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Newton’s gravitation

Gravitation is a force and a force causes acceleration.

The gravitational force exerted by the Sun causes the Earth’s
trajectory to curve.

The force is described by a simple formula and the equation of motion
is an ODE in R3.

The Newtonian approach is straightforward to use and often a good
model.
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Einstein’s gravitation

Gravitation is interaction between geometry and matter.

The Sun causes the spacetime to curve and the Earth goes straight in
this curved geometry.

There is a relatively simple equation of motion for the planet: The
geodesic equation is a non-linear ODE.

There is a complicated equation of motion for the geometry itself:
Einstein’s field equation is a non-linear system of coupled PDEs.

This model is harder to use but can reach phenomena inaccessible to
Newtonian gravity and provides a more geometric way to see the
essential structures.
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Phonons

We can think of seismic or other elastic waves as point particles in
different ways:

wave–particle duality,
wave packets, or
microlocal analysis.

The particles of the elastic displacement field are called phonons.
Traditional view: The trajectory of the phonon is curved because wave
speed varies.
Newer view: The phonon goes straight in a curved geometry (along a
geodesic), and the geometry is curved by variations in wave speed.
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Elastic manifolds

A smooth manifold M is an abstract generalization of a surface like a
sphere or a plane.

A Riemannian manifold is a smooth manifold with an inner product on
every tangent space TxM .

A Finsler manifold is a smooth manifold with a norm on every tangent
space TxM .

The norms on the dual spaces T ∗
xM satisfy the same conditions.

A norm on the tangent spaces defines a concept of distance.
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Elastic manifolds

To define a Finsler metric, we need to define a norm on every tangent
space TxR3.

A norm on TxR3 is can be described by giving the dual norm on the
dual space T ∗

xR3.

The dual norm can be described by giving its (convex!) unit sphere.

The cosphere of the elastic geometry is the (qP) slowness surface.
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Elastic manifolds

A geometric object like a Riemannian manifold is fully described by
distance:

If you know the distance between any two points, you can
compute areas, angles, curvatures, and all else.

In elastic geometry the distance between x and y is the shortest
amount of time it takes for a wave to travel from x to y. (qP is fastest!)

Distance is measured in units of time.

Fermat’s principle: Phonons go straight in this geometry.
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The elastic wave equation

The restoring forces in an elastic object are described by the stiffness
tensor cijkl(x) or the density normalized version
aijkl(x) = cijkl(x)/ρ(x).

Using Newton’s second law with a restoring force given by Hooke’s
law leads to the elastic wave equation (EWE)∑

j,k,l

∂j [cijkl(x)∂kul(x, t)]− ρ(x)∂2t ui(x, t) = 0,

where u(x, t) is a small displacement field.
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Microlocal analysis

We will only focus on the wave fronts, not the full waves.

We are not looking at the full solution u(x, t) of the EWE but only its
singularities.
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Microlocal analysis

It turns out that in order to have a singularity at x in the direction
p ∈ T ∗

xR3,

the condition det[Γ(x, p)− I] = 0 must be satisfied.

Here p is the slowness vector (reciprocal of phase velocity) and

Γil(x, p) =
∑
j,k

aijkl(x)pjpk

is the Christoffel matrix.

These set of possible ps is the slowness surface at x.
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Microlocal analysis

The slowness surface. Smaller slowness ⇐⇒ faster wave.
The fastest one (quasi-pressure) is best behaved.
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The slowness polynomial

Focus on a single point x.

The slowness surface is the set of those p for which

det[Γ(p)− I] = 0,

as we saw.

The map p 7→ det[Γ(p)− I] is a polynomial of degree 6.

We call it the slowness polynomial.
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Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32



Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32



Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32



Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32



Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32



Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32



Issues with the slowness surface

We defined the geometry only using the qP branch slowness surface
because:

The qS surfaces can fail to be convex.

The two qS branches always intersect.

The two qS branch might not separate into two clean surfaces.

Making a pick often destroys smoothness and convexity.

Much of differential geometry breaks apart!

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 17 / 32

.



Stay dual

Non-convexity is a non-issue if we stay on the cotangent side.

We have nothing good on the tangent side (triplication) so we have no
Finsler geometry.
But we do have something:

A Hamiltonian flow — for the whole system or for each polarization.
A simple description of the cosphere (the slowness surface): the
slowness polynomial.
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Algebraic slowness surface

Definition: An algebraic variety is the zero set of some polynomials.

The slowness surface is an algebraic variety.

Algebraic geometry studies these “manifolds” — a new box of tools.

The different branches of the slowness surface appear independent,
but they come from the same polynomial.

Question: What does the qP branch tell about qS?
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Zariski closure

Question: If a polynomial vanishes in a set, where else does it have to
vanish?

Answer: In the Zariski closure of the set.
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Zariski closure

If a polynomial vanishes on the red set, it has to vanish in the black set.
The black set is the Zariski closure of the red set.

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 21 / 32

.



Zariski closure

If a polynomial vanishes on the red set, it has to vanish in the black set.
The black set is the Zariski closure of the red set.

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 22 / 32

.



Zariski closure

If a polynomial vanishes on the red set, it has to vanish in the black set.
The black set is the Zariski closure of the red set.

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 23 / 32

.



Zariski closure

If a polynomial vanishes on the red set, it has to vanish in the black set.
The black set is the Zariski closure of the red set.

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 24 / 32

.



Zariski closure

If a polynomial vanishes on the red set, it has to vanish in the black set.
The black set is the Zariski closure of the red set.

Joonas Ilmavirta (Tampere) Slowness surfaces 17 Sep 2020 25 / 32

.



Zariski closure

Recent observation (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

For most stiffness tensors the slowness polynomial is irreducible.

Therefore a small piece of the qP slowness surface determines the whole
slowness surface, including qS.

It is enough to find the qP slowness surface geometrically, qS follows
automatically.

Anisotropy helps!
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Recasting problems geometrically

Typical inverse problem: Given some boundary data, find the reduced
stiffness tensor aijkl(x) everywhere.

A more geometric formulation: Given some boundary data, find the
cosphere (slowness surface) at every point.

Practical goal for a geometer: Given some boundary data, find the
Finsler manifold.

It is enough to study the geometry of the best-behaved qP waves, and
algebra (often) gives qS for free.
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Dix

Theorem (de Hoop–Ilmavirta–Lassas)
Metric spheres centered at interior points seen in an open set determine a
Finsler manifold uniquely up to a covering.

Measurements of wave fronts from interior earthquakes determine the qP
slowness surfaces everywhere.
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Distance function

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)
The set of distance functions on the boundary determines uniquely a
Finsler manifold arising from elasticity but not a fully general Finsler
manifold.

Measurements of travel times from interior earthquakes at the surface
determine the qP slowness surfaces everywhere.
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Scattering relation

Theorem (de Hoop–Ilmavirta–Lassas–Saksala)
The broken scattering relation (knowledge of which pairs of inward-starting
geodesics intersect and how long the broken ray is) determines a
reversible and foliated Finsler manifold.

Single scattering measurements with directions of in-going and out-going
waves determine the qP slowness surfaces everywhere.
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Thank you!

Key ideas:

Geometrization turns elastic waves into Finsler geodesics.

Geometric inverse problems are easier to solve.

Algebraic geometry relates qP to qS.

http://users.jyu.fi/~jojapeil

joonas.ilmavirta@tuni.fi
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