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Abstract. We present a new computed tomography (CT) method for inverting the Radon
transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method
Torus CT. We prove new inversion formulas for integrable functions, solve a minimization
problem associated to Tikhonov regularization in Sobolev spaces and prove that the solution
operator provides an admissible regularization strategy with a quantitative stability estimate.
This regularization is a simple post-processing low-pass filter for the Fourier series of a phantom.
We also study the adjoint and the normal operator of the X-ray transform on the flat torus.
The X-ray transform is unitary on the flat torus. We have implemented the Torus CT method
using Matlab and tested it with simulated data with promising results. The inversion method
is meshless in the sense that it gives out a closed form function that can be evaluated at any
point of interest.

1. Introduction

We present a new computed tomography (CT) method for X-ray tomography in 2D. The
method reconstructs the Fourier series of a phantom via the projection of X-ray data into X-ray
data on the flat torus which has a remarkably simple inverse X-ray transform. Therefore we call
the new method Torus CT. We have developed new mathematical theory and computational
implementations. The numerical implementation was used to demonstrate the potential of Torus
CT method in various simulations and tests, including data simulation in torus geometry and
traditional experimental projections. Torus CT provided an efficient basis for inverse solution
and its efficacy is shown in this work.

The article is organized as follows. In section 1.1 we give an overview of computed tomography
and regularization, in section 1.2 we discuss works related to X-ray tomography on torus, and in
section 1.3 we state the main theoretical results in this paper. Section 2 includes mathematical
preliminaries, proofs of theorems and numerical analysis for Torus CT method. Section 3
contains mathematical formulation of computational forward and inverse models. Section 4
presents numerical experiments and their analysis. Conclusions are given in section 5. We have
included a short note on supplementary material in the end of the article.

1.1. Overview of computed tomography and regularization methods. We give here
an overview of X-ray tomography. Practical CT imaging was first introduced by Cormack and
Hounsfield in 1970s based on the theoretical work of Cormark [3, 4] in 1960s. The mathematical
theory itself was in fact earlier studied by Radon [26] in 1917. We give here only a narrow sample
of topics and references in X-ray computed tomography. More references can be found in the
cited works.

CT has many applications in medical imaging and engineering utilizing computerized axial
tomography (CAT), positron-emission tomography (PET) and single-photon emission computed
tomography (SPECT) [21]. Possible applications include imaging of patients in medicine and
nondestructive testing in engineering. The most common inversion method for CT imaging is
based on the filtered back-projection (FBP) algorithms [23, 14].

The FBP algorithms work well if there is sufficiently dense set of measurements, and otherwise
regularization is often required. Another reason for regularization comes from the need of
controlling errors in reconstructions cased by a measurement noise. See for example [22, 21].
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Usually a regularization method is applied for a discretized X-ray tomography model as in
the examples listed next. The most common regularization methods include Tikhonov regu-
larization and truncated singular value decomposition (TSVD) which promote smoothness of
reconstructions [22]. Other common regularization approaches include total variation (TV) reg-
ularization which promotes sparsity of reconstructions [31, 8, 24, 7]. Another approach is to
encode a priori information as a probability distribution and think the reconstruction problem
as an Bayesian inverse problem for finding a posterior distribution [31, 17, 13, 8, 7].

The main difference of our proposed Tikhonov regularization approach, stated in theorem 2,
compared to the usual regularization methods is that we do not discretize a phantom and
regularization takes a form of a simple low-pass filter on the Fourier side. This also reflects
the fact that Torus CT method is meshless (or meshfree) method. Theorem 3 states that the
proposed regularization method is an admissible regularization strategy. Details are given in
the subsequent sections.

1.2. The X-ray transform on torus, the Radon transform and the geodesic X-ray
transform. In this paper we consider application of the X-ray transform on the flat torus
Tn = Rn/Zn to the usual CT in the case when n = 2. In this section we give an account of
theoretical works on the X-ray transforms on tori. As expected, the d-plane Radon transform
of a function f on Tn encodes the integrals of f over all periodic d-planes. The X-ray transform
corresponds to the case when d = 1 and is in fact the geodesic X-ray transform on Tn over
closed geodesics. It is described in section 2.3 how the usual CT reconstruction on R2 can be
reduced to a reconstruction on T2.

Injectivity, reconstruction and certain stability estimates of the d-plane Radon transform
on Tn were proved for distributions by Ilmavirta in [10]. The first injectivity result for the
geodesic X-ray transform on T2 was obtained by Strichartz in [32], and generalized to Tn by
Abouelaz and Rouvière in [2] if the Fourier transform is `1(Zn). Abouelaz proved uniqueness
under the same assumption for the d-plane Radon transform in [1]. A more general view and
references on the Radon transform and the geodesic X-ray transform are given in [30, 9, 25, 12].

1.3. Inversion formulas and Tikhonov regularization. We state here our main theorems
regarding the X-ray transform on T2. We write the X-ray transform on T2 as I and denote
If(x, v) = Ivf(x). In our proofs, we subsequently apply the fundamental (but simple) property
of the X-ray transform on T2, stated in the formula (9), that was found in [10]. The exact
definitions are given in section 2.

Our first theorem gives new inversion formulas for the X-ray transform. We give two proofs
of theorem 1 in section 2.2. The first one does not rely to the inversion formula of [10] whereas
the second simpler proof does.

Theorem 1. Suppose that f ∈ L1(T2). Let k ∈ Z2. If k, v 6= 0 and v⊥k, then

(1) f̂(k) =

{´ 1
0 Ivf(0, y) exp(−2πik2y)dy, k2 6= 0´ 1
0 Ivf(x, 0) exp(−2πik1x)dx, k1 6= 0.

If k = 0, then

(2) f̂(k) =

ˆ 1

0
I(1,0)f(0, y)dy =

ˆ 1

0
I(0,1)f(x, 0)dx.

The function f can be reconstructed by the Fourier series (8) and the formulas (1) and (2).

Let Q denote the set of all integer directions; a more detailed description will be given later.
We consider a Tikhonov minimization problem: given some data g ∈ Hr(T2 ×Q), find

(3) arg min
f∈Hr(T2)

(
‖If − g‖2Hr(T2×Q) + α ‖f‖2Hs(T2)

)
.
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Let us define the post-processing operator P sα to be the Fourier multiplier (1 + α 〈k〉2s)−1 and
denote by I∗ the adjoint of I. We have the following theorems on regularization. The proofs
are given in sections 2.4 and 2.5 respectively.

Theorem 2. Let r ∈ R, s ≥ r, and α > 0. Suppose g ∈ Hr(T2 ×Q). The unique minimizer f
of the minimization problem (3) corresponding to Tikhonov regularization is f = P s−rα I∗g ∈
H2s−r(T2) ⊂ Hr(T2).

Theorem 3. Suppose r, t, s, δ ∈ R are such that 2s+ t ≥ r, δ ≥ 0, and s > 0. We assume that
f ∈ Hr+δ(T2) and g ∈ Ht(T2 ×Q).

Then our regularized reconstruction operator P sαI∗ gives a regularization strategy in the sense
that

(4) lim
ε→0

sup
‖g‖Ht(T2×Q)≤ε

∥∥∥P sα(ε)I∗(If + g)− f
∥∥∥
Hr(T2)

= 0,

where α(ε) =
√
ε.

Moreover, if ‖g‖Ht(T2×Q) ≤ ε, 0 < δ < 2s and 0 < α ≤ 2s/δ − 1, we have

(5) ‖P sαI∗(If + g)− f‖Hr(T2) ≤ α
δ/2sC(δ/2s) ‖f‖Hr+δ(T2) +

ε

α
,

where C(x) = x(x−1 − 1)1−x.

Remark 4. If we choose the regularization parameter as α = εγ , the optimal asymptotic rate
of convergence is obtained when γ = (1 + δ/2s)−1. Then the terms αδ/2s and ε/α are of equal
order.

We have also studied mapping properties, the adjoint and the normal operator of I in propo-
sitions 10 and 11; these results are stated in section 2. For example, it turns out that I|Hs(T2)

is unitary to its range for any s ∈ R (see proposition 11).
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2. Torus CT method

In this section we will lay out the theory of the Torus CT method. The reconstruction method
is based on the Fourier series and properties of the geodesic X-ray transform on T2. There is a
natural projection operator from the X-ray transform data of a compactly supported function
on the plane to the X-ray transform data on T2. This so called torus-projection operator plays
the role of the back-projection operator. For more details on the geodesic X-ray transform on
tori see [10] and [11, Chapter 3].

2.1. The geodesic X-ray transform on T2. We define the flat torus as the quotient T2 :=
R2/Z2 and denote the quotient mapping [·] : R2 → T2. A function f : T2 → C can be equivalently
thought as a periodic function on R2 via the quotient mapping [·]. We may thus consider a
function f : T2 → C as a periodic function on the whole R2.

On closed Riemannian manifolds one defines the geodesic X-ray transform as a collection of
line integrals of a function over periodic geodesics. The all geodesics of T2 are given by the
parametrizations γx,v(t) := [x + tv], (x, v) ∈ [0, 1]2 × R2 \ 0. The geodesic γx,v is periodic with
the period 1 (with respect to the parameter t) if and only if (x, v) ∈ [0, 1]2 × (Z2 \ 0) (see e.g.
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[11, Exercise 23]). In general, a geodesic is periodic on T2 if and only if its direction vector is a
multiple of a rational vector.

We denote the space of test functions by T := C∞(T2) and the set of all mappings X → Y

by Y X . We define the (geodesic) X-ray transform on T2 as an operator I : T → RT2×(Z2\0) by

(6) If(x, v) :=

ˆ 1

0
f(γx,v(t))dt, f ∈ T , x ∈ [0, 1]2 v ∈ Z2 \ 0.

A simple calculation shows that that f 7→ If(·, v) is a formally self-adjoint operator on T
for any fixed v ∈ Z2 \ 0. We denote the dual space of T by T ′, i.e. the space of distributions.
By formal self-adjointness of I, we may define the X-ray transform on distributions f ∈ T ′ by

(7) [If(·, v)](η) := (f, Iη(·, v)), η ∈ T

where (·, ·) is the duality pairing.

If f ∈ T ′, then we denote the Fourier coefficients of f as f̂(k) := f(e−2πik·x), k ∈ Z2, and the
Fourier series

(8) f(x) =
∑
k∈Z2

f̂(k)e2πik·x

converges in the sense of distributions. We are now ready to recall the inversion formula in [10]:

Theorem 5 (Eq. (9) in [10]). If f ∈ T ′, then

(9) Îf(k, v) =

{
f̂(k) k · v = 0

0 k · v 6= 0.

Theorem 5 gives a constructive formula (9) for the inverse of the X-ray transform on T2.

2.2. Inversion formula for integrable functions. In this section we simplify the formula (9)

for functions in L1(T2). It turns out that the dimension of the integral defining Îf(k, v) can
decreased by one using a change of coordinates, which enables a computationally faster imple-
mentation.

Recall that f ∈ T ′ is in L1(T2) if there exists a function f̃ ∈ L1(T2) such that

(10) (f, ϕ) =

ˆ
T2

f̃ϕdm, ∀ϕ ∈ C∞(T2).

It holds that L1(T2) ⊂ T ′. If If(·, v) ∈ L1(T2) for some f ∈ T ′, then we simply denote that
Ivf = If(·, v).

We define a family of coordinates which will be used repeatedly in this subsection. Suppose
that v ∈ Z2 \ 0 and v1, v2 6= 0. Let wm := m

|v1|v,m ∈ Z, and define the coordinates ϕv,m on T2

as

(11) ϕv,m(a, b) 7→ a
v

|v2|
+ (0, b) + wm, a ∈ [0,

∣∣∣∣v2v1
∣∣∣∣), b ∈ [0, 1).

Notice that a v
|v2|+(0, b) = (a v1

|v2| ,
v2
|v2|(a+b)) and wm = m( v1

|v1| ,
v2
|v1|) in the Cartesian coordinates.

It easily follows that the Lebesgue measure on T2 transforms as dm =
∣∣∣v1v2 ∣∣∣ d(a, b) where d(a, b)

denotes the Lebesgue measure on X := [0,
∣∣∣v2v1 ∣∣∣)× [0, 1).

Remark 6. The coordinates ϕv,m parametrize T2 as parallelograms which are located on R2.
Moreover, the parallelograms associated with ϕv,m,m ∈ Z are disjoint for a fixed v ∈ Z2 \ 0
when looked on R2. An example is given on Figure 1.

The next lemma states that the geodesic X-ray transform of L1(T2) function can be defined
geodesic-wise for almost every closed geodesic. Furthermore, the X-ray data for any fixed
direction is also L1(T2), and this definition agrees with the distributional definition.

4



Figure 1. Parallelograms associated to the coordinates ϕv,m when v = (2, 2)
and m = 0, 1.

Lemma 7. Suppose that v ∈ Z2 \ 0. Then the X-ray transform Iv : L1(T2) → L1(T2) can be
defined by the formula

(12) Ivf(p) :=

ˆ 1

0
f(p+ tv)dt for a.e. p ∈ T2.

Moreover, we have:

(1) This definition coincides with the distributional definition; for every f ∈ L1(T2) and
g ∈ L∞(T2) it holds that (Ivf, g) = (f, Ivg).

(2) Iv : L1(T2)→ L1(T2) is Lipschitz continuous with Lipschitz constant 1.
(3) For almost every p ∈ T2 and every v ∈ Z2\0 and t ∈ R it holds that Ivf(p) = Ivf(p+tv).

Proof. This follows from the Fubini’s theorem and straightforward calculations using the coor-
dinates ϕv,m. We omit the details. �

We will give two proofs for theorem 1. The first proof is based on the assumption that
f ∈ L1(T2) and straightforward computation of the Fourier coefficients. The first proof proves
the injectivity of the X-ray transform on T2 for L1(T2) functions independently of [10]. The
second proof is based on the formula (9) and the assumption that If(·, v) ∈ L1(T2). Both of
the proofs involve the coordinates ϕv,k.

First proof of theorem 1. Recall that

(13) f̂(k) =

ˆ 1

0

ˆ 1

0
f(x, y) exp(−2πik · (x, y))dxdy.

If k1 = 0 or k2 = 0, then the formulas (1) and (2) follow trivially from (13).
The case k1, k2 6= 0. We can use the coordinates ϕv,m,m ∈ Z, defined by the formula (11).

Using these coordinates we can calculate

(14) f̂(k) =

ˆ 1

0

ˆ |v2/v1|
0

f(ϕv,m(a, b)) exp

(
−2πik ·

(
a

|v2|
v + (0, b) + wm

)) ∣∣∣∣v1v2
∣∣∣∣ dadb.

Notice that k ·
(

a
|v2|v + (0, b) + wm

)
= k2b since v · k = wm · k = 0.

Hence, we have

(15) f̂(k) =

∣∣∣∣v1v2
∣∣∣∣ˆ 1

0

ˆ |v2/v1|
0

f

(
a
v

|v2|
+ (0, b) + wm

)
da exp(−2πik2b)db.

We sum the formula (15) for values m = 0, . . . , |v1| − 1, which gives

(16) |v1| f̂(k) = |v1|
ˆ 1

0
Ivf(0, y) exp(−2πik2y)dy.

This completes the proof. �

We will next prove a more general version of theorem 1.
5



Theorem 8. Suppose that f ∈ T ′ and If(·, v) ∈ L1(T2) for any v ∈ Z2 \ 0. Then the
formulas (1) and (2) are true.

Proof. We only show how to argue if k1, k2 6= 0 since the other special cases are trivial. Recall

that the inversion formula (9) states that Îvf(k) = f̂(k) for any v ∈ Z2 \ 0 such that k⊥v. We
apply the coordinates ϕv,0.

Using the Fubini’s theorem and calculations similar to the first proof of theorem 1, we get

(17) Îvf(k) =

∣∣∣∣v1v2
∣∣∣∣ ˆ 1

0

ˆ |v2/v1|
0

Ivf(ϕv,0(a, b))da exp(−2πik2b)db.

Now, the formula (1) follows from the property (3) of lemma 7. This completes the proof. �

Second proof of theorem 1. Lemma 7 implies that Ivf ∈ L1(T2) if f ∈ L1(T2). Hence, theorem 8
implies the inversion formulas. �

2.3. The torus-projection operator. We denote the X-ray transform of f : R2 → C by
Rvf(p) for any (p, v) ∈ R2 × S1. We parametrize the lines of the plane so that

(18) Rvf(p) =

ˆ
R
f(p+ tv)dt.

Suppose that f is a compactly supported function on R2. We may then consider f as a function
defined on T2 after rescaling and periodizing. Let us denote the periodic extension of f into T2

by the same symbol f .
Suppose further that f ∈ C(T2). As described in [11, Lemma 3.1], for any p ∈ T2 and

v ∈ Z2 \ 0 one can write Ivf(p) as a finite sum of terms Rv/|v|f(pi), i = 1, . . . ,m. One simply

has to write any periodic geodesic γ of T2 as a finite disjoint union of line segments that are
supported in [0, 1) × [0, 1) and travel from the boundary to the boundary in the fundamental
domain of T2. However, such unions are tedious to write down rigorously. This procedure
defines the torus-projection operator Rf 7→ If for compactly supported continuous functions
f : R2 → C. For further details, see [11, Chapter 3]. Using duality, this operator extends to
distributions. See also the description of our numerical implementation in section 3.1.2.

2.4. Sobolev spaces, adjoint, normal operator and regularization. Let Q ⊂ Z2 be such
that every nonzero v ∈ Z2 is an integer multiple of a unique element in Q. We can simply
take Q to be the set of those vectors (a, b) for which a and b are coprime with a > 0 and b 6= 0
and the vectors (0, 1) and (1, 0). The set Q is the set of all periodic directions on the torus, with
all multiple counts removed. This set can be naturally identified with the projective space P1

defined later.
The X-ray transform we study takes a function on T2 to a function on T2×Q. To set things

up properly, we need to define function spaces and norms on both sides. On T2, we use the
standard Sobolev scale of spaces Hs(T2) with the norms

(19) ‖f‖2Hs(T2) =
∑
k∈Z2

〈k〉2s
∣∣∣f̂(k)

∣∣∣2 ,
where 〈k〉 = (1 + |k|2)1/2 as usual. On T2 ×Q, we define the spaces Hs(T2 ×Q) to be the set
of functions g : T2 ×Q→ C for which

(i) g(·, v) ∈ Hs(T2) for every v ∈ Q;
(ii) the average of every g(·, v) is the same; and

(iii) the norm

(20) ‖g‖2Hs(T2×Q) = |ĝ(0, 0)|2 +
∑

k∈Z2\0

∑
v∈Q
〈k〉2s |ĝ(k, v)|2

is finite. We set v = 0 for the Fourier term k = 0 to emphasize that it is the same for
every v ∈ Q. We remind the reader that 0 /∈ Q.
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We emphasize that the regularity parameter s can be any real number in the theory presented
in this section. By setting s = 0 one obtains a theory in H0 = L2. We point out that the spaces
considered here are different from [10].

Remark 9. The norm of g ∈ Hs(T2 × Q) is essentially an `2(Q) norm of the Hs(T2) norms of
the functions g(·, v). This `2 can be replaced with any `p without much effect to the theory, as
the different functions in the family indexed by Q have disjointly supported Fourier series apart
from the origin. The case p =∞ is particularly convenient because then special considerations
are not needed at k = 0. We choose p = 2 to stay in a Hilbert space setting.

We denote v⊥ = (−v2, v1) for any v = (v1, v2) ∈ Z2. For v ∈ Z2 \ 0, we denote by v̂ the
unique point in Q that is parallel to v. We can define 0̂ to be any point in Q; this choice will

not matter. To keep notation neater, we will write v̂⊥ instead of v̂⊥.

Proposition 10. The X-ray transform is continuous Hs(T2)→ Hs(T2 ×Q) for any s ∈ R.

Proof. For any v ∈ Q, the Fourier transform of function If(·, v) is supported on the line v⊥Z by

theorem 5. In fact, it is the restriction of f̂ to this line. It then follows easily from the definition
of the Sobolev norm on the Fourier side that If(·, v) ∈ Hs(T2) whenever f ∈ Hs(T2).

It follows from the same theorem that Îf(0, v) = f̂(0) for all v ∈ Q, and so all the averages
agree as required.

Since Z2 is a disjoint union of the origin and the punctured lines vZ \ 0 with v ∈ Q, one can
easily verify that ‖If‖H2(T2×Q) = ‖f‖Hs(T2). �

Proposition 11. Fix any s ∈ R. The adjoint of I : Hs(T2)→ Hs(T2×Q) is I∗ : Hs(T2×Q)→
Hs(T2) given by

(21) Î∗g(k) = ĝ(k, k̂⊥).

The normal operator I∗I : Hs(T2)→ Hs(T2) is the identity, so that I is unitary to its range.

Remark 12. We emphasize that there is a striking difference to the usual Euclidean X-ray
transform, where the normal operator is a convolution. In our setup the X-ray transform is
directly inverted by its normal operator without any filtering or post-processing.

Proof of proposition 11. Let us take any two functions f ∈ Hs(T2) and g ∈ Hs(T2 × Q). We

denote the complex conjugate of z ∈ C as z∗. Theorem 5 shows that Îf(k, v) = f̂(k)δ0,k·v, and
so the Hs inner products satisfy

(If, g) = Îf(0, 0)∗ĝ(0, 0) +
∑

k∈Z2\0

∑
v∈Q
〈k〉2s Îf(k, v)∗ĝ(k, v)

=
∑
k∈Z2

〈k〉2s f̂(k)∗ĝ(k, k̂⊥)

= (f, I∗g) .

(22)

Therefore, the operator I∗ defined above is the adjoint of I.
It follows directly from the formula of theorem 5 that I∗ is a left inverse of I. �

Remark 13. The X-ray transform or its normal operator have no effect on regularity. In the usual
formulation, the normal operator does increase the smoothness index s, but when everything is
set up on T2 the operators leave the regularity level intact.

We now turn to regularized inversion, and solve the Tikhonov minimization problem (3). We

will make use of the post-processing operator P sα, which is the Fourier multiplier (1+α 〈k〉2s)−1.
It is evident that P sα maps continuously Hr(T2)→ Hr+2s(T2) for any s, r ∈ R.

Proof of theorem 2. We begin with expanding the norms along lines given by Q on the Fourier
side. We have

(23) ‖f‖2Hs(T2) =
∣∣∣f̂(0)

∣∣∣2 +
∑
v∈Q

∑
p∈Z\0

〈pv〉2s
∣∣∣f̂(pv⊥)

∣∣∣2
7



and

(24) ‖If − g‖2Hr(T2×Q) =
∣∣∣Îf(0, 0)− ĝ(0, 0)

∣∣∣2 +
∑
v∈Q

Av,

where

Av =
∑
p∈Z\0

〈pv〉2r
∣∣∣Îf(pv⊥, v)− ĝ(pv⊥, v)

∣∣∣2
+

∑
w∈Z2\vZ

〈w〉2r
∣∣∣Îf(w, v)− ĝ(w, v)

∣∣∣2 .(25)

Each Îf(w, v) vanishes in the last sum by theorem 5. Therefore, the second sum of Av is

independent of f and can be left out of the minimization problem. Furthermore, Îf(pv⊥, v) =

f̂(pv⊥).
Thus, we are left with minimizing∣∣∣Îf(0, 0)− ĝ(0, 0)

∣∣∣2 + α
∣∣∣f̂(0)

∣∣∣2
+
∑
v∈Q

∑
p∈Z\0

(
〈pv〉2r

∣∣∣f̂(pv⊥)− ĝ(pv⊥, v)
∣∣∣2 + α 〈pv〉2s

∣∣∣f̂(pv⊥)
∣∣∣2) .(26)

The notation introduced above allows us to rewrite the minimized quantity as

(27)
∑
k∈Z2

〈k〉2r
(∣∣∣f̂(k)− ĝ(k, k̂⊥)

∣∣∣2 + α 〈k〉2(s−r)
∣∣∣f̂(k)

∣∣∣2) ,
and this can be minimized explicitly.

It suffices to choose each f̂(k) so that the term in the parentheses of (27) is minimized. A

straightforward computation shows that the minimal f̂(k) is

(28) f̂(k) = (1 + α 〈k〉2(s−r))−1ĝ(k, k̂⊥).

That is, the minimizer we sought is f = P s−rα I∗g. Finally, by the mapping properties of P s−rα

and I∗ we have f ∈ H2s−r(T2). This implies that f is in the correct space Hr(T2) since we
assumed s ≥ r. �

Remark 14. Choosing r = 0 and s = 1, we reconstruct a function in L2 with an H1 penalty term.
If we want the penalty to be the L2 norm of the gradient without the L2 norm of the function,
the Fourier multiplier in the penalty term is changed from 〈k〉2 to |k|2. This corresponds to
changing the Sobolev norm to a homogeneous Sobolev norm. Such changes lead to similar
results but with slightly different postprocessing operator.

2.5. Regularization strategy. We define the concept of a regularization strategy according
to [6, 15]. Let X and Y be subsets of Banach spaces and F : X → Y a continuous mapping.
A family of continuous maps Rα : Y → X with α ∈ (0, α0] is called a regularization strategy
if limα→0Rα(F (x)) = x for every x ∈ X. A choice of regularization parameter α(ε) with
limε→0 α(ε) = 0 is called admissible if

(29) lim
ε→0

sup
y∈Y

{
‖Rα(ε)y − x‖X ; ‖y − F (x)‖Y ≤ ε

}
= 0

holds for every x ∈ X. Regularization strategies have been found for other inverse problems
including, for example, electrical impedance tomography (EIT) [16] and inverse problem for the
1 + 1 dimensional wave equation [18, 19].

We will next prove that the regularized inversion operator P sαI∗ obtained in theorem 2 actu-
ally provides an admissible regularization strategy with a quantitative stability estimate.
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Proof of theorem 3. Using proposition 11, we write

(30) P sαI∗(If + g)− f = (P sα − id)f + P sαI∗g
and aim to estimate these two terms. In this proof, we denote the norm of Hr(T2) simply
by ‖·‖r.

Since ‖g‖Ht(T2×Q) ≤ ε and ‖I∗‖ = ‖I‖ = 1, we have ‖I∗g‖t ≤ ε. Applying the definitions of

the norms and the operator P sα, we find

(31) ‖P sαI∗g‖
2
r ≤ ε

2 sup
k∈Z2

(1 + α 〈k〉2s)−2 〈k〉2r−2t .

Estimating 1 + α 〈k〉2s ≥ α 〈k〉2s and using −4s + 2r − 2t ≤ 0 shows that the supremum is at
most α−2. Therefore

(32) ‖P sαI∗g‖r ≤ α
−1ε,

which converges to zero as ε→ 0 with α =
√
ε.

A calculation shows that P sα − id = − α〈k〉2s

1+α〈k〉2s as a Fourier multiplier. Unfortunately, this

implies that

(33) ‖P sα − id‖Hr(T2)→Hr(T2) = sup
k∈Z2

α 〈k〉2s

1 + α 〈k〉2s
= 1

whenever s > 0 and α > 0. Therefore, a uniform estimate is impossible when δ = 0, but
it follows from the dominated convergence theorem that ‖(P sα − id)f‖2r → 0 as α → 0 when
f ∈ Hr(T2). The first claim of the theorem follows.

If δ > 0, the additional regularity of f can be used to our advantage. It follows from the
definitions of the norms that

(34) ‖(P sα − id)f‖2r ≤

 sup
k∈Z2

(
α 〈k〉2s

1 + α 〈k〉2s

)2

〈k〉−2δ
 ‖f‖2r+δ,

and thus

(35) ‖P sα − id‖Hr+δ(T2)→Hr(T2) = sup
k∈Z2

α 〈k〉2s−δ

1 + α 〈k〉2s
.

Estimating this norm is crucial for the proof.
The supremum of (35) can be studied using the function F : (0,∞)→ (0,∞) given by

(36) F (x) =
αx2s−δ

1 + αx2s
.

Simple calculus shows that if 2s > δ, then the maximum is attained at x2s = α−1(2s/δ−1) and
the maximal value on (0,∞) is

(37) αδ/2s
δ

2s

(
2s

δ
− 1

)1−δ/2s
.

We are interested in the maximum of F on [1,∞). If 2s/δ − 1 < α, then the maximum is
reached at x ∈ (0, 1), and so the maximum on the relevant interval is F (1) = α/(1 + α). (One
can also verify that the two maxima coincide when 2s/δ− 1 = α, as they should.) We assumed
that 2s/δ > 1, so α ∈ (0, 2s/δ − 1] for small enough α.

For α ≤ 2s/δ − 1, the maximum value of F is

(38) αδ/2s
δ

2s

(
2s

δ
− 1

)1−δ/2s
= αδ/2sC(δ/2s).

We conclude that

(39) ‖P sα − id‖Hr+δ(T2)→Hr(T2) ≤ α
δ/2sC(δ/2s),

9



and so

(40) ‖(P sα − id)f‖r ≤ α
δ/2sC(δ/2s) ‖f‖r+δ .

The estimate (5) now follows easily from the estimates (32) and (40). �

If α is bigger than assumed in the proof, then we may use the simpler estimate F (x) ≤
α/(1 + α) ≤ α for all x ≥ 1, which would lead to replacing αδ/2sC(δ/2s) in estimate (5) by
simply α. However, we are only interested in the limit of small α.

We point out that C(δ/2s) → 1 and αδ/2s → 1 when δ → 0, matching the norm in the
limiting case of (33).

The noise g in theorem 3 can be in any function space so that I∗g, the reconstruction from
pure noise, is in a suitable Sobolev space.

2.6. Numerical and asymptotic analysis for discretized problem. In this section, we
consider questions arising from discrete practice. We analyze errors caused by a discretization
of data in section 2.6.1. In section 2.6.2, we study how to choose a minimal set of X-ray
directions in order to reconstruct all Fourier coefficients of a phantom in a given box.

Another source of errors in practice comes from the fact that we can only calculate finitely
many coefficients of the Fourier series. The error caused by the cutoff of the Fourier series
can be estimated with knowledge of asymptotic behavior of the Fourier coefficients. We do
not consider this matter here further since it is a general question about convergence rates of
Fourier series.

2.6.1. On convergence rates for discretization. Let f ∈ CN be written as f = (f0, . . . , fN−1). We
define the discrete Fourier transform (DFT) of f by

(41) DFT(f)k :=
1

N

N−1∑
l=0

fl exp(−2πikl/N), k = 0, . . . , N − 1.

The following corollary of theorem 8 discretizes the inverse problem and reduces it to calculations
of 1-dimensional DFTs. It is elementary and included here for completeness.

Corollary 15. Let f ∈ T ′, Ivf ∈ L1(T2), k ∈ Z2 \ 0. Denote gv(y) := Ivf(0, y) and hv(x) :=
Ivf(x, 0).

(1) If v⊥k, then f̂(0, 0) = ĝ(1,0)(0) = ĥ(0,1)(0) and

f̂(k1, k2) =

{
ĝv(k2), k2 6= 0

ĥv(k1), k1 6= 0.

(2) (Left-point rule and DFT) Let N ∈ Z+. We denote gl = gv(l/N) and hl = hv(l/N) for
l = 0, . . . , N − 1. If Ivf is Riemann integrable along vertical and horizontal lines, then

DFT(g)k2 → ĝv(k2) as N →∞.

Moreover, if Ivf ∈ C1(T2), then |ĝv(k2)−DFT(g)k2 | ≤ Cf,k2/N where Cf,k2 > 0 does
not depend on N . Similar statements hold for hv as well.

(3) (Mid-point rule and DFT) Let N ∈ Z+. We denote gl = gv(l/N + 1/2N) and hl =
hv(l/N + 1/2N) for l = 0, . . . , N − 1. If Ivf is Riemann integrable along vertical and
horizontal lines, then

exp(−πik2/N)DFT(g)k2 → ĝv(k2) as N →∞.

Moreover, if Ivf ∈ C2(T2), then |ĝv(k2)− exp(−πik2/N)DFT(g)k2 | ≤ Cf,k2/N
2 where

Cf,k2 > 0 does not depend on N . Similar statements hold for hv as well.
10



Proof. The statement (1) is a rephrased version of theorem 8. We only prove the statement
(3). The proof of the statement (2) is similar and thus omited. Let N ∈ Z+ be fixed. By the
definition of the DFT

exp(−πik2/N)DFT(g)k2

=
1

N

N−1∑
l=0

gl exp(−πik2/N) exp(−2πik2l/N)

=
1

N

N−1∑
l=0

gv(l/N + 1/2N) exp(−2πik2(l/N + 1/2N)).

(42)

The statement follows since this the mid-point approximation of ĝv(k2). The convergence rate
is just a standard result on the mid-point rule (see e.g. [5]). �

2.6.2. Choosing directions for X-ray data. Let us define the set

(43) AN := {v ∈ Z2 \ 0 ; v ∈ k⊥ for some k ∈ ZN}

where ZN = [−N,N ]2 ∩ Z2. It is known that the data (If(·, v))v∈AN determines (f̂(k))k∈ZN .
Thus, we define

(44) ϕ(N) := min{|B| ; B ⊂ AN , (If(·, v))v∈B determines (f̂(k))k∈ZN }.
Define the set VN := X+ ∪X− ∪ {(1, 0), (0, 1)} where

X+ = { (v1, v2) ∈ ZN \ 0 ; gcd(v1, v2) = 1, v1, v2 ≥ 1 },
X− = { (−v1, v2) ; v ∈ X+ }.

(45)

Now, it is an elementary observation that the data (If(·, v))v∈VN determines (f̂(k))k∈ZN and
|VN | = ϕ(N).

We then turn to studying the asymptotic behavior of ϕ(N). We denote by P1 := P1(Q) the
collection of equivalence classes (a : b), (a, b) ∈ Z2 \ 0, such that (x, y) ∈ (a : b) if and only
if c(x, y) = (a, b) for some c 6= 0 and (x, y) ∈ Z2 \ 0. The height is defined as H(a : b) :=
max{|a| , |b|} using the unique representative (up to a sign) of (a : b) with gcd(a, b) = 1. One of
the simplest special cases of the Schanuel’s theorem [27, Theorem 1] states that

(46)
∣∣{ (a : b) ∈ P1 ; H(a : b) ≤ N }

∣∣ =
2

ζ(2)
N2 +O(N logN)

as N →∞. More detailed exposition is given in the book of Serre [28, Chapter 2.5].
We conclude with the following proposition.

Proposition 16. It holds that ϕ(N) = 2
ζ(2)N

2 +O(N logN).

Proof. If we want to reconstruct f̂(k), then we need at least one v ∈ k⊥ by theorem 5 and, on
the other hand, just one v ∈ k⊥ is enough. It follows from the definition of height that

(47) ϕ(N) =
∣∣{ (a : b) ∈ P1 ; H(a : b) ≤ N }

∣∣ .
The estimate follows now from the Schanuel’s theorem. �

Remark 17. The trivial estimate for directions needed in reconstruction of the Fourier coeffi-
cients (f̂(k))k∈ZN would be ϕ(N) ≤ (2N + 1)2. In comparison, proposition 16 implies that one
needs to use asymptotically about 3/π2 ≈ 30 % of the data (If(·, v))v∈ZN .

3. Computational forward and inverse models

We have implemented two forward models for the X-ray transform on T2. The first forward
model is based on direct integration over periodic geodesics on T2 (two different numerical inte-
gration schemes are implemented), and the second forward model on the usual Radon transform
and the torus-projection operator. The regularized inverse model is based on theorems 1 and 2.
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3.1. Computational forward models.

3.1.1. Forward models on the torus. We have two different numerical integration schemes for
the forward integration. The first one is analytical integration of a phantom which is discretized
into square pixels of equal size. In this case, the forward operator, denoted by A1, is

(48) A1f(x, v) :=
1

|v|

N∑
i=1

difi ≈
ˆ 1

0
f(x+ tv)dt = If(x, v)

where di is the length of the geodesic γx,v and fi is the value of the discretized phantom in the
i’th pixel, and N is the size of the grid. The lengths di are calculated by solving the intersection
points of the line {x+ tv ; t ∈ [0, 1] } and the edges of the pixels when the pixels are periodically
extended to R2.

In the second one, the integral is based on the use of global adaptive quadature [29] which
is implemented into the Matlab’s integral function. In this case, a phantom is given in an
analytical form. We denote this forward model by A2.

3.1.2. Forward model using the torus-projection and Radon data. This forward model corre-
sponds to converting conventional X-ray data sets on R2 into X-ray data sets on T2. The
forward model has two steps. The first step is to calculate Radon transform data using the
Matlab’s radon function. The second step is to calculate the torus-projection (see Section 2.3)
of the Radon data. The directions for the Radon transform are chosen so that they contain all
directions generated by integer vectors (see Section 2.6.2).

The X-ray beams on the radon function are parametrized by the distance between the line
of a X-ray beam and the center of a domain O, and the angle of a X-ray beam measured from
the y-axis into the counterclockwise direction. We denote simply that Rf(v) = radon(f, αv,M)
where αv is the angle defined above and M is the number of X-rays taken into direction v. We
index the rays as k = 1, . . . ,M . Further, denote the distances of rays to O by ck,v and the
projection values with the respective rays by Rf(v)k.

We split each geodesic γx,v into segments in which it travels from the boundary to the
boundary when looked at the fundamental domain [0, 1]× [0, 1] of T2. Let dx,v,i be the distance
of the i’th segment of the geodesic γx,v and O, and N the number of distinct segments. Finally,
we can define the forward model AT2 as

(49) AT2f(x, v) =
1

|v|

N∑
i=1

(
w1,iRf(v)k1,i + w2,iRf(v)k2,i

)
where

k1,i = arg min
k∈{1,...,M}

|ck,v − dx,v,i|, k2,i = arg min
k∈{1,...,M}\{k1,i}

|ck,v − dx,v,i|,

w1,i =

∣∣∣∣ ck2,i,v − dx,v,ick1,i,v − ck2,i,v

∣∣∣∣, w2,i =

∣∣∣∣ ck1,i,v − dx,v,ick1,i,v − ck2,i,v

∣∣∣∣ ,
if
∣∣ck1,i,v − dx,v,i∣∣+

∣∣ck2,i,v − dx,v,i∣∣ < ∣∣ck1,i,v − ck2,i,v∣∣, and w1,i = w2,i = 0 otherwise.
The last condition ensures that the rays, corresponding to the data in interpolation, are on

the different sides of the geodesic segment. Vise versa, if the condition does not hold, the
geodesic segment is outside the projection width. In other words, this condition is the zero
extension of the data near boundaries of the domain. In short, AT2 is the sum of weighted
averages of two closest projection values with respect to their distances to the corresponding
geodesic segments.

3.2. Computational inverse model. In the inverse model, we calculate the Fourier series co-
efficients of a phantom and reconstruct its Fourier series up to a finite radius r > 0. The Fourier
coefficients are calculated using the inversion formulas (1) and (2) of theorem 1. Furthermore,
we Tikhonov regularize reconstructions using the filter P sα on the Fourier side according to
theorems 2 and 3.
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Let us write Br = B(0, r) ∩ Z2. The inverse model is

fα,srec (x) =
∑
k∈Br

P sαf̂rec(k) exp(2πik · x)

=
∑
k∈Br

(1 + α 〈k〉2s)−1f̂rec(k) exp(2πik · x)
(50)

where f̂rec(k) is calculated from data using the left-point rule and the DFT according to (1)
and (2) of corollary 15. We remark that the inverse model is meshless, its output is a trigono-
metric polynomial, and thus, completely avoids the so called inverse crime.

4. Numerical experiments

4.1. Phantoms, convergence rates of Fourier series and discretization.

4.1.1. Phantoms. We have used two phantoms in the numerical experiments, the Shepp–Logan
phantom based on the Matlab’s function phantom and the Flag phantom which is a piece-wise
constant function representing a Nordic flag. The Flag phantom fF : [0, 1] × [0, 1] → R was
defined as

(51) fF (x, y) =

{
gF (x, y), x ∈ (0.14, 0.86) and y ∈ (0.28, 0.72)

0, otherwise

where

(52) gF (x, y) =

{
0.3, x ∈ (0.34, 0.46) or y ∈ (0.44, 0.56)

0.9, otherwise.

That is, fF describes the outer boundaries of the flag, and gF returns the background unless x
or y is on the horizontal or vertical stripe, respectively.

4.1.2. Cutoff errors of Fourier series of phantoms. We analyzed the cutoff errors of Fourier
series of the phantoms in order to determine a good, practical value of r > 0 for the reconstruc-
tions. The squared cutoff error of Fourier series can be calculated via the formula

(53) εr = ‖f‖2L2(T2) −
∑
k∈Br

f̂(k)2

using the Parseval’s identity.
We computed εr for the Shepp–Logan phantom, the Flag phantom and the Flag phantom

with a 45◦ rotation. All the three phantoms were studied without noise and with salt-and-
pepper (S&P) type noise applied to the phantoms using the Matlab’s imnoise function with
0.02 noise density. The phantoms were discretized into 4000× 4000 pixel grid and the Fourier
coefficients f̂(k) were computed using the Matlab’s fft2 and fftshift functions.

The squared cutoff errors εr are shown in Figure 2. The squared cutoff errors saturate at
around r = 50, though some improvement might be gained up to r = 200. In our forward and
inverse simulations, we have mainly used r = 50 as it practically seems to be a sufficiently good
choice.

4.1.3. Discretizations of phantoms and geodesics. The starting points of the used geodesics were
chosen to be the equispaced points {(0, 0), (1/nd, 0), (2/nd, 0), . . . , (1−1/nd, 0)} on the x-axis, ex-
cept for geodesics in direction v = (1, 0) where the sampling was {(0, 0), (0, 1/nd), (0, 2/nd), . . . , (0, 1−
1/nd)} on the y-axis. In our experiments, we set nd = 128 when the cutoff radius of the Fourier
series was r ∈ {50, 100}, and nd = r when r ∈ {150, 200}.

The phantoms were discretized with 512× 512 pixel grid when used for forward simulations
with the forward models A1 and AT2 . When we used the forward model A2, the Flag phantom
was not discretized. The values of reconstructions were evaluated at equispaced points in
256× 256 pixel grid, and when compared to the ground truth, the Shepp–Logan and the Flag
phantoms were discretized for the same grid.
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Figure 2. The graphs (r, εr) in a logarithmic scale for the different phantoms.
Vertical, dashed line marks r = 50 where εr saturates.

4.2. Numerical analysis of forward models A1, A2 and AT2.

4.2.1. Forward models A1 and A2 on the torus. We tested Torus CT using the Shepp–Logan
phantom with simulated data

(54) y = A1f + E , E ∼ N (0, σ2), σ =
2

100
.

We made reconstructions with cutoff radii r ∈ {50, 100, 150, 200} of the Fourier series.
In the case of r = 50, we experimented with Tikhonov regularization. The reconstruction

errors with different regularization parameters are shown in Figure 3. We have calculated the
(relative) reconstruction errors using the formula

(55) εα,sp =
‖f − fα,srec ‖Lp(T2)

‖f‖Lp(T2)
.

The optimal regularization parameter values yielding the smallest error are given in Table 1.
The plotted errors Figure 3 share some similarities in shape and the resulting regularization
parameter values are close to each other.

Table 1. The regularization parameters (α, s) that give the best reconstructions

with respect to the Lp-norms with p = 1, 2,∞; respective error εα,sp ; and error ε0,0p
of non-regularized reconstruction.

norm Shepp–Logan Flag

p α s εα,sp ε0,0p α s εα,sp ε0,0p
1 0.050 0.69 62% 112% 0.025 0.71 41% 69%
2 0.025 0.61 48% 70% 0.025 0.68 29% 45%
∞ 0.025 0.56 75% 112% 0.025 0.78 73% 106%

The Shepp–Logan phantom is shown in Figure 4a and its non-regularized solution in Fig-
ure 4b. The regularized solutions with p = 2 and p =∞ based regularization parameter values
(Figures 4d and 4e) are similar, and p = 1 based values yield slightly smoother reconstruction
(Figure 4c).

We tested the effect of increasing the Fourier coefficient by computing the forward data
required for reconstruction of the Fourier coefficients up to radii r = 100, r = 150 and r = 200,
and reconstructions are shown in Figures 4f, 4g, and 4h respectively. The constant regions in
the phantom become a bit more smoother, but overall dynamical range is increased and the
impact of noise in reconstructions remains relatively high.

Similar analysis was also performed with the Flag phantom. We simulated noisy data using
the model y = A2f + E with the noise model of (54). The case r = 50 was used to test
regularization. The reconstruction errors εα,sp are shown in Figure 5 and the regularization
values yielding the minimum error are given in Table 1. The regions close to the minimum
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Figure 3. Error surfaces from Shepp–Logan phantom data using (A) L1-norm,
(B) L2-norm and (C) L∞-norm. The values of the regularization parameters are
α ∈ {0, 0.025, 0.050, . . . , 0.600} and s ∈ {0, 0.01, 0.02, . . . , 0.75}.

of εα,sp are more distinct than in the case of the Shepp–Logan phantom, but similar shape is
seen.

The Flag phantom is shown in Figure 6a and the non-regularized reconstruction in Figure 6b.
The regularized reconstructions with the optimal regularization parameters yielding the mini-
mum errors with p = 1, p = 2 and p =∞ are shown in Figures 6c, 6d and 6e, respectively. The
regularization parameter values yielding the minimum were close to each other, and with the
Flag phantom, no significant difference is seen in the regularized reconstructions.

Increasing the radius of the Fourier coefficients again increases the dynamical range, plotted
in Figures 6f, 6g and 6h for r ∈ {100, 150, 200}, respectively. However, unlike with the Shepp–
Logan phantom, the details become more distinct, especially the details of the corners in the
Flag phantom.

4.2.2. Forward model AT2 using the torus-projection and Radon data. To test how a Torus CT
algorithm would work with experimental data acquisition, we computed Radon transform of the
phantoms and projected it to T2 using the model AT2 with noise on each data point on Rf(v)k.
More precisely, we simulated data according to the formula (49) where each Rf(v)k was replaced
by noisy data Rf(v)k + E where E ∼ N (0, σ2) with σ = 0.02. This setup modeled experimental
X-ray tomography as the starting point was Radon transform data with additive noise.

The projection directions for Radon transform were computed such that they determined
the Fourier coefficients up to radius r = 50. An illustration of how the projection directions
in (0, 90)◦ are distributed is shown in Figure 7, and the remaining projection directions are
reflections of the projection directions in (0, 90)◦ about the y-axis. In total, with r = 50, there
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Figure 4. (A) Shepp–Logan phantom, (B) non-regularized reconstruction and
(C-E) regularized reconstructions respectively with L1-, L2- and L∞-norm based
choice of reconstruction values. (F-H) Non-regularized reconstruction with in-
creased cutoff radii of the Fourier series, r = 100, 150, 200, respectively.

are 3097 unique projection directions. Two major concentrations of the directions are close
to 45◦, both above and below, but also smaller concentrations are found elsewhere, e.g., close
to 22.5◦.

The reconstructions from data computed with AT2 are shown in Figure 8. Shepp–Logan
(Figures 8a and 8d) and 30◦ rotated Flag (Figures 8c and 8f) are reconstructed well even with
the noisy data but, surprisingly, the non-rotated Flag phantom (Figures 8b and 8e) is rather
poor. Especially with the Shepp–Logan phantom, the features are clearly detected in the noise-
free case (Figure 8a) indicating potential in the technique. Regularized solutions are shown in
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Figure 5. Error surfaces from Flag phantom data using (A) L1-norm, (B)
L2-norm and (C) L∞-norm. Regularization parameters values are α ∈
{0, 0.025, 0.050, . . . , 0.600} and s ∈ {0, 0.01, 0.02, . . . , 1.0}.

Figures 8g), 8h and 8i from the Shepp–Logan, the non-rotated and the rotated Flag phantoms,
repectively. The regularization smoothed the reconstructions, decreased their dynamic range
and no additional features were revealed from the noise. The regularization parameter values
were α = 0.75 and s = 0.5, chosen with manual experimentation.

Table 2. Errors in reconstructions computed with AT2 and the FBP.

Shepp–Logan Flag Rotated Flag Shepp–Logan Flag Rotated Flag
AT2 with noiseless data (E = 0) AT2 with noisy data (E ∼ N (0, σ2))

ε0,01 313% 298% 302% 310% 300% 301%

ε0,02 161% 171% 168% 162% 172% 167%

ε0,0∞ 75% 108% 121% 79% 125% 125%
Regularized reconstruction from noisy data

εα,s1 331% 305% 303%
εα,s2 170% 174% 173%
εα,s∞ 53% 99% 100%

FBP with torus optimized angles FBP with evenly distributed angles
ε1 73% 59% 67% 64% 55% 56%
ε2 59% 41% 51% 54% 45% 45%
ε∞ 155% 87% 127% 129% 93% 120%

For comparison, we computed the respective FBP reconstructions (shown in Figure 9) with
Matlab’s iradon function using default settings. The projection data Rradonf(v)k+E was down
sampled by factor of 2 with imresize to match reconstruction resolution 256× 256. It seems,
that the uneven distribution of projection angles creates errors in reconstruction, since similar
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Figure 6. (A) Flag phantom, (B) non-regularized reconstruction and (C-E)
regularized reconstructions respectively with L1-, L2- and L∞-norm based choice
of reconstruction values. (F-H) Non-regularized reconstruction with increased
cutoff radii of the Fourier series, r = 100, 150, 200, respectively.

artefacts in horizontal, vertical and diagonal directions are seen also in the FBP reconstruction
as in the ones computed with the Torus CT method in Figure 8. From the FBP this was
expected as it is prone to streaking. In general, the FBP reconstructions are of good quality,
since there is a lot of data available. With the same number of projections, 3097, but evenly
distributed as they normally are, the FBP reconstruction are better quality than any other
presented in this paper.

The error εp = ‖f − fFBP
rec ‖Lp(R2)/‖f‖Lp(R2) between the FBP reconstruction fFBP

rec and the
phantom f is tabulated in Table 2. When compared with A1 and A2 and Shepp–Logan and
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(a) (b) (c)

Figure 7. Visualization of the Radon projection angles from 0◦ to 90◦ that
are required in the reconstruction of the Fourier series coefficients up to radii
r = 10, 20, 30, respectively. Each line represents a projection direction.

Table 3. Reconstruction errors ε0,0p of (non-regularized) reconstructions from
rotational data sets.

Shepp–Logan ΘSL
1 ΘSL

2 ΘSL
3 ΘSL

4 ΘSL
5 ΘSL

6 ΘSL
7 ΘSL

8 ΘSL
9

p = 1 113% 82% 69% 61% 56% 52% 49% 46% 44%
p = 2 72% 54% 46% 42% 40% 38% 36% 34% 33%
p =∞ 97% 89% 84% 77% 77% 73% 70% 69% 68%

Flag ΘF
1 ΘF

2 ΘF
3 ΘF

4 ΘF
5 ΘF

6

p = 1 22% 18% 16% 14% 12% 12%
p = 2 25% 21% 18% 16% 15% 14%
p =∞ 96% 86% 79% 66% 68% 69%

Flag phantoms, with all values of p, the errors εp are higher than errors of regularized Torus
CT reconstructions εα,sp shown in Table 1. When compared with the errors of non-regularized

reconstructions ε0,01 and ε0,02 , the FBP and Torus CT are relatively close, but the error ε0,0∞ of
Torus CT is lower with the Shepp–Logan phantom and higher with the Flag phantom.

For use with practical data acquisition, Torus CT requires more work to handle the increased
additive noise in AT2 , since the reconstructions have more noise outside of the support of the
phantom than in the FBP reconstructions as seen in the Figure 8. The respective errors εα,s1
and εα,s2 are higher than those of the FBP, presented in Table 2. Nevertheless, in terms of
reconstructing the correct dynamical range of the objects, measured with εα,s∞ and ε∞, the
Torus CT method is equivalent or better than with the FBP.

4.3. Rotating phantom on torus. The theoretical formulation allows to place a phantom
inside T2 in many different positions. Such choice of an orientation of a phantom leads to
different choice of projection directions, and thus results different reconstructions when only
finitely many Fourier coefficients are recovered. This motivated to test, whether the recon-
structions improve when data is acquired from several rotated phantoms. We verified this by
computing the data of the Shepp–Logan phantom from nine different rotational orientations
with 20◦ interval and the Flag phantom with six different rotational orientations with 30◦ in-
terval with Fourier coefficient radius r = 50. Denote the angles of rotational data sets of the
Shepp–Logan phantom with ΘSL

i = {(k − 1) · 20◦ ; k ∈ {1, . . . , i}} and of the Flag phantom with
ΘF
i = {(k − 1) · 30◦ ; k ∈ {1, . . . , i}} , i ∈ N. The forward solutions were simulated as described

in subsection 4.2 by taking count to the rotations ΘSL
i and ΘF

i . For the Shepp–Logan phantom,
the rotation was computed using Matlab’s imrotate with crop option for the Shepp–Logan
phantom. For the Flag phantom, rotation about the point (0.5, 0.5) was made by changing the
coordinates in equations (51) and (52).
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Figure 8. Reconstruction from (A)-(C) noise-less and (D)-(F) noisy Radon
data mapped to torus of Shepp–Logan, Flag and Flag rotated 30◦. (G)-(I)
regularized reconstructions from respective noisy data.

We reconstructed the phantoms by calculating the independent reconstructions for each ro-
tation in ΘSL

i and ΘF
i , and then by taking the average of the reconstructions 1, . . . , i to be the

final reconstruction. The reconstructions from the rotational data sets are shown in Figure 10
for the Shepp–Logan phantom and in Figure 11 for the Flag phantom. The reconstruction
errors ε0,0p (eq. 55) are tabulated in Table 3 for both phantoms. With the Flag phantom, the re-
construction errors is computed only on the support of the flag phantom and the errors are ruled
out at the points where the Flag phantom vanish. With the Shepp–Logan, ε0,0p was computed
on the whole grid. The reconstructions were evaluated in a grid of 256× 256 pixels.
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Figure 9. (A)-(C) Filtered backprojection reconstructions from Radon data
with torus optimized angles. (D)-(F) Filtered backprojection reconstruction from
equispaced projection angles with same amount of projections as in (A)-(C).

With the Shepp–Logan phantom there is clear visual improvement with the increase of rota-
tionally acquired data and also decreasing trend in the errors. With the simpler Flag phantom,
reconstruction quality seems to saturate as the decrease of error norms is not as clear as with
the Shepp–Logan phantom. Nevertheless, the smallest error norm is given with the highest
number of rotational data (shown in Table 3) and the visual evaluations support this.

The rotation of the phantom does contribute to the improvement of reconstructions. In other
words, the improvement is not merely due to averaging out the zero mean noise. We simulated
data from the same rotational orientation of the Shepp–Logan phantom nine times, and the
errors were as follows: ε0,01 = 52%, ε0,02 = 37% and ε0,0∞ = 66%. For the Flag phantom with six

times from same rotational orientation, the errors were: ε0,01 = 43%, ε0,02 = 28% and ε0,0∞ = 76%.
In both cases the errors were higher than what was gained with different rotational orientations,
except for ε0,0∞ with Shepp–Logan phantom where the error was almost equal. It should also be
noted that the use imrotate induces some blurring during the rotation of reconstructions and
the Shepp–Logan phantom and nonetheless rotational reconstructions performed better.

4.4. Computing times. The computing time of the forward system, i.e., data, depends mainly
on the cutoff radius r of the Fourier series and on the number used geodesics in each direction
(see discretization of x in 4.1.3). In terms of this paper, the radius r was more of the in-
terest. Discretization relates to the numerical accuracy and the data acquisition accuracy of
experimental setup. Example computing times tr for data on Lenovo P51 laptop with Intel
i7-7820HQ CPU and 32 GB of RAM having MATLAB R2017a (The MathWorks, Inc.) with
the Shepp–Logan phantom and A1 are t50 = 5.5 min and t100 = 51 min; and with the Flag
phantom and A2, t50 = 100 min and t100 = 62 min. On Lenovo P910 high-end workstation with
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Figure 10. Reconstructions based on data sets of Shepp–Logan phantom ro-
tated with respective angles.

two Intel Xeon E5-2697 processors and 256 GB RAM having MATLAB version R2016b 64-bit
(The MathWorks, Inc.), the computation times were of order t50 = 2.2 min, t100 = 15 min,
t150 = 60 min and t200 = 188 min with the Shepp–Logan phantom and A1; and t50 = 1.6 min,
t100 = 21 min, t150 = 79 min and t200 = 242 min with the Flag phantom A2. The analytical inte-
gration applied when using the Shepp–Logan phantom with A1 explains its faster computations
times.

The projection of Radon transform sinogram to the torus AT2 and its reconstruction lasted
approximately eight minutes on Lenovo P51. However, the current implementation was not op-
timized at all and included, among other, three nested for-loops. Hence, here the computational
efficiency will increase during further development.
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Figure 11. Reconstructions based on data sets of the Flag phantom rotated
with respective angles.

5. Conclusions

We have developed a theory for the X-ray transform on the flat torus for the purpose of
implementation. Our theoretical results were strongly motivated by practical requirements,
including new and computationally fast reconstruction formulas from X-ray data in theorem 1,
and rigorous mathematical theory for Tikhonov regularized reconstructions from X-ray data on
the flat torus in theorems 2 and 3. We further derived mathematical formulations of discretized
forward and inverse models in section 3, and considered numerical analysis in section 2.6. We
implemented a numerical Torus CT algorithm and performed simulation tests in Matlab which
verified that the new theory could be applied in practice in section 4.

The numerical implementation demonstrated the efficacy of Torus CT. Torus CT is com-
putationally relatively efficient compared with iterative techniques, though still slower than
current implementations of the FBP. An interesting feature of Torus CT is its meshless nature:
Once the Fourier coefficients are computed, the reconstruction can be evaluated in any desired
grid points. Currently, theory and the implementation are established in 2 dimensions, which is
suitable for slice-wise reconstructions of 3-dimensional structures. One future research direction
could be the development of algorithms and theory in higher dimensional settings.

Data simulation was also computed with the traditional Radon transform corresponding to
experimental image acquisition with projection angles preferred by the Torus CT. Here, re-
construction quality was promising. Some initial work has been conducted with conventional,
evenly distributed projection angles, in which case there are various ways to interpolate projec-
tion data to directions preferred by Torus CT. It seems that rotations of a phantom could result
sharp reconstructions and might allow reduction in the number of projection directions. This
question should be studied more and with experimental X-ray data. We admit that at this stage
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the method cannot compete with the existing methods in visual accuracy and sharpness, though
Torus CT reconstructs better than the FBP with respect to Lp norms. This improvement is
due to a choice of optimal regularization parameters. In the future, one should study efficient
rules of choosing regularization parameters from data without knowing a phantom a priori.

Supplementary material

Matlab code. We provide Creative Commons 4.0 licensed Matlab code files that implement
forward model A1 (section 3.1.1) and inverse solutions on torus (section 3.2). The code package
comprises of three files: TorusCTrun.m is the main script, DFT.m implements discrete Fourier
transform (section 2.6), and LineIntegralOnGrid.m computes the exact line integral (48) over
periodically extended, pixelized phantom. Files are available at [20].
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MA, second edition, 1999.
[10] J. Ilmavirta. On Radon transforms on tori. J. Fourier Anal. Appl., 21(2):370–382, 2015.
[11] J. Ilmavirta. Analysis and X-ray tomography, Nov. 2017. Lecture notes, arXiv:1711.06557v1.
[12] J. Ilmavirta and F. Monard. Integral geometry on manifolds with boundary and applications. In R. Ramlau

and O. Scherzer, editors, The Radon Transform: The First 100 Years and Beyond. de Gruyter, 2019. To
appear; preprint at arXiv:1806.06088.

[13] J. Kaipio and E. Somersalo. Statistical and computational inverse problems, volume 160 of Applied Mathe-
matical Sciences. Springer-Verlag, New York, 2005.

[14] A. C. Kak and M. Slaney. Principles of computerized tomographic imaging, volume 33 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of
the 1988 original.

[15] A. Kirsch. An introduction to the mathematical theory of inverse problems, volume 120 of Applied Mathe-
matical Sciences. Springer, New York, second edition, 2011.

[16] K. Knudsen, M. Lassas, J. L. Mueller, and S. Siltanen. Regularized D-bar method for the inverse conductivity
problem. Inverse Probl. Imaging, 3(4):599–624, 2009.
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