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THE GEODESIC RAY TRANSFORM ON SPHERICALLY
SYMMETRIC REVERSIBLE FINSLER MANIFOLDS

JOONAS ILMAVIRTA AND KEIJO MONKKONEN

ABSTRACT. We show that the geodesic ray transform is injective on
scalar functions on spherically symmetric reversible Finsler manifolds
where the Finsler norm satisfies a Herglotz condition. We use angular
Fourier series to reduce the injectivity problem to the invertibility of
generalized Abel transforms and by Taylor expansions of geodesics we
show that these Abel transforms are injective. Our result has applica-
tions in linearized boundary rigidity problem on Finsler manifolds and
especially in linearized elastic travel time tomography.

1. INTRODUCTION

In this paper we study the following mathematical inverse problem arising
in integral geometry: if we know the integrals of a scalar function f over
all geodesics of a Finsler manifold (M, F'), can we determine f? Since the
problem is linear, we can formulate it in terms of the geodesic ray trans-
form Z: if Zf(y) = 0 for all geodesics =, does it follow that f = 0?7 In other
words, is the geodesic ray transform Z injective on scalar fields? This inverse
problem (and its generalization to tensor fields) has been usually studied on
Riemannian manifolds and a variety of results under different types of as-
sumptions is known in the Riemannian setting [27, 42, [46]. We show that
in the case of spherical symmetry, reversibility and a Herglotz condition the
answer is positive for Finsler manifolds as well: Z is injective on scalar fields.

A Finsler norm F is a non-negative function F': TM — [0, 00) such that
for every x € M the map y — F(x,y) defines a Minkowski norm in T, M (see
section for details). We focus on spherically symmetric and reversible
Finsler norms. We show that if M C R™ is an annulus centered at the
origin and F' is a spherically symmetric reversible Finsler norm on M which
satisfies the Herglotz condition (see equation and section , then the
geodesic ray transform Z is injective on L2-functions (see section and
theorem [1.1)). This generalizes earlier Riemannian results in [13} 45] to the
Finslerian case and our theorem can be seen as a Helgason-type support
theorem on Finsler manifolds (see e.g. [13, 22]).

We use angular Fourier series to reduce the inverse problem to the in-
vertibility of certain Abel-type integral transforms. This approach was used
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in [I3] where the authors developed a general theory of Abel transforms
which we also use in the proof of our main result. By a careful treatment of
the Taylor expansions of geodesics near their lowest point to the origin we
show that the Abel transforms we encounter are indeed injective.

Our result is related to the travel time tomography or boundary rigidity
problem. Travel time tomography is an imaging method used in seismology
where one wants to determine the speed of sound inside the Earth by mea-
suring travel times of seismic waves on the surface of the Earth [54]. The
ray paths correspond to geodesics and travel times to lengths of geodesics.
Boundary rigidity problem is a more general geometric inverse problem
where one wants to determine a Riemannian metric or more generally a
Finsler norm from the distances between boundary points [54].

Travel time tomography problem was already solved in the 1900s for radial
sound speeds satisfying the Herglotz condition [23], [56]. However, it is ob-
served that the Earth exhibits more complicated and especially anisotropic
behaviour with respect to the sound speed [11], 20} [50]. In the anisotropic
case seismic rays propagate along geodesics of a Finsler norm [4, [57] and
Riemannian geometry is not enough to describe the most general types of
anisotropies. The boundary rigidity problem is already a difficult non-linear
inverse problem in the Riemannian case and anisotropies complicate things
even more.

It is known that Finsler norms arising in elasticity are reversible [16] (see
also section which puts some constraints on the geometry. Invariance
under rotations is a natural physical requirement for the Finsler norm (or
sound speed) since the Earth is (roughly) spherically symmetric. Our Her-
glotz condition is a natural generalization of the usual Herglotz condition
to anisotropic sound speeds (see equation ) and it implies that certain
geodesics behave nicely (see section . We can further simplify the prob-
lem by linearizing it. If the variations of the Riemannian metric or Finsler
norm are conformal, then linearization of the boundary rigidity problem
leads to the geodesic ray transform of scalar functions on the base manifold
(see [46] and section [5.2). This especially holds for a family of conformal
Finsler norms induced by a conformal family of stiffness tensors.

Our main theorem implies boundary rigidity up to first order for a con-
formal family of spherically symmetric reversible Finsler norms satisfying
the Herglotz condition. In terms of elasticity, if we have a conformal family
of stiffness tensors (a family of factorized anisotropic inhomogeneous me-
dia [9] [57]) such that the induced family of Finsler norms give the same dis-
tances between boundary points and satisfy the assumptions of theorem /1.1
then the stiffness tensors are equal up to first order (see section .

1.1. The main theorem. Let us first quickly introduce the key definitions
and notation. More details can be found in section 2

Let M be a smooth manifold. A Finsler norm F': TM — [0, 00) is a non-
negative function on the tangent bundle T'M so that the map y — F(z,y)
is a positively homogeneous (but not necessarily homogeneous) norm in
the tangent space T, M for each x € M. Finsler norm F' is reversible if
F(z,—y) = F(x,y) for all z € M and y € T, M. A reversible Finsler norm
defines a homogeneous norm in 7, M. The length of a curve ~: [a,b] - M
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is defined as L(vy) = f; F(v(t),~(t))dt. The geodesics of a Finsler norm are
critical points of the length functional v — L(7), or equivalently they satisfy
the geodesic equation (see equation (4])).

Our manifold will eventually be an annulus M C R? with outer boundary
centered at the origin. The inner boundary of the annulus is not included
in M so OM only consists of the outer boundary. We say that a Finsler
norm F on M is spherically symmetric, if U*F = F for all U € SO(2). Let
(2!, 22) = (r,0) be the polar coordinates on M. These coordinates induce a
coordinate basis {0;, 9} in every tangent space T(,. o) M. If y = Y10, +1y20y €
T(;9yM, then we denote its coordinates by (v, y?) = (p, ¢); see figure

We say that a spherically symmetric reversible Finsler norm F' = F(r, p, ¢)
on M satisfies the Herglotz condition, if

(1) O F*(r,0,¢) > 0
(

for all r € (R,1] and ¢ # 0. Here R € (0,1) is the inner radius of the
annulus. Herglotz condition implies that (M, F') admits a strictly convex
foliation and geodesics which are initially tangential to circles reach the
outer boundary in finite time (see lemmas and . More generally,
we say that a spherically symmetric reversible Finsler norm F' on an n-
dimensional annulus M C R" satisfies the Herglotz condition if F' satisfies
the two-dimensional Herglotz condition on all slices MNP where P C R"
is a two-dimensional subspace.

The geodesic ray transform Z takes a sufficiently regular scalar field f
on M and integrates it over geodesics, i.e. Zf(y) = fv fds where ~ is a
geodesic of the Finsler norm F'. The Herglotz condition guarantees that all
geodesics have unique closest point to the origin and the integrals exist.

Our main theorem is the following injectivity result. The proof of the
theorem can be found in section [3l

Theorem 1.1. Let n > 2, M = B(0,1)\ B(0, R) C R" where R € (0,1)
and equip M with a smooth spherically symmetric reversible Finsler norm F
which satisfies the Herglotz condition. Then the geodesic ray transform L is
injective on L*(M).

Remark 1.2. It is enough to prove theorem[I.1]in two dimensions. Namely,

if we intersect a higher-dimensional annulus M C R™ with any two-dimensional
linear subspace P C R™, we get a totally geodesic submanifold M NP C M
since F' is reversible and spherically symmetric. Also, by [13, Lemma 17] it
holds that if f € L*(M), then flynp € L*(M N P) for almost every two-
dimensional plane P. Hence if theorem[I.1] is true for n = 2, then it is also
true for all n > 2.

Remark 1.3. We assume that the Finsler norm F in theorem[L1l is smooth.
This regularity assumption could be weakened: from the proof of theorem[1.]]
one sees that finite number of derivatives with respect to the variables x € M
and y € T, M is enough. However, we are not going to quantify or optimize
the needed reqularity assumptions in this paper.

In theorem [[.1] we assume that the Finsler norm is reversible since it
simplifies the proof and Finsler norms arising in elasticity are reversible. We
could formulate theorem in terms of a general family of curves satisfying
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FiGUrRE 1. Our manifold M and the coordinate system
(r,0,p,¢) on TM. The coordinate vector fields 9, and 0y
form a basis in each tangent space T{,9)M and the coordi-
nates of y € T\, )M with respect to this basis are (p, ¢).
The components are given by p = dr(y) and ¢ = df(y). We
use polar coordinates only on M; the induced coordinates
on T, M are Euclidean. The inner boundary (dashed) is
not included in M.

certain properties (see remark . In fact, we do not use data on all
geodesics in the proof of theorem [1.1} integrals over geodesics which have
unique lowest point to the origin are sufficient to determine f. Our main
application of theorem is the seismic imaging of the Earth and therefore
we let M to be an annulus and F' to be spherically symmetric.

Theoremis proved in the following way (see sections and for more
details). Since our manifold is annulus we can express any L2-function f
as angular Fourier series. Using this and the reversibility of F' the geodesic
ray transform of f can be written as a sum of generalized Abel transforms
acting on the Fourier components of f. By Taylor expansions of geodesics
and careful treatment of the error terms we show that these Abel transforms
are injective. From this it follows that the Fourier components of f all vanish,
giving the claim.

Theorem can be seen as a generalization of the corresponding Rie-
mannian result in [13] (see also [45]) and the proof is similar in spirit. In
fact, we use the theory of Abel transforms introduced in [I3] to prove our
result. However, many formulas which were explicit in [I3] become implicit
and less tractable in our Finslerian case. For this reason we use Taylor ex-
pansions of geodesics near their lowest point to show the needed regularity
properties of the integral kernels of the Abel transforms (see section .
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Remark 1.4. We could express theorem in terms of a more general
family of curves than geodesics. From the proof of our main theorem one
sees that the curves only need to be “sufficiently smooth” with respect to
Taylor expansions and “sufficiently symmetric” with respect to the Finsler
norm. The family of curves can be characterized by the following properties
(compare to the assumptions in [5]):

(A1) All the curves in the family are smooth with unit speed.

(A2) For everyx € M andy € T, M there is unique curve going through x
to the direction y.

(A3) The curves depend smoothly on the initial conditions x and y.

(A4) Every curve reaches the boundary in finite time and has unique clos-
est point to the origin where 79 = 0 and 7y > 0.

(A5) The curves are symmetric with respect to the lowest point and they
consist of two parts where 1 > 0 and 1 < 0.

(A6) The curves satisfy the weak reversibility condition .
The assumptions |(A1)H(A6) allow the existence of conjugate points on M :

if F is for example induced by the Riemannian metric g = ¢~ 2(r)e where
¢ = ¢(r) is smooth and satisfies the Herglotz condition and e is the Euclidean
metric, then the (non-radial) geodesics of g satisfy conditions
(see e.g. |32, 34, B9]). We also note that the regularity assumptions for the
admissible curves could be weakened (finite number of derivatives is enough,

see remark .

Remark 1.5. Theorem[1.1] can also be seen as a generalization of the famous
Helgason support theorem in Euclidean geometry [22] (see also [13, Remark
31]). According to Helgason’s theorem, if a function integrates to zero on all
lines not intersecting a given convexr and compact set, then the function has
to vanish outside that set. Since the Herglotz condition allows the presence
of conjugate points (see [32]) and on Riemannian manifolds the existence
of conjugate points implies instability for the geodesic ray transform [33],
we do not expect stability for our injectivity or uniqueness result. Further,
with small changes our approach can be used to prove that the attenuated
geodesic ray transform is injective on scalar fields when the attenuation is
a Lipschitz continuous radial function (see theorem 29 and its proof in [13]
for more details).

1.2. Related results. The geodesic ray transform has been widely studied
but most of the results are obtained in the Riemannian setting. If (M, g) is a
compact simple Riemannian manifold with boundary (and smooth metric),
then the geodesic ray transform is known to be injective [37]. Recently it
was proved in [26] that injectivity holds also when the simple Riemannian
metric is only Cl-regular. Injectivity is known in the presence of conjugate
points as well: if the Riemannian metric is of the form g = ¢~2(r)e where e
is the Euclidean metric and the radial sound speed ¢ = ¢(r) satisfies the
Herglotz condition, then Z is injective on scalar fields [13], B2, 45, [B5] (see
also [39] and the generalization to tensor fields in [48]). In this case the
Herglotz condition is equivalent to that the manifold has a foliation with
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strictly convex hypersurfaces (see also lemma. Our main theorem is also
related to the Helgason support theorem in Euclidean space [22] (see [13,
Remark 31]).

When the geodesic ray transform operates on tensor fields, the unique-
ness results are known as solenoidal injectivity since one can only uniquely
determine the solenoidal part of the tensor field [42, 46]. Solenoidal in-
jectivity is known for example on two-dimensional compact simple man-
ifolds [41], on simply connected compact manifolds with strictly convex
boundary and non-positive curvature [40, 44], [46], on certain non-compact
Cartan—-Hadamard manifolds [30, 31] and on manifolds which admit strictly
convex foliation [19] 48], 53] [55]. A more comprehensive treatment of the ge-
odesic ray transform on Riemannian manifolds can be found in [27, [42] [46].

There are some injectivity results in the Finslerian case. It is known
that the geodesic ray transform is injective on scalar fields on simple Finsler
manifolds [28, [47]. The geodesic ray transform is also injective on a cer-
tain family of curves on general Finsler surfaces [5]. This result extends to
one-forms as well when uniqueness is understood modulo potential fields.
Compared to the results in [0, 28|, [47] our theorem allows the existence of
conjugate points (see e.g. [32]). We also note that we could express our main
theorem in terms of a family of general geodesic-like curves satisfying certain
assumptions (see remark [1.4]and compare to the assumptions in [5]). Other
injectivity results for general family of curves can be found in [21], [24] [36], [49].

The geodesic ray transform arises naturally in the linearization of the
travel time tomography or boundary rigidity problem where one wants to
uniquely determine (up to a gauge) the Riemannian metric (more generally
a Finsler norm) from the distances between boundary points [46]. When
we have conformal variations then the linearized problem reduces to the
injectivity of the geodesic ray transform in the background geometry (see
section. The travel time tomography problem was solved over a century
ago for radial sound speeds satisfying the Herglotz condition [23] 56] (see
also [39]). In this case the solution of the problem reduces to the inversion
of an Abel transform [38| [50]. There are also recent spectral rigidity results
for radial sound speeds which satisfy the Herglotz condition [14].

In the more general setting boundary rigidity is known for two-dimensional
compact simple Riemannian surfaces [43], for manifolds admitting strictly
convex foliation [52),[54] and for compact simple Riemannian manifolds which
are in the same conformal class [12], 37, [54]. There are some Finslerian re-
sults as well including Randers metrics [35], reversible Finsler norms which
satisfy a strictly convex foliation [I5] and projectively flat Finsler norms in
the plane [2,3,29]. Our main result can be seen as a boundary rigidity result
up to first order for a conformal family of spherically symmetric reversible
Finsler norms satisfying the Herglotz condition (see section . A survey
of the boundary rigidity or travel time tomography problem can be found
in [54].

1.3. Organization of the paper. Our paper is organized as follows. In
section 2] we go through basic definitions and properties of Finsler manifolds
and Abel transforms and we study the Herglotz condition. We prove our
main theorem in section [3] In section @ we prove the regularity properties of
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the integral kernel of the Abel transforms. Finally, in section [5| we discuss
the linearization of the boundary rigidity problem on Finsler manifolds and
the application of our result to linearized elastic travel time tomography.

Acknowledgements. J.I. was supported by Academy of Finland (grants
332890, 336254, 351665, 351656). K.M. was supported by Academy of Fin-
land (Centre of Excellence in Inverse Modelling and Imaging, grant numbers
284715 and 309963).

2. PRELIMINARIES

In this section we go through definitions, notation and lemmas which
are needed in the proof of our main theorem. The basic theory of Finsler
geometry can be found in [I], 6, 10, 5I] and the geodesic ray transform is
treated in detail in [46]. Generalized Abel transforms are studied for example
n [13, 25].

2.1. Finsler manifolds. Let M be a smooth manifold with or without
a boundary. We use z € M to denote the base point and y € T,M
to denote the direction in the tangent space. A non-negative function
F:TM — [0,00) of the tangent bundle is called a Finsler norm if it satisfies
the following conditions:

(i) F is smooth in TM \ {0}

(ii) F(x,y) =0if and only if y =0
(iii) F(z,\y) = AF(x,y) for every A > 0
) PP (zyy) .

(iv % D50y is positive definite for all y # 0.

The pair (M, F) is called a Finsler manifold. In other words, the map y
F(z,y) defines a Minkowski norm in 7,, M for every z € M. The length of a
piecewise smooth curve y: [a,b] — M is defined as L(y f F(y(t),~(t))dt.
In this way a Finsler norm F' defines a (not necessarlly symmetrlc) dlstance
function on M.

Finsler norm F is reversible, if F(z,—y) = F(z,y) for all x € M and
y € Ty M. Riemannian metrics are a special case of reversible Finsler norms:
if g is a Riemannian metric, then Fy(z,y) = \/gi;(x)y*y? defines a reversible
Finsler norm where we have used the Elnstem summation convention under
the square root. A distance function induced by a reversible Finsler norm is
symmetric. Not all Finsler norms are reversible: examples include Randers
metrics F' = F; + 3 where g is a Riemannian metric and 3 is a one-form.
On the other hand, there are reversible Finsler norms which are not induced
by any Riemannian metric.

Using convexity property we can define the Finslerian metric tensor

10°F?(z,

(2) 9ij(®,y) = 2(‘934’(83;Jy)
If F = F, is induced by a Riemannian metric, then g;;(z,y) = gij(x) is
independent of y € T, M. Using the Finslerian metric tensor one can define
the Legendre transformation L: TM — T*M which in the Riemannian case
corresponds to the musical isomorphisms. Legendre transformation allows



8 JOONAS ILMAVIRTA AND KEIJO MONKKONEN

us to define the co-Finsler norm (or dual norm) F*: T*M — [0, 00) so that
for every w € Ty M we have
3) F(z,w) = sup w(y).

yET M

F(zy)=1

Let 7: [a,b] — M be a smooth curve on M. We call v a geodesic if it

is a critical point of the length functional v — L(v). Equivalently, we say
that ~ is geodesic if it satisfies the geodesic equation

(4) () + 2GH (7 (1), 3(1)) = 0
where G = G(x,y) are the spray coefficients defined as

7 _ 1 il k82F2($7y) o 6F2(£L',y)

Here g% (z,v) is the inverse matrix of gij(x,y) and we have used the Einstein
summation convention. Geodesics correspond to straightest possible paths
on a Finsler manifold and they minimize distances locally. It follows that
if F'is a reversible Finsler norm and + is a geodesic of F', then the reversed
reparametrization % (t) = v(—t) is also a geodesic of F.

2.2. The Herglotz condition. Let M C R? be an annulus centered at the
origin and let (2!, 22) = (r,0) be the usual polar coordinates on M. The
coordinate vector fields 9, and dp form a basis in every tangent space 1{;. gy M.
The coordinates of a tangent vector y € 1{; 9)M in this basis are denoted
by (y',y?) = (p,®) (see figure|l). The components of y can be calculated
using the differentials p = dr(y) and ¢ = df(y). Hence we can identify
p <> dr and ¢ < df.

We say that F'is a spherically symmetric Finsler norm on M if U*F = F
for every U € SO(2) where the pullback of a Finsler norm via smooth
map ® is defined as (®*F)(x,y) = F(®(x),d®,(y)). Spherical symmetry
implies that F' = F(r, p, ¢) is independent of # and the angular momentum
L(r,p,¢) = %(%Fz(r, p,®) is conserved along geodesics. Further, we say
that a spherically symmetric reversible Finsler norm F' on M satisfies the
Herglotz condition, if

(6) 0. F*(r,0,¢) > 0
for all r € (R, 1] and ¢ # 0 where R € (0,1).

The geodesic equation for the radial coordinate becomes

1) #(0) = =IO (510,020, 5(0) - 0,20, 30).
If 7(to) = 0, then by spherical symmetry 9y F?(z,y) = 0 and

(5) #(t0) = 58" (1t0),3(00))0: F(3(t0). 3(10)

Since the Finslerian metric tensor g;;(x,y) is positive definite one sees that
the Herglotz condition @ is equivalent to that

(9) if 7(to) = 0, then #(to) > 0.
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Equation @ means that geodesics which are initially tangential to circles
curve outwards. One can also see from the geodesic equations that the
Herglotz condition forbids circles being geodesics.

An example of a spherically symmetric reversible Finsler norm satisfy-
ing (6] is the Finsler norm (see also [57])

, R
(10) F (T,Paqﬁ)—m

where the (anisotropic) sound speed ¢ = ¢(r, p, ¢) is reversible c(r, —p, —¢) =
c(r, p, @) and satisfies the Herglotz condition

(11) ;(M) >0

for all » € (R,1] and ¢ # 0. Note that if ¢ = ¢(r) is radial (i.e. F is
Riemannian), then this reduces to the usual Herglotz condition

d r -0

dr \ ¢(r)
for all r € (R, 1] and the Finsler norm defined by equation is a natural
generalization of the Riemannian metric

B dr? + r2d6?

-a)

We say that a Finsler manifold (M, F') with boundary has a strictly convex

foliation, if there is a smooth function v: M — R such that

(a) v~ 1{0} = OM, ¢=1(0,S] = int(M) and ¥~ 1(S) has empty interior.
(b) For each s € [0,9) the set X5 = 1 ~!(s) is a strictly convex smooth

surface in the sense that di) # 0 and any geodesic v having initial
conditions in T, satisfies %@b(y(t})h:o < 0.

For more details and discussion see [15]. The Herglotz condition @ implies
that M has strictly convex foliation, i.e. circles ||z|| = r are strictly convex.

Lemma 2.1. Let M = B(0,1)\ B(0, R) C R? where R € (0,1) and equip M
with a spherically symmetric reversible Finsler norm F which satisfies the
Herglotz condition @ Then (M, F) admits a strictly convex foliation.

Proof. Define the function #(z) = 1 — ||z||>. Then # is smooth, di)(z) =
—2x # 0 and it is easy to check the requirements in @ Further, we can
calculate %w(v(t))\tzo = —2(1 +~(0) - 4(0)). By spherical symmetry we
can assume that 6(0) = 0. Then ~(0) -5(0) = r(0)#(0) > 0 since 7(0) =0 (v
is tangent to a circle) which implies #(0) > 0 due to Herglotz condition ().
Therefore %w(’y(t))\tzo < 0 and (M, F') has strictly convex foliation. [

Lemma 2.2. Let (M, F) be as in lemma . If v is a geodesic such that
7(0) = 0, then v reaches the boundary OM in finite time from both ends
and y consists of two symmetric parts (with respect to (r(0),60(0))) where
7 <0 andr > 0.



10 JOONAS ILMAVIRTA AND KEIJO MONKKONEN

Proof. Let v be a geodesic such that 7(0) = 0. By spherical symmetry we
can assume that 0(0) = 0. According to [I5, Lemma 14], if n is a geodesic
such that $4(n(t))]i=o < 0, then 7 reaches the boundary in finite time as ¢
increases. Now £4(y(t))]i=0 = —27(0) - 4(0) = 0. The Herglotz condition
implies that #(0) > 0 (y curves outwards) and using the fact that v has unit
speed and F is homogeneous there is € > 0 such that y(¢) - §(¢) > 0. Now
defining 7n(t) = v(t + €) we obtain that %@b(n(t))h:o < 0 so n and hence ~
reaches the boundary in finite time as ¢ increases. Using similar reasoning
for the reversed geodesic % (£) = y(—t) we obtain that v has finite length
and reaches the boundary from its both ends. The symmetry of v with
respect to (7(0),6(0)) follows from the reversibility and spherical symmetry
of F'. The Herglotz condition in turn implies that 7 cannot have more than
one zero since all critical points of r(¢) have to be local minima. Hence ~
consists of a rising part where 7 > 0 and a descending part where 7 < 0. [

Lemma implies that those geodesics which are initially tangential to
circles have finite length. This is enough for us since we only use this type
of geodesics in the proof of theorem We note that in the Riemannian
case (i.e. for the metric ¢ = ¢ 2(r)e) Herglotz condition implies that the
whole manifold is non-trapping (see e.g. [34, 39]). We do not know if this is
true also in our Finslerian setting.

2.3. Geodesic ray transform and Abel transforms. Throughout this
section we assume that M C R? is an annulus centered at the origin equipped
with a spherically symmetric reversible Finsler norm F' satisfying the Her-
glotz condition @

The geodesic ray transform of a scalar field f: M — R is defined as

If(7)==]£fds

where 7 is a unit speed geodesic. The integrals are finite for sufficiently
regular functions when the geodesic v has finite length (e.g. if v has unique
lowest point to the origin).

We use the following angular Fourier series expansion which allows us to
write the geodesic ray transform of f in terms of the geodesic ray transforms
of the component functions fi(r,6) = ay(r)e’?.

Lemma 2.3 ([I3, Lemma 20]). If f € L?*(M), then it can be written as
angular Fourier series

(12) f(r,0) = ar(r)e™

keZ
where a € L*([R,1]) and the series convergences to f with respect to the
L?(M)-norm.

Let v: [-T,T] — M, ~v(t) = (r(t),00 + w(t)), be a geodesic with lowest
point (rg, 8y) and highest point at » = 1. Since F is reversible v is symmetric
with respect to (ro,6p) (see lemma [2.2)), i.e. (r(—t),0(—t)) = (r(t),60 —
6(t)). Using this symmetry and change of variables ¢ — r (which is also
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possible due to lemma [2.2)) we obtain the following formula for the Fourier
components

T
Zfu(ro,00) = / Tak(r(t))eik(aﬁw(t))dt:26”“90 /O ar(r(t)) cos(kw(t))dt

T

1 ~ .

(13) = 2¢tko / (r— ro)_l/QKk(ro, r)ag(r)dr = 2e’k9°Akak(r0)
T0o

where I?k(ro,r) = K(rg,r)cos(kw(ro,r)), K(ro,7) = (r — 7“0)1/2(7"(7“0,7"))*1

and

1 ~
(14) Ah(x) = / (v — 2) 2Ry (2, y)h(y)dy.

We call the integral transform Aj in a generalized Abel transform.
The Abel transforms Ay are a special case of the more general integral
transforms

1
(15) I¢h(x) = / (v — )~ Kz, y)h(y)dy

where C: A — R is any bounded function, o € [0,1), A = {(u1,u2) € R? :
0 <wuy <wug <1} and h: [0,1] — R is regular enough so that the integral
in is well-defined. This type of integral transforms were studied in [13]
and they satisfy the following important properties.

Lemma 2.4 ([I3, Theorem 4]). The transform Ig: LP([0,1]) — L%([0, 1])
is well-defined and continuous when o+ 1/p < 1+ 1/q. In particular, this
holds when p > 1/(1 — «a), ¢ < 1/a or p = q. The norm of this mapping
satisfies HI,%HLP_)LQ = O(supy |K)).

Lemma 2.5 ([I3, Theorem 12]). Let o € [0,1). Suppose K: A — R is
bounded everywhere, non-zero on the diagonal {(u,u) € R?:0 < u < 1} and
Lipschitz continuous in some neighborhood of the diagonal. If h € L([0,1])
satisfies Igh(x) = 0 for almost all x > r for some r € [0,1), then h(x) =0
for almost all x > r. In particular, Ig: L'([0,1]) — L'([0,1]) is injective.

The above lemmas hold also if we replace A with Ag = {(u1,u2) € R? :
R < wuy < wug <1} (see [13] for details). We show in sections [3| and [4] that
the Abel transforms A defined by equation satisfy the assumptions in
lemmas 2.4] and 2.5

3. PROOF OF THE MAIN THEOREM

In this section we prove our main theorem. The idea of the proof is
the following. Using angular Fourier series the injectivity problem can be
reduced to the invertibility problem of generalized Abel transforms acting
on the Fourier components of f. Writing Taylor expansions of geodesics and
analyzing the error terms we show in section {4 that the integral kernel Kj =
Ky (ro,r) satisfies the regularity properties which are needed in lemmas
and From this it follows that the Abel transforms Ay are injective,
implying that the Fourier components of f all have to vanish, which proves
the claim.
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The following two lemmas form the core of our proof since they imply

that the integral kernel K i is locally regular enough so that we can use the
theory of Abel transforms developed in [13] (i.e. lemmas [2.4] and [2.5).

Lemma 3.1. Let R € (0,1) and Ag = {(u1,u2) € R?: R < uy < ug < 1}.
Define the integral kernel K: Ar — R as

K(ro,r) = (r —10)"/?(#(ro,7)) ™"

where 1 = 7(ro,t) is obtained from the solution ~y(ro,t) = (r(ro,t),0(ro,t))
of the geodesic equation with initial conditions r(0) = ro and 7(0) = 0 and
we have changed the parameter t — r using lemma . Then K = K(rg,r)
is bounded everywhere in Ag, non-zero on the diagonal {(u,u): R <u <1}
and Lipschitz continuous in a small neighborhood of the diagonal.

Lemma 3.2. Let w(rg,t) = 0(rog,t) — 6y be the angular change of a geodesic
with lowest point (r9,00) and R € (0,1). The map (ro,7) — w?(ro,r) is
Lipschitz continuous in a small neighborhood of the diagonal {(u,u) : R <
u < 1}.

The above lemmas are quite technical and laborious to prove. Therefore
we have devoted own section to the proofs (see section . Lemmas
and imply the following important result for the Abel transforms Aj.

Lemma 3.3. Let Ai be the Abel transforms defined by equation . Then
Ai: L*([R,1]) — L%*([R,1]) are equicontinuous. Furthermore, the trans-
forms Ai: L*([R,1]) — LY([R,1]) are injective.

Proof. By lemma the kernel K = K (rg,r) is bounded. This implies that
Ki(ro, ) = K (rg,7) cos(kw(ro, 7)) is bounded too and we can use lemma
to deduce that Ay are equicontinuous on L%([R,1]). From lemmas
and we get that K = K(ro,r) and (rg,7) + w?(rg,r) are Lipschitz
in a small neighborhood of the diagonal of Ar and K is non-zero on the
diagonal. The Lipschitz continuity of (rg,r) — cos(kw(ro, 7)) in a neighbor-
hood of the diagonal follows from the fact that cos(z) = h(z2) where h is an
analytic function formed from the Taylor series of cosine by replacing the
powers 22" with 2". Therefore K}, is bounded, non-zero on the diagonal and
Lipschitz in a small neighborhood of the diagonal. We can use lemma [2.5
to obtain that Ay, are injective on L([R, 1]). O

Now we are ready to prove our main theorem. The proof is short since it
relies on many auxiliary (and technical) lemmas.

Proof of theorem[1.1] As was mentioned in remark [I.2]it is enough to prove
the claim for n = 2. We have to show that if fﬂ/ fds =0 for all geodesics v,
then f = 0. Using lemma [2.3| we write f as angular Fourier series
(16) F(r.0) =) ar(r)e™ =3 fu(r.0)

kEZ kEZ

where a;, € L%(|R,1]) and convergence is in L?(M). We consider geodesics y
which have unique lowest point and hence finite length due to lemma [2.2]
By lemma [3.3] the Abel transforms Ay are equicontinuous which implies
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that Z is continuous on L?(M). Hence the geodesic ray transform Zf can
be calculated termwise and we obtain (see equation )

(17) Zf(r,0)= Zlfk(r, 0) =2 Z Apa(r)e?

keZ keZ
where we have parameterized geodesics with their closest point (r, ) to the
origin. Since Zf(vy) = 0 for all geodesics v we have that Zf(r,0) = 0 for all
r € (R, 1]. This implies that Aga(r) = 0 for all € (R, 1]. Using injectivity
of Ay (lemma we see that ag(r) = 0 for all € (R, 1]. Therefore f =0,
giving the claim. O

4. REGULARITY OF THE INTEGRAL KERNEL

In this section we prove lemmas[3.I]and[3.2] The quite technical proofs are
based on careful treatment of the Taylor expansions of component functions
of geodesics.

4.1. Taylor expansions and weak reversibility. Let (ro,0p) € M. As F
is reversible there is unique geodesic 7(rg,t) = (r(ro,t),0(ro,t)) modulo
orientation so that (rg, fp) is its lowest point. Here we have explicitly written
down the dependence on rqo since we need to know the regularity of the
integral kernel K = Kj(ro,r) with respect to ro. Reversibility of F' also
implies that r(ro, t) = r(ro, —t) and 0(ro,t) = 6y — 0(ro, —t) (see lemma [2.2).
Differentiating this with respect to ¢ we obtain

.7'“'(’/“0,0) =0
(18) {é(ro,()) = 0.

Condition can be called “weak reversibility” of a Finsler norm since it
does not necessarily require reversibility.

Using weak reversibility we write Taylor expansion for the second deriv-
ative of the radial coordinate

#(ro,t) = a(ro) + BEi(ro,t), Ei(re,t) = O(?),
where a(rg) = 7(rg,0) > 0 for all ry € (R,1) by Herglotz condition. Since
7(rp,0) = 0 we can integrate the expansion for #(rg,t) to obtain that
(1o, t) = a(ro)t + Ea(ro,t) with Ey(rg,t) = O(t®) and

2
T(To,t) — 719 = CL(’I“()) + Eg(ro,t) with Eg(’f‘o,t) = O(t4).
Here f(t) = O(h(t)) means that |f(t)| < M |h(t)| for small ¢ where M > 0
is constant. Note that the maps (ro,t) +— 7(ro,t) and (rg,t) — 6(ro,t)
are smooth because of smooth dependence on initial conditions. Therefore
a = a(rg) is bounded both from above and below by a positive constant.

4.2. Changing between time and radial coordinate. From the Taylor
expansion of r = r(rg,t) we get an important relation t* ~ r —rq for small ¢,
i.e. there is constant C' > 0 such that

12
2 <r—ry<Ct
C ~ 0>
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when t (or equivalently r — rg) is small enough. Therefore when we write
estimates using Taylor expansions it does not matter whether we express
them in terms of ¢ or r — rg.

When we change between ¢ and r we need to know how the derivatives
transform. We introduce the coordinates

z = (x,t) = (ro,1)
zZ= (yar) = (TOaT)-
Coordinate transformation z — Z is well-defined because the Herglotz condi-

tion implies that dr /0t > 0 on the rising part of the geodesic and dr/dt < 0
on the descending part (see lemma . Using the chain rule we see that

0 0 o 0to

oy 05 oz T oyor
o 9 _otd

ar 922 orot
Notice that 9t/0r = (9r/0t)~* which can be seen for example by looking at
the Jacobian matrices of the transformations z = ¥(2) and 7 = U~1(z).

4.3. Proofs of the lemmas. The strategy to prove lemmas and
is the following. We use Taylor expansions for the coordinate functions of
geodesics to calculate the derivatives with respect to the variables rg and 7.
By a careful treatment of the error terms we show that both of the derivatives
are bounded when ¢ (or equivalently r — r() is small. Using the mean value
theorem we obtain that K = K(r,r) and (ro,7) — w?(ro,r) are Lipschitz
in a small neighborhood of the diagonal of A = {(u1,u2) € R?: R < uy <
Uy < 1}.
We start by proving lemma |3.1

Proof of lemma[3.1. We write ¥~ 1(rg,r) := ((r0,7))"! etc. The leading
order behaviour of the kernel K can be seen by writing the expansion

1
K@wﬂ—w—mﬂ%*%mﬂ—( M?%+O@O<Mmﬁ+ow>
1
- L O,
2a(ro) )
From this we easily see that K is non-zero on the diagonal and bounded
everywhere in Ap.
We then focus on the derivative 9, K (g, r). Using the chain rule we get

OrK (ro,7) = 887‘((T — 7’0)1/27‘*1) =7 3(r — 7’0)*1/2 (;7'"2 —(r— ro)i‘>.

The Taylor expansions from section [£.1] imply that

1 2
Zp2 = a*(ro)

5 — 2+ 0@th
Vi a(ro) 4
(r —ro)¥ 5 t* 4+ O(t")

i3 = a®(ro)t® + O(t°).
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From the expression for 73 we obtain
1 1 1
— = = ot H=0u3).
3 ad(re)t3+ O@3)  ad(rg)t3 +O(E) ()
Thus finally we have
0K (ro,r) = O3 -0t~ - O(t*) = 0(1)

which implies that the derivative 0, K (rg,r) is bounded when ¢ is small, or
equivalently when r — rq is small.

The estimate for the derivative 9,,K (19, r) is a little bit trickier. We use
the coordinates (z,t) = (ro,t) and (y,r) = (rg,r) introduced in section
First we obtain that

0 (o — )\ —1/2 o
8yK(y»7") = %((T — y)1/27'~_1) = <T2y)7:—1 —(r— y)l/zf_Q(,a*;-
We use the derivative transformations from section to see that
or or otor 0or 0Ot.

oy 0z Toyot oz oy

where
or
ox

Taylor expansion for r allows us to write

=ad'(ro)t + 0, Fs.

t(y,r) = \/2((7“ —y) — Es3(y,7))

a(y)
which can be differentiated with respect to y
ot a(y)(1+0yEs) +a'(y)((r —y) — Bs)

1 — =
19) oy ()t
Therefore the derivative becomes
_ _(7"_?/)_1/2-71 CoonN/2=2( (o
0K (yor) = —— it (r — )V (@)t + 0. F2)

a(y)(1 + 9yEs) + a'(y)((r —y) — Es)
— Ey) ).
o (aly) + Bv)
We estimate the different terms separately.
First of all

(r—y)'? 2 =0@) -0 ) =0
Now E3(x,0) = 0 for all z and therefore 0, F2(x,0) = 0. Smooth dependence
on initial conditions gives us that 0, F» is Lipschitz with respect to t. Thus
Oy Ea(z,t) = O(t) and
(r— )% 72 (d (y)t + 0 E) = O(t™") - O(t) = O(1).
Similarly (r — y) = O(t?) and E3 = O(t*) = O(#?) so

(7“ _ y)1/27;—2 . a/(y)((Zsz:gi — E3) _ O(t_l) . O(t) _ 0(1)

Additionally By = O(t?) and

(=2 S — o) - 0fn) = ().
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Next we take a look at the term 0,F3. From the transformation law

6% = % + g—;% we get
/ [e— —
0, By — 0, Fs — 0,15, “W) + ay)0, B ta (W) ((r —y) — E3)
a?(y)t
a*(y)t0: B3 — 01 E3(aly) + a'(y)((r —y) — Bs))
OyE3 = .
= a?(y)t + a(y)O L3

Now 0, FE2 = O(t) and

t
Ei(x,t) :/ Ei_i(z,s)ds, 1€ {2,3}.
0

By smoothness we have
t
OpEs(z,t) = / 0 Ea(x, s)ds
0

s0 0, E3 = O(t?). Also 0;F3 = Ey = O(t3) and we have an estimate for the
derivative
O(t?) 2 2 2
0,FE3 = =01+ O@)) = O).
y3 az(y)t+a(y)8tE3 ( )( ( )) ( )

Thus (1)0, E
V22 RS -1y o) = O(1
(r—y)%72. DTS — 067 - 0() = 0(1),
Finally the y-derivative of the integral kernel is

—(r—y)~1/?

2
=i 2 (r—y) V2! ( _n + (r — y)> +0(1)

0,K (1) = i (- ) 4+ 0Q)

2
: a(y)t*  tEy  a(y)t?
_ T_Q(T _ y)_1/2t_1 _ (y) 2y (y) + B ) +0(1)
2 2 2
=0t™-0th+001)=0().
This implies that 0y, K (ro, r) is bounded for small ¢, or equivalently for small
T —7Tg.

Let € > 0 be small enough so that both 9, K (ro,r) and 0,,K (ro,r) are
bounded when r —rg < €. Now if (rg,7),(70,7) € Ay = {(u1,u2) € Ap :
ug — uy < €}, then the mean value theorem implies that

[ K (ro,7) — K(ro,7)| < [VK(70,7)| |(ro,7) — (ro,7)]

< M(|0r K (70, 7)| + |0, K (7o, 7)|) [ (ro, 7) — (ro, 7)|
< M’(T()J’) - (7;67?)’ :
Here we used the fact that the point (7, 7) belongs to the segment connecting

(ro,7) and (79,7) so 7 — 79 < € since A% is a convex set. Therefore K =
K (rg,r) is Lipschitz in a small neighborhood of the diagonal of Ag. O

Next we prove lemma [3.2] The proof is similar to the proof of lemma [3.1]
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Proof of lemma|3.4 Using fundamental theorem of calculus we can write

t r
w(ro,t) = O(ro,t) — Oy = / 0(ro, s)ds = / O (ro, u)i 1 (rg, u)du.
0 ro
Since 7 (rg,t) = O(t™"') and f(ro,t) = O(1) (by smooth dependence on
initial conditions) we have by the chain rule

drw(ro, ) = O(ro, 7 t(ro, t) = O(1) - Ot~ 1) = O@t™Y).

Using 7! = O(t™1) and ¢t~ ~ (r — 79) /2 for small t we obtain
jw(ro, )| < M/ |7~ (ro, w)|du < J\//-T/ (u— 7o)~ 2du = M(r —ro)'/?
ro 0

for small r» — r¢ which implies w(rg,r) = O(t). Hence
8rw2(r07 7") = 2w(7“0,r)8rw(r0,7“) = O(t) ’ O(t_l) = 0(1)

Thus the derivative 9,w?(rg,r) is bounded for small ¢ (or for small r — rg).
For the derivative Oy, w(ro, ) we write

w(ro,r):/ é(rg,u)(u—ro)_l/QK(ro,u)du:/ (u2 7"0) 1/2 o(ro,u)du
T 7o

where .
¢(ro,) = 0(ro, )K(ro, r)(r + 1) /2.

The weak reversibility condition 9 (ro9,0) = 0 implies that
’I”(), / 9 o, s
so O(rg,t) = O(t) since @ (ro,t) = O(1) by smooth dependence on initial

conditions. The transformation rules for the derivatives imply that

0, 0(y,r) =7 Ly, m)b(y,r) = Ot 1) - Ot) = O(1)

and
ot .. .
+ a—yé(y,r) =0()+0(t ) -0(t) =0(Q1).
Here we used the calculations from the proof of lemma to deduce that

g—; = O(t™1) (see equation ([19)) and 9.0(x,t) = O(1) by smooth dependence

on initial conditions. Thus 6 = (ro, r) is Lipschitz for small r —ry. Because
K = K(ro,r) and (ro,r) — (r +1)"/? are Lipschitz for small r — rq also the
map ¢ = p(rg, r) is Lipschitz for small r — ry (the terms in ¢ are bounded).
Therefore the derivatives 0,,¢ and 0,¢ are bounded for small » — rg and
v =0(1).

The derivative O w(rg,r) becomes (see e.g. [13| Proposition 15])

r T T
Opow(ro, 1) = / (u2 — rg)fl/Z (&ng(ro, u) — u—gcp(ro,u) + iaucp(ro,u)>du
T0

—ro(r? — 13"V 2p(ro, 7).
The term inside the big parenthesis is O(1) because ¢ and its derivatives
are bounded and u > rg > R > 0. Hence the term coming from the integral

ayé(yv T) = 8;50(1', t)
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is O(t). The latter term is O(¢t~!) and thus O, ,w(re,7) = O(t~!). Finally
we have

8T0w2(r0,7“) = 2w(rg, r)Or,w(re,r) = O(t) - ot =001)

which implies that the derivative 0,,w?(rg,7) is bounded for small ¢, or
equivalently for small 7 — rg. The Lipschitz continuity of (rq, ) + w?(rg,)
in a small neighborhood of the diagonal of Agr then follows from the mean
value theorem as in the proof of lemma O

5. LINEARIZED TRAVEL TIME TOMOGRAPHY ON FINSLER MANIFOLDS

In this section we consider the linearization of the boundary rigidity prob-
lem on Finsler manifolds: if two Finsler norms give the same distances be-
tween boundary points, are they equal up to a gauge? We show that the
linearization of boundary distances for a general family of Finsler norms
leads to the geodesic ray transform of a function on the sphere bundle SM.
We also show that if the family of Finsler norms arises from conformal vari-
ations, then linearization leads to the geodesic ray transform of scalar fields
on M. This implies that if the geodesic ray transform is injective on scalar
fields, then we have boundary rigidity in the first order approximation.

The linearization of the boundary rigidity problem has been done earlier
for Riemannian metrics for example in [49, Section 3.1]. We show that
the Riemannian linearization result follows from the linearization of Finsler
norms as a special case.

5.1. Linearization for general Finsler norms. Let M be a smooth com-
pact manifold with boundary OM. Let z,2' € OM, € > 0 and s € (—¢,¢).
Assume that we have a family of curves v5: [0,7] — M smoothly depending
on s and connecting = to 2’ such that each ~, is a unit speed geodesic of a
Finsler norm Fy;. We denote by 7, the derivative of 75, = v5(t) with respect
to t. Let dp,(z,2’) be the length of the geodesic 75 with respect to Fg, i.e.
we assume that s minimizes the distace from z to z’.
The derivative of dp, (x x') with respect to the parameter s at zero is

/ o 45(0)

_ OF((0)A0(t)
o0 Js

adps x,x')

(20) dt.

s=0

A calculation shows that
0 .
%(Fs(’ys(t)?’}/s(t)))

and we obtain

9dg, (x, z') _/T OF, (10 (1), F0(t) 8/T |
s s 0_ 0 0s o Odt+ s Fﬂ(r)/s(t)fyg(t))dt -

The second term vanishes since g is a geodesic of Fy and hence a critical
point of the length functional. Thus we obtain

ddp, (x,x")
Os

g (R0, 4:(0)

s=0

(21) = Zsmh(vo)

s=0
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where the function h: SM — R is defined as

OFs(z,y)
22 h — o8\ I
(22) (z,y) s |
and Zgys is the geodesic ray transform on the sphere bundle SM.
If Fs(v,y) = \/g5;(x)y'y? where ¢g° = g7;(z) is a family of Riemannian
metrics, then
OFs(v0(t), @)  _ 1 9g;;(10(1)) i
=0 2, /0 (30(1) 3 (D3 (1) =0
1 9g;;(70(t)) ;
=-—) - o (0 (t
5 |
where we used the fact that g is a unit speed geodesic of g°. Hence
ddg, (z,2")
23 —= 2 =Dhh
(23) 95 |, "2 (70)
where the components of the 2-tensor field h = h;;(x) are
10g;;(x)
24 hii(z) = = —2
(24 1= 5|

and 7o is the geodesic ray transform of 2-tensor fields.

If there are no constraints on the family Fj of Finsler geometries, then any
smooth function h: SM — R can be realized as a variation in the sense of
equation . Therefore the linearized problem in general Finsler geometry
is that of finding the kernel of Zgys. This is simple: Zgyrh = 0 if and only
if h = Xu for a smooth function u: SM — R with u|ggy; = 0, where X is
the geodesic vector field. The claim can be proved by defining u to be the
integral of h over forward geodesics. Constraints on A induce constraints on
the potential w as is the case in Riemannian linearizations and tomography
of 2-tensors.

5.2. Linearization for conformal variations. Let us consider the case
Fs(z,y) = cs(x)Fy(x,y) where cs = cs(x) is a family of positive functions
on M such that ¢g = 1 and Fj is some fixed Finsler norm. Now

OFs(v0(t), @) | _ des(o(?))
Js =0 B ds s=0

where we used the fact that Fo(vo(t),40(t)) = 1 since vy is a unit speed
geodesic of F. We obtain

(25)

S

adFs (x7 J",) _
(26) T 9s o =Zf ()
where the function f: M — R is defined as
B Ocs ()
(27) f(l') - 85 SZO'

Hence the linearization of boundary distances of conformal family of Finsler
norms leads to the geodesic ray transform of scalar fields on the Finsler
manifold (M, Fp).
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If all the geodesics 75 give the same boundary distances dp,(x,2’), then
the derivative with respect to s vanishes and

(28) Zf(v)=0

for all geodesics g of Fj connecting two points on the boundary. If the
geodesic ray transform is injective on (M, Fy), then to first order in s we
have

OF,
29 Fs ~ F . = F
(29) ots 35 |, 0
since the derivative satisfies
8F5(x,y) acs(x)
(30) Os 0 Os o O(xa y) f(SU) 0(‘/1:’ y) 0

where we used the fact that f = 0 whenever Z is injective on (M, Fp). In
this case we have boundary rigidity up to first order in the parameter s.

5.3. Conformally linearized elastic travel time tomography. Next
we consider the travel time tomography problem in R? arising in elasticity.
Basic theory of elasticity can be found for example in [9, [50]. The stiffness
tensor c;j, = cijri(x) describes the elastic properties of a given material.
The stiffness tensor has the symmetries

(31) Cijkl = Cjiki = Cklij-
The density-normalized elastic modulus is
Cijkt ()
(32) aijk(T) =
Y p(z)

where p = p(x) is the density of the material.

If p is the momentum covector, then the Christoffel matrix is I';;(z,p) =
> ik a;ji1(2)p;jpr. The Christoffel matrix is symmetric and we also assume
that it is positive definite so it has three positive eigenvalues \; = X\;(x,p)
where i € {1,2,3}. Let us assume that \; > \; for i € {2,3}. It was
shown in [I6] that /)i (x,p) defines a co-Finsler norm in T*R3. Using the
Legendre transformation we obtain a Finsler norm in TR3.

Assume that the stiffness tensor c;ji = c¢jjr(x) is fixed and consider the
conformal variations ¢, (z) = fs(x)ciju(x) where fs = fs(z) is a smooth
family of positive functions such that fo = 1 (i.e. we have a family of
“factorized anisotropic inhomogeneous media”, see e.g. [7, [8, [0, 57]). The
density-normalized elastic modulus becomes

ca (T
(33) ajjm (@) = z;/zz;) ) = fs(®)aijr ().
Thus we have a family of Christoffel matrices I'j/(z,p) = fo(x)Tu(z,p).
Since the eigenvalues only get scaled by fs, the largest eigenvalue corre-
sponds to A{(z,p) = fs(z)\1(z,p). We obtain a family of co-Finsler norms
FX(z,p) = /fs(x)F*(x,p) where F* is the co-Finsler norm corresponding
to the stiffness tensor c;;r;. Now as the Legendre transformation acts fiber-

wise, we obtain a family of Finsler norms Fs(z,y) = \/ fs(z)F(z,y) where F’
is the Legendre transformation of F™.
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We have shown that conformal variations of the stiffness tensor leads to
conformal variations of the Finsler norm induced by the background stiffness
tensor. If we consider the travel time tomography or boundary rigidity prob-
lem for the family of induced Finsler norms Fj, then using the observations
done in section 5.2l we obtain that
- 01 ()
s s=0
whenever the geodesic ray transform is injective on scalar fields on the base
manifold (M, F'). This in turn implies that the stiffness tensors cfj w1 = fsCijhi
all agree to first order in s, i.e.

=0

ol
(35) Cijkt ™ Cijki + 8 - TJ = Cijkl-
s=0
We note that it was shown in [I7] that the linearization of elastic travel
time tomography problem for a family of isotropic stiffness tensors leads
to the geodesic ray transform of scalar fields on Riemannian manifolds
(and more generally to an integral geometry problem of 4-tensor fields).

Our conformal linearization allows general anisotropies for ikl (the back-

ground stiffness tensor ¢;;; can be anisotropic) and therefore the geometry is
Finslerian; in [I7] the authors mainly study perturbations around isotropic
elasticity (weakly anisotropic medium). Other difference is that our lin-
earization applies to qP-waves and the linearization in [I7] to S-waves and
gS-waves. For more linearization results in elastic travel time tomography
see [17, (18], 46].
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