Lassas, Saksala)
And more. . .
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Geometrization of the question

Typical inverse problem: Given some boundary data, find the reduced
stiffness tensor aijkl(x) everywhere.

A more geometric formulation: Given some boundary data, find the
cosphere (slowness surface) at every point.

Practical goal for a geometer: Given some boundary data, find the
Finsler manifold — or its cosphere bundle.
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Distance function (de Hoop, Lassas, Saksala)

Consider a Finsler manifold (M,F ) with boundary — an anisotropic
elastic body with a surface.

Any point x ∈M determines a boundary distance function
rx : ∂M → R.

Question: Does the set {rx;x ∈M} determine (M,F )?

Part of the bundle is invisible: One can only hope to see the Finsler
metric F at “geodesically minimizing” points on TM .

One can reconstruct M and F on the good set G ⊂ TM , but not
outside it. There is no such complication in Riemannian geometry
(Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

If F is fiberwise real analytic (elasticity or Riemann!), then F is
determined uniquely.
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Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of inward pointing vectors at the boundary whose geodesics meet
and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is can be done with added assumptions:
reversibility (point symmetry) and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).
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And more. . .

Spectral problems.

Geomathematics on Mars.

The slowness surface as an algebraic surface.

Linearized problems, including ray transforms with partial data.

Understanding coordinates.

Rough geometry.

Underlying a variety of inverse problems, both past and future:

Modelling goal
Building a complete theory of elastic geometry.
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Thank you!

Key ideas:

Pure mathematics for the sake of physics.

Geometrization.

Geomathematics.

http://users.jyu.fi/~jojapeil

joonas.ilmavirta@tuni.fi
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