Geometric inverse problems arising from geophysics Seminar at Helsinki

Joonas Ilmavirta

Tampere University

10 Sep 2020

Geometric inverse problems arising from geophysics

Outline

Mathematical modelling

- Inverse modelling and imaging
- Elastic geometry
- Imaging with neutrinos
- Geometrization of gravitation
- Elastic waves and geometry
- Inverse problems

Inverse modelling and imaging

The goal

I want to make sure that the mathematical results I prove about imaging and inverse problems correspond well to physical models.

Elastic geometry

In certain kinds of "weak" anisotropy elastic waves follow Riemannian geodesics.

In general anisotropy Riemannian geometry is not enough — we need Finsler.

In general anisotropy Riemannian geometry is not enough — we need Finsler.

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)

An idealized travel time measurement from interior earthquakes determines a Finsler metric arising from elasticity but not a fully general Finsler metric.

In general anisotropy Riemannian geometry is not enough — we need Finsler.

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)

An idealized travel time measurement from interior earthquakes determines a Finsler metric arising from elasticity but not a fully general Finsler metric.

Enough restrictions to provide a useful theory.

In general anisotropy Riemannian geometry is not enough — we need Finsler.

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)

An idealized travel time measurement from interior earthquakes determines a Finsler metric arising from elasticity but not a fully general Finsler metric.

Enough restrictions to provide a useful theory.

Enough generality to allow for known physical phenomena and maybe a little more.

To fully determine the structure of the spacetime (a Lorentzian metric) one needs particles that

- are slow enough and fast enough,
- are not disturbed by EM fields near detectors,
- actually exist, and
- can be detected.

To fully determine the structure of the spacetime (a Lorentzian metric) one needs particles that

- are slow enough and fast enough,
- are not disturbed by EM fields near detectors,
- actually exist, and
- can be detected.

The only such particle is the neutrino.

To fully determine the structure of the spacetime (a Lorentzian metric) one needs particles that

- are slow enough and fast enough,
- are not disturbed by EM fields near detectors,
- actually exist, and
- can be detected.

The only such particle is the neutrino.

I am studying geometric neutrino data with Gunther Uhlmann.

Outline

Mathematical modelling

- 2 Geometrization of gravitation
 - Newton's theory
 - Einstein's theory
 - The goal
- Belastic waves and geometry
- Inverse problems

Newton's theory

Joonas Ilmavirta (Tampere)

• Gravitation is a force and a force causes acceleration.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.
- The force is described by a simple formula and the equation of motion is an ODE in ℝⁿ.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.
- The force is described by a simple formula and the equation of motion is an ODE in ℝⁿ.
- The Newtonian approach is straightforward to use and often a good model.

Einstein's theory

Joonas Ilmavirta (Tampere)

• Gravitation is interaction between geometry and matter.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.
- There is a complicated equation of motion for the geometry itself: Einstein's field equation is a non-linear system of coupled PDEs.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.
- There is a complicated equation of motion for the geometry itself: Einstein's field equation is a non-linear system of coupled PDEs.
- This model is harder to use but can reach phenomena inaccessible to Newtonian gravity and provides a more geometric way to see the essential structures.

A geometric theory of elasticity?

Untoy the model: Bring mathematics closer to the application.

Outline

Mathematical modelling

- Geometrization of gravitation
- 8 Elastic waves and geometry
 - The elastic wave equation
 - Microlocal analysis
 - Distance
 - Phonons
 - Finsler manifolds

Inverse problems

Joonas Ilmavirta (Tampere)

• The restoring forces in an elastic object are described by the stiffness tensor $c_{ijkl}(x)$ or the density normalized version $a_{ijkl}(x) = c_{ijkl}(x)/\rho(x)$.

- The restoring forces in an elastic object are described by the stiffness tensor $c_{ijkl}(x)$ or the density normalized version $a_{ijkl}(x) = c_{ijkl}(x)/\rho(x)$.
- Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

Joonas Ilmavirta (Tampere)

• It turns out that in order to have a singularity at x in the direction $p \in T_x^* \mathbb{R}^3$ with frequency ω and polarization A,

• It turns out that in order to have a singularity at x in the direction $p \in T_x^* \mathbb{R}^3$ with frequency ω and polarization A, the condition $\omega^2 [\Gamma(x, p) - I] A = 0$ must be satisfied.

- It turns out that in order to have a singularity at x in the direction $p \in T_x^* \mathbb{R}^3$ with frequency ω and polarization A, the condition $\omega^2 [\Gamma(x, p) I]A = 0$ must be satisfied.
- Here p is the slowness vector (reciprocal of phase velocity), corresponding to writing plane waves as $Ae^{i\omega(p\cdot x-t)}$

- It turns out that in order to have a singularity at x in the direction $p \in T_x^* \mathbb{R}^3$ with frequency ω and polarization A, the condition $\omega^2 [\Gamma(x, p) I] A = 0$ must be satisfied.
- Here p is the slowness vector (reciprocal of phase velocity), corresponding to writing plane waves as $Ae^{i\omega(p\cdot x-t)}$ and

$$\Gamma_{il}(x,p) = \sum_{j,k} a_{ijkl}(x) p_j p_k$$

is the Christoffel matrix.
Microlocal analysis

- It turns out that in order to have a singularity at x in the direction $p \in T_x^* \mathbb{R}^3$ with frequency ω and polarization A, the condition $\omega^2 [\Gamma(x, p) I] A = 0$ must be satisfied.
- Here p is the slowness vector (reciprocal of phase velocity), corresponding to writing plane waves as $Ae^{i\omega(p\cdot x-t)}$ and

$$\Gamma_{il}(x,p) = \sum_{j,k} a_{ijkl}(x) p_j p_k$$

is the Christoffel matrix.

• The wave fronts (singularities) of solutions to the EWE follow the Hamiltonian flow determined by the principal symbol $\omega^2(\Gamma - I)$.

Microlocal analysis

- It turns out that in order to have a singularity at x in the direction $p \in T_x^* \mathbb{R}^3$ with frequency ω and polarization A, the condition $\omega^2 [\Gamma(x, p) I] A = 0$ must be satisfied.
- Here p is the slowness vector (reciprocal of phase velocity), corresponding to writing plane waves as $Ae^{i\omega(p\cdot x-t)}$ and

$$\Gamma_{il}(x,p) = \sum_{j,k} a_{ijkl}(x) p_j p_k$$

is the Christoffel matrix.

- The wave fronts (singularities) of solutions to the EWE follow the Hamiltonian flow determined by the principal symbol $\omega^2(\Gamma I)$.
- To have $[\Gamma(x,p)-I]A = 0$ for $A \neq 0$, the slowness vector p must satisfy

$$\det(\Gamma(x,p)-I)=0.$$

These set of these ps is the slowness surface at x.

Joonas Ilmavirta (Tampere)

Microlocal analysis

The slowness surface. Smaller slowness \iff faster wave. The fastest one (quasi-pressure) is best behaved.

Distance

• A geometric object like a Riemannian manifold is uniquely determined by distance:

• A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y.
- This definition only sees the fastest polarization (qP), corresponding to the innermost branch of the slowness surface. Other polarizations are tricky.

Phonons

• We can think of seismic or other elastic waves as point particles (phonons) in different ways:

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets,

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.
- We can then study how these particles travel.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the phonon is curved because wave speed varies.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the phonon is curved because wave speed varies.
 - Newer view: The phonon goes straight in a curved geometry (geodesic), and the geometry is curved by variations in wave speed.

Finsler manifolds

Joonas Ilmavirta (Tampere)

• A Riemannian manifold is a smooth manifold with an inner product on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- Lengths of curves are defined in the usual way using the (Minkowski) norm on every tangent space $T_x M$.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- Lengths of curves are defined in the usual way using the (Minkowski) norm on every tangent space $T_x M$.
- The norms on the dual spaces T_x^*M satisfy the same conditions.

Elastic finsler geometry

The cosphere (dual unit sphere) of the elastic geometry is the slowness surface. The "elastic manifold" corresponding to qP waves is a Finsler manifold with special properties. Phonons go straight in this geometry.

Elastic finsler geometry

The cosphere (dual unit sphere) of the elastic geometry is the slowness surface. The "elastic manifold" corresponding to qP waves is a Finsler manifold with special properties. Phonons go straight in this geometry.

Other polarizations are problematic.

Outline

Mathematical modelling

- Geometrization of gravitation
- Elastic waves and geometry
- Inverse problems
 - Geometrization of the question
 - Distance function (de Hoop, Lassas, Saksala)
 - Scattering data (de Hoop, Lassas, Saksala)
 - And more...

Geometrization of the question

Joonas Ilmavirta (Tampere)

• Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $a_{ijkl}(x)$ everywhere.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $a_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $a_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.
- Practical goal for a geometer: Given some boundary data, find the Finsler manifold or its cosphere bundle.

• Consider a Finsler manifold (M, F) with boundary — an anisotropic elastic body with a surface.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler metric *F* at "geodesically minimizing" points on *TM*.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler metric *F* at "geodesically minimizing" points on *TM*.
- One can reconstruct M and F on the good set $G \subset TM$, but not outside it.
- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler metric *F* at "geodesically minimizing" points on *TM*.
- One can reconstruct *M* and *F* on the good set *G* ⊂ *TM*, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler metric *F* at "geodesically minimizing" points on *TM*.
- One can reconstruct *M* and *F* on the good set *G* ⊂ *TM*, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).
- If *F* is fiberwise real analytic (elasticity or Riemann!), then *F* is determined uniquely.

Scattering data (de Hoop, Lassas, Saksala)

• Consider stronger data with access to directions: We know the pairs of inward pointing vectors at the boundary whose geodesics meet and the total travel time.

- Consider stronger data with access to directions: We know the pairs of inward pointing vectors at the boundary whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.

- Consider stronger data with access to directions: We know the pairs of inward pointing vectors at the boundary whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.
- Global uniqueness is can be done with added assumptions: reversibility (point symmetry) and foliation.

- Consider stronger data with access to directions: We know the pairs of inward pointing vectors at the boundary whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.
- Global uniqueness is can be done with added assumptions: reversibility (point symmetry) and foliation.
- Almost no assumptions are needed in the Riemannian case (Kurylev–Lassas–Uhlmann, 2010).

And more...

Joonas Ilmavirta (Tampere)

• Spectral problems.

- Spectral problems.
- Geomathematics on Mars.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.
- Rough geometry.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.
- Rough geometry.
- Underlying a variety of inverse problems, both past and future:

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.
- Rough geometry.
- Underlying a variety of inverse problems, both past and future:

Modelling goal

Building a complete theory of elastic geometry.

Key ideas:

- Pure mathematics for the sake of physics.
- Geometrization.
- Geomathematics.

```
http://users.jyu.fi/~jojapeil
joonas.ilmavirta@tuni.fi
```