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Department of Computational Applied Mathematics and Operations Research, Rice University, Houston,
TX, USA

MATTI LASSAS

Department of Mathematics and Statistics, University of Helsinki, Finland

TEEMU SAKSALA

Department of Mathematics, North Carolina State University, Raleigh, NC, USA (tssaksal@ncsu.edu)

ANDREW SHEDLOCK

Department of Mathematics, North Carolina State University, Raleigh, NC, USA

Abstract. We prove that the reconstruction of a certain type of length spaces from their travel time data

on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire

space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the
boundary as the measurement set appears is a classical geometric inverse problem arising from Gel’fand’s

inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple

Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.

1. Introduction

The travel time map of a compact length space X with a closed measurement set S takes any point of
the space to the continuous function which measures the distance from this point to every point in the
measurement set. The range of this map is called the travel time data. In this paper we study the choices
of X and S for which the travel time map is a topological embedding and a ε-local isometry, for some ε > 0
(see Definition 3), to the space of continuous functions on the measurement set S. Under these assumptions
we show the travel time data determines the metric space Lipschitz stably.

When the length space is a smooth compact Riemmannian manifold, and the measurement set is the
boundary of the manifold, we derive a partial characterization of those manifolds whose travel time map
satisfy the necessary ε-local isometry property. On a Riemannian manifold with strictly convex boundary a
sufficient condition would be that no geodesic is longer that twice the injectivity radius, while a necessary
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2 LIPSCHITZ STABILITY OF TRAVEL TIME DATA

condition for our results is that no geodesic is longer than twice the diameter of the manifold. In the appendix
of this paper we provide some concrete examples of Riemannian manifolds which fall under the scope of our
main results.

In our first main result Theorem 6 we show that if the travel time maps of two compact length spaces,
with a common closed measurement set, are both topological embeddings, the inverses of the travel time
maps are ε-local isometries, and the diameters of these spaces do not exceed some number D > 0 then the
Gromov–Hausdorff distance of these spaces can be estimated from above by a uniform constant times the
Hausdorff distance of their travel time data. This constant depends only on the ratio of the numbers D
and ε. In order to drop the diameter assumption of Theorem 6 we introduce in Definition 8 the ε-truncated
Gromov–Hausdorff distance which compares the similarity of compact metric spaces only up to scale ε. In
our second main result Theorem 9 we show that if the inverses of the travel time maps of two compact length
spaces with a common closed measurement sets are both ε-local isometries, then the ε-truncated Gromov–
Hausdorff distance of these spaces is at most the Hausdorff distance of their travel time data. Furthermore,
we show in Corollary 10 that the travel time map determines a smooth compact Finsler or Riemannian
manifold with boundary up to a smooth isometry if the inverse of the travel time map of this manifold is
ε-local isometry for some ε > 0. For this result we prove a Myers–Steenrod theorem (Proposition 24) for
manifolds with boundary.

1.1. Travel Time Data and the Main Results. Every path-connected metric space (X, d) has an induced
length metric dL. In this metric the distance dL(x, y) between x, y ∈ X is the (possibly infinite) infimum
over the lengths

L(γ) = sup

{
N∑
i=0

d(γ(ti−1), γ(ti)) : 0 = t0 < t1 < t2 < . . . < tN−1 < tN = 1

}
,

of all curves γ : [0, 1] → X starting from γ(0) = x and ending at y = γ(1). Clearly d ≤ dL. The metric dL is
symmetric, positive, and satisfies the triangle inequality (cf. [4, Excersice 2.1.2. and Definition 2.3.1.]), but
it need not be finite. The metric d is called intrinsic if d = dL and in this case (X, d) is called a length space.
The length metric induced by dL is simply dL itself. Riemannian manifolds are length spaces by definition.

In this paper we study the stability of recovering a space from its travel time data.

Definition 1. Let (X, d) be a compact length space and S ⊂ X a closed set. For every point p ∈ X its travel
time function rp : S → R is defined by the formula rp(z) = d(p, z). The travel time map of the length space
(X, d) is then given by the formula

RX,S : (X, d) → (C(S), ∥ · ∥∞), RX,S(p) = rp. (1)

The image set RX,S(X) ⊂ C(S) of the travel time map is called the travel time data of the length space
(X, d).

For an inverse problem point of view our aim is to stably recover the compact length space (X, d) from
the travel time data of some “fixed” closed measurement set S ⊂ X. In particular, the travel time data is an
unlabelled collection of travel time functions. The locations of point sources p ∈ X related to the functions
rp are unknown. It follows from the triangular inequality that the travel time map is always 1-Lipschitz and
due to compactness of X the travel time data RX,S(X) ⊂ C(S) is a compact subset of the Banach space
(C(S), ∥ · ∥∞).

The travel time map is known to be a topological embedding if X is a smooth manifold, d is given by
a smooth Riemannian metric, and S is the smooth boundary of X [18, Lemma 3.30]. Recently, this result
was extended to reversible Finsler manifolds [9] by the first, the third and the fourth author and on simple
gas giant metrics [7] by the first two authors. A Finsler metric F on a manifold X is said to be reversible
if F (v) = F (−v) for all v ∈ TX, where TX is the tangent bundle of X. Reversible Finsler manifolds
have a symmetric distance function and they are length spaces. Geometrically, gas giant metrics correspond
to a compact Riemannian manifold with boundary whose metric tensor has a conformal blow-up near the
boundary.

On the other hand, if X = S2 and S is the equator then the respective travel time map is not one-to-one
since the travel time functions of the north and south poles agree. Thus “small” measurement sets can be
problematic for the injectivity while sufficiently large ones are not. For instance, it was shown in [14] by the
third and the fourth author that if X is any complete connected Riemannian manifold and S is a closure of
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an open subset of X then the respective travel time map is again a topological embedding. In Proposition
12 of the current paper we show that the same is true if X is a Busemann G-space.

Busemann G-spaces are metric spaces whose distance function satisfies a convexity condition. In partic-
ular, compact Busemann G-spaces are always length spaces whose distance minimizing curves do not split.
Furthermore, on a Busemann space a shortest curve between any two points, that are close enough to each
other, is always extendable as distance minimizing curves. The Busemann conjecture, which is a special case
of the famous Bing–Borsuk conjecture, states that every Busemann G-space is a topological manifold. This
conjecture is true for dimensions 1 through 4 [13].

In the following definition we explain how to compare the closeness of the travel time data given by two
length spaces with a “common” measurement set.

Definition 2. Let (X1, d1) and (X2, d2) be two compact length spaces with closed measurement sets S1 ⊂ X1

and S2 ⊂ X2. If there is a homeomorphism ϕ : S1 → S2, we define

RX2,S2,ϕ(X2) := {d2(q, ϕ(·)) : S1 → R| q ∈ X2} ⊂ C(S1).

We say that the ϕ-distance of travel time data of the length spaces (X1, d1) and (X2, d2) is the number

d
C(S1)
H (RX1,S1

(X1),RX2,S2,ϕ(X2)),

where d
C(S1)
H is the Hausdorff distance of C(S1).

Moreover, the travel time data of length spaces (X1, d1) and (X2, d2) coincide if

d
C(S1)
H (RX1,S1(X1),RX2,S2,ϕ(X2)) = 0,

for some homeomorphism ϕ : S1 → S2.

In this paper we show that if the travel time data of two compact length spaces, with a common mea-
surement set, are close to each other then the metric spaces need to be close to each other. To quantify the
closeness of compact metric spaces X and Y we rely on the Gromov–Hausdorff distance:

dGH(X,Y ) := inf{dZH(f(X), g(Y )); Z is a metric space, f : X → Z and

g : Y → Z are isometric embeddings}.
To specify the class of compact length spaces studied in this paper we introduce the following local concept

of a metric isometry.

Definition 3. Let ε > 0, also let (X, dX) and (Y, dY ) be metric spaces. We say that a continuous map
ϕ : X → Y is an ε-local isometry if it satisfies the following property: If p, q ∈ X are such that dX(p, q) < ε
then

dX(p, q) = dY (ϕ(p), ϕ(q)).

We are ready to define the class of metric spaces we are going to work with.

Definition 4. Let (X, d) be a compact length space with a closed measurement set S such that RX,S : (X, d) →
(C(S), ∥ · ∥∞) is a topological embedding and let ε > 0. We say that (X, d) with measurement set S is

(I) Forward ε-Locally Isometrically Embeddable (FLIEε) if RX,S : (X, d) → (C(S), ∥ · ∥∞) is an ε-local
isometry.

(II) Backward ε-Locally Isometrically Embeddable (BLIEε) if R−1
X,S : (RX,S(X), ∥ · ∥∞) → (X, d) is an

ε-local isometry.

Clearly the FLIEε and BLIEε-spaces are nested with respect to the ε-parameter. We note that it is
possible for a bijective map f : X → Y to be an ε-local isometry, while the inverse map f−1 : Y → X is not.
For example, consider the function f : [0, 3π

2 ] → S1, where S1 has the round metric, and f(t) = (cos(t), sin(t)).

Then f is a π-local isometry but f−1 is only a π
2 -local isometry. Thus, FLIEε and BLIEε conditions are not

necessary equivalent, but they are strongly connected to each other since the travel time map is always 1-
Lipschitz. In Proposition 23 of this paper we show that if X and S satisfy the BLIEε-property for some ε > 0
then they also satisfy the FLIEε-property. Conversely, in Proposition 13 we use a compactness argument to
show that if X and S are FLIEε then they are also BLIEε0 for some possibly smaller ε0 > 0. Due to the
remarks we made earlier about the injectivity of the travel time map we show in Proposition 12 that RX,S

is a topological embedding if X and S are in the following two categories:
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(a) X is a compact manifold and S ⊂ X is the boundary of X.
(b) X is a compact Busemann G-space and the measurement set S ⊂ X is the closure of a non-empty

open set.

A smooth compact Riemannian manifold X with boundary S is called simple if S is strictly convex, X is
simply connected and no geodesic of X has conjugate points. See for instance [29, Preface]. It was shown
recently in [15, Proposition 6] by the first and the fourth author that the travel time map RX,S of a simple
Riemannian manifold is always an isometry. Thus, a simple Riemannian manifold satisfies the FLIEε and
BLIEε-properties for every ε > 0.

In Section 2 we study some geometric properties which yield the FLIEε-property. For instance, if (N, g) is
a closed Riemannian manifold and X ⊂ N is an open set with smooth strictly convex boundary S then the
triplet (X, g, S) satisfied the FLIEε-condition for some ε > 0 if for any N -geodesic each connected component
of this geodesic in X is strictly shorter than twice the injectivity radius of the ambient manifold (N, g). This
observation extends the scope of this paper beyond simple manifolds since if X ⊂ N was simple then each of
its points has a normal neighborhood containing X. In the Appendix 6 of this paper we provide examples of
manifolds with boundary which satisfy the FLIEε-property for some ε > 0, but nor for all. In particular we
give an example of a non-convex and non-simply connected FLIEε-domains in Rn, and provide a numerical
evidence for the existence of a FLIEε-manifold with strictly convex boundary and interior conjugate points.

In Proposition 12 we show that the travel time map of each compact Busemann G-space with a mea-
surement set, which is a closure of a non-empty open set, is always a topological embedding. Due to the
Busemann conjecture we focus on Riemannian manifolds in our set of examples. In Lemma 14, we show that
a closed Riemannian manifold is not in the FLIEε-class for any ε > 0 if the set X \S has a trapped geodesic.
Clearly, the FLIEε-condition is valid for all ε > 0 if the set X \ S is contained in a simple Riemannian
manifold. In Appendix 6 we show that S2 is FLIEε for some but not all ε > 0 if the measurement set S
contains a trace of a geodesic connecting two antipodal points. Thus, there are examples of FLIEε-manifolds
when X \ S is not simple.

Remark 5. In the case (b) we are allowed to measure the distances through the set S while in case (a),
the boundary works as an “obstacle” and we do not measure any distances through it even if the manifold is
embedded into some ambient space.

Examples (a) and (b) are mutually exclusive since shortest curves on a manifold with boundary can branch.
For instance, consider a planar domain whose boundary has a strictly concave part.

The assumption of non-branching distance minimizing curves in (b) is convenient as under this assumption
the travel time map RX,S on a space X is always injective, if the measurement set S is a closure of an open
set. In particular the incjectivity of the map RX,S is not dependent on the location of S.

The first main theorem of the current paper is the following.

Theorem 6 (Stability of Travel Time Data: First Version). Let ε,D > 0. Let (X1, d1) and (X2, d2) be two
compact length spaces with closed measurement sets S1 ⊂ X1 and S2 ⊂ X2. Suppose that the diameters of
X1 and X2 are less than D, and both spaces are BLIEε. If there is a homeomorphism ϕ : S1 → S2, then

dGH((X1, d1), (X2, d2)) ≤
(2D

ε
+ 1
)
d
C(S1)
H (RX1,S1(X1),RX2,S2,ϕ(X2)). (2)

If the travel time data of spaces X1 and X2 coincide, then these metric spaces are isometric.

In order to drop the diameter assumption in Theorem 6 we study the similarities of compact metric
spaces up to a scale ε > 0. For this purpose we introduce the following two definitions. The first definition
introduces a certain truncation of a metric space.

Definition 7. Let (X, d) be a metric space and ε > 0. We call the metric space (X, dε), where

dε(x, y) := min{d(x, y), ε}, for all x, y ∈ X

the ε-truncation of (X, d).

It is straight forward to prove that if (X, d) is a metric space then all of its ε-truncations are also metric
spaces whose diameter do not exceed ε. Furthermore, the spaces (X, d) and (X, dε) are homeomorphic. The
next definition introduces the ε-truncated Gromov–Hausdorff distance which is used to compare the closeness
of ε-truncated metric spaces.
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Definition 8. Let ε > 0, and let (X, dX) and (Y, dY ) be compact metric spaces. Then we call the number

dεGH(X,Y ) := dGH((X, dX,ε), (Y, dY,ε)).

the ε-truncated Gromov–Hausdorff distance.

Our second main result is as follows.

Theorem 9 (Stability of Travel Time Data: Second Version). Let ε > 0. Let (X1, d1) and (X2, d2) be two
compact length spaces with closed measurement sets S1 ⊂ X1 and S2 ⊂ X2. If these spaces are both BLIEε

and if there is a homeomorphism ϕ : S1 → S2 then

dεGH((X1, S1), (X2, S2)) ≤ d
C(S1)
H (RX1,S1

(X1),RX2,S2,ϕ(X2)). (3)

If the travel time data of spaces X1 and X2 coincide, then these metric spaces are isometric.

Theorem 9 yields the following corollary.

Corollary 10. Let (M1, g1) and (M2, g2) be two compact reversible Finsler manifolds. Suppose that

(a) Si ⊂ Mi is the smooth boundary of Mi for both i ∈ {1, 2} or
(b) Mi has no boundary and Si ⊂ Mi is a closure of a non-empty open set for both i ∈ {1, 2}.

If for i ∈ {1, 2} the Finsler manifolds (Mi, gi) with the closed measurement sets Si are both in the BLIEε-
class for some ε > 0, and if their travel time data coincide then the Finsler manifolds (M1, g1) and (M2, g2)
are Finslerian isometric.

We end this subsection by pointing out that theorems 6 and 9 can be seen as generalizations of [15,
Theorem 9] in which a Lipschitz-stability was provided for the travel time data of simple Riemannian
manifolds. Moreover, these results should be seen as quantitative versions of [7, 10, 14, 18]. The result of
Corollary 10 is not new but its proof, which is based on the Meyers-Steenrod theorem: Every metric isometry
between smooth Riemannian or Finsler manifolds is a smooth map which preserves the metric, has not been
presented in the earlier literature in this generality. Our new proof streamlines the old uniqueness proofs as
it does not require an independent reconstructions of topology, differentiable structure or the metric from
the travel time data. Alas, it comes with the prize of the additional BLIEε-assumption. Up to the best
knowledge of the authors theorems 6 and 9 are the first more generally applicable Lipschitz stability results
for the travel time data. Thus, these results form an important stepping stone for any future computational
study related this topic.

Remark 11. Metric trees1 with leaves as the measurement set have an isometric boundary distance embed-
ding and thus satisfy our FLIEε and BLIEε -conditions for all ε > 0. Therefore, theorems 6 and 9 hold for
these graphs. For controlling structural similarities of metric trees with the Gromov–Hausdorff distance, we
refer to [32].

1.2. Some related inverse problems. The problem of determining the isometry type of a compact Rie-
mannian manifold from its travel time data, as in Definition 1, was introduced for the first time in [20]. The
reconstructions of a smooth atlas on the manifold and the metric tensor was originally considered in [18]. In
contrast to the paper at hand, the uniqueness result does not need any extra assumption for the geometry.
If the travel time data is measured only on some open subset of the boundary then the unique recovery of a
compact Riemannian manifold with strictly convex boundary is still possible [30].

The travel time data is related to many other geometric inverse problems. For instance, its recovery is a
crucial step in proving uniqueness for Gel’fand’s inverse boundary spectral problem [18]. Gel’fand’s problem
concerns the question whether the boundary spectral data (∂M, (λj , ∂νϕj |∂M )∞j=1) determine (M, g) up to

isometry, when (λj , ϕj) are the Dirichlet eigenvalues and the corresponding L2-orthonormal eigenfunctions of
the Laplace–Beltrami operator. Belishev and Kurylev provide an affirmative answer to this problem in [2] by
developing the celebrated boundary control method. Stability for the boundary spectral data was developed
in [5]. Stability for interior spectral data on a closed manifold was developed in [3]. Both of these papers
prove a log-log-type stability results, while the optimal stability of this problem is conjectured to rather be
of log-type.

1A tree is a connected graph without loops. The nodes of degree one are called leaves. A metric tree consists of all the edges

as intervals (not necessarily unit length), glued together at the vertices.
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In [19] the authors studied a question of approximating a Riemannian manifold under the assumption:
For a finite set of receivers R ⊂ ∂M one can measure the travel times d(p, ·)|R for finitely many p ∈ P ⊂ M int

under the a priori assumption that R ⊂ ∂M is ε-dense and that {d(p, ·)|R : p ∈ P} ⊂ {d(p, ·)|R : p ∈ M int} is
also ε-dense. Thus {d(p, ·)|R : p ∈ P} is a finite measurement. The authors construct an approximate finite
metric space Mε and show that the Gromov–Hausdorff distance of M and Mε is proportional to some positive
power of ε. Thus, they provided a Hölder stability result for the travel time data. In [19] an independent
travel time measurement is made for each interior source point in P , whereas in [11] the authors studied
the approximate reconstruction of a simple Riemannian manifold by measuring the arrival times of wave
fronts produced by several point sources, that go off at unknown times, and moreover, the signals from the
different point sources are mixed together. To describe the similarity of two metric spaces ‘with the same
boundary’ the authors defined a labeled Gromov–Hausdorff distance. This is an extension of the classical
Gromov–Hausdorff distance which compares both the similarity of the metric spaces and the sameness of
the boundaries — with a fixed model space for the boundary. In addition to reconstructing a discrete metric
space approximation of (M, g), the authors in [11] estimated the density of the point sources and established
an explicit error bound for the reconstruction in the labeled Gromov–Hausdorff sense. Lipschitz stability of
travel time data for simple Riemannian manifolds was recently proved in [15].

Taking the difference of the arrival times one obtains a boundary distance difference function Dp(z1, z2) :=
d(p, z1) − d(p, z2) for all z1, z2 ∈ ∂M . In [22] it was shown that if U ⊂ N is an open subset of a closed
Riemannian manifold (N, g) with a non-empty interior, then distance difference data ((U, g|U ), {Dp : U×U →
R | p ∈ N}) determine (N, g) up to an isometry. This result was generalized for complete Riemannian
manifolds [16] and for compact Riemannian manifolds with boundary [12, 17]. As part of [16], the author
established a stability without an explicit modulus of continuity. In [15] the authors establish Lipscitz
stability of the distance difference data for simple Riemannian manifolds.

If the sign in the definition of the distance difference functions is changed, we arrive in the distance sum
functions, D+

p (z1, z2) = d(z1, p) + d(z2, p) for all p ∈ M and z1, z2 ∈ ∂M . These functions give the lengths
of the broken geodesics, that is, the union of the shortest geodesics connecting z1 to p and the shortest
geodesics connecting p to z2. Also, the gradients of D+

p (z1, z2) with respect to z1 and z2 give the velocity
vectors of these geodesics. The inverse problem of determining the manifold (M, g) from the broken geodesic
data, consisting of the initial and the final points and directions, and the total length of the broken geodesics,
has been considered in [21]. The proof is based on a reduction from the broken geodesic data to the travel
time data. Unfortunately, the proof only works for compact smooth manifold of dimension three and higher,
while under the simplicity assumption the dimensional restriction was removed in [15]. A different variant
of broken geodesic data was recently considered in [25].

The authors of [10] went beyond the conventional Riemannian setting and studied the recovery of a
compact Finsler manifold from its travel time data. In contrast to earlier Riemannian results [18, 20] the
data only determines the topological and smooth structures, but not the global geometry. However, the
Finsler function F : TM → [0,∞) can be recovered in a closure of the set G(M,F ) ⊂ TM , which consists
of points (p, v) ∈ TM such that the corresponding geodesic γp,v is distance minimizing to the terminal
boundary point. In [8] the main result of [10] was utilized to generalize the result of [21], about the broken
geodesic data, on reversible Finsler manifolds, satisfying a convex foliation condition.

1.3. Organization of this paper. In Proposition 13 of Section 2 we show that each FLIEε-space satisfies
the BLIEε-condition, after possible choosing a smaller ε. The end of the section is reserved for further
properties of FLIEε-spaces.

In Section 3 we survey some properties of length spaces and show in Proposition 19 that the travel time
map of any FLIEε-space preserves the length structure. In Lemma 20 we provide a list of many important
properties between metrics and their ε-truncations.

In Proposition 23 of Section 4 we provide a data driven method that can be used to find the largest ε > 0
such that a manifold which is a priori known to be FLIEe0 for some ε0 > 0 is also BLIEε. We also show
in this same proposition that the BLIEε-condition is stronger than the FLIEε-condition. Thus, in our main
theorems we do not need to assume any local isometry properties for the travel time map, only for its inverse.

In Section 5 we provide the Myers–Steenrod theorem (Proposition 24) for compact manifolds with bound-
ary. Also, in Proposition 25 we derive the Lipschitz constant appearing in the estimate (16). Finally, we
prove the main theorems 6 and 9.
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The Appendix is dedicated to examples of FLIEε-manifolds.
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2. The scope of this paper: When is a compact length space is FLIEε or BLIEε?

Proposition 12. The travel time map RX,S of a compact length space (X, d) with a closed measurement
set S is a topological embedding if

(a) X is a compact manifold with boundary, whose distance function is given by (i) Riemannian, (ii)
reversibly Finslerian or (iii) gas giant metric, and S is the boundary of X

(b) (X, d) is a Busemann G-space (such as a closed Riemannian manifold) and S is a closure of a
non-empty open set of X.

Furthermore, (X, d) and the measurement set S ⊂ X satisfy the the FLIEε-property if and only for every
p, q ∈ X such that d(p, q) < ε there is a distance minimizing curve from p to q (or from q to p) which extends
as a distance minimizing curve to some point in S.

Proof. The proofs for the first two claims of part (a) can be found in [18, Lemma 3.30] for (i) and [10,
Proposition 3.1] for (ii).

Part (iii) was proven in [7, Theorem 16] when the gas giant manifold is simple. The proof in the general
case is analogous to the Riemannian one in [18, Lemma 3.30]. We only have to establish that any geodesic
from any point p to a boundary point z that minimizes the distance from p to ∂M meets the boundary
conormally at z. On a gas giant every geodesic meets the boundary normally, so we have to be careful to
phrase normality on the cotangent side. Existence of a minimizing geodesic follows from standard metric
theory.

Let us then show this conormality. Without changing the minimizing geodesic we may assume that
the point p is arbitrarily close to its closest boundary point z. This ensures that the distance to p is a
smooth function in a neighborhood of z on M in the smooth structure corresponding to boundary normal
coordinates. The differential of this distance at any point q is the momentum ξpq|q ∈ T ∗

q M of the unique
geodesic connecting p to q. For z to be a closest boundary point, the differential of the restriction of this
distance to ∂M must vanish, requiring ξpz|z ∈ T ∗

z M to be conormal to the boundary as claimed.
For part (b) we suppose that p, q ∈ X are such that rp = rq. That is

d(p, x) = d(q, x), for all x ∈ S.

Let x0 ∈ S be an interior point of S, t0 := d(p, x0) and let γ : [0, t0] → X be a distance minimizing curve
from x0 to p parameterized by the arc length. Since x0 is an interior point of S there is t ∈ (0, t0) such that
γ([0, t]) ⊂ S. Hence, for x := γ(t) we have that

d(q, x0) = d(p, x0) = d(x0, x) + d(x, p) = d(x0, x) + d(x, q).

Thus, if α : [t, t0] → X is a distance minimizing curve from x to q then the concatenate curve γ̃ := α ◦ γ|[0,t]
is a shortest curve from x0 to q. Since X is a Busemann G-space and the curve γ̃ agrees with the curve γ on
the interval [0, t] it must hold that these curves are the same. Thus, p = γ(t0) = q, and we have proved that
the travel time map RX,S is injective. Since this map is continuous and X is compact, RX,S is also closed.
We have proved the first claim for the case (b).
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Finally we prove the characterization of the FLIEε-property. Let a closed set S ⊂ X be such that the
map RX,S is a ε-local isometry. Let p, q ∈ X be such that d(p, q) < ε. Since the set S is compact there is
z ∈ S such that

|d(p, z)− d(q, z)| = d(p, q).

Thus,

d(p, z) = d(p, q) + d(q, z), or d(q, z) = d(p, q) + d(p, z).

Since (X, d) is a length space we get from these equations that there is a distance minimizing curve σ from
p to z, which goes through q, or there is distance minimizing curve σ̃ from q to z, which goes through p.

Let x, y ∈ X, be such that d(x, y) < ε. Assume that there is a distance minimizing curve, σ : [0, t2] → X
such that σ(t2) = y, z := γ(0) ∈ S, and for some t1 ∈ [0, t2] we have that σ(t1) = x. Thus, by the reverse
triangle inequality we have that

d(x, y) = t2 − t1 = d(y, z)− d(x, z) = sup
q∈S

|d(y, q)− d(x, q)| = ∥RX,S(y)−RX,S(x)∥∞.

We have proved that RX,S is a ε-local isometry. □

2.1. Each FLIEε-space is a BLIEε-space after possible choosing a smaller ε. In the following propo-
sition we show that if a compact length space with a closed measurement set is in the class FLIEε0 for some
ε0 > 0 then there is ε ∈ (0, ε0] such that the the space is also in the BLIEε-class. Further, it shows that for
a space that is BLIEε, then RX,S is a metric isometry between truncated spaces.

Proposition 13. If a compact length space (X, d) with a closed measurement set S is FLIEε0 for some
ε0 > 0, then there is ε ∈ (0, ε0] such that the inverse map

R−1
X,S : (RX,S(X), ∥ · ∥∞) → (X, d)

is a ε-local isometry and the map

RX,S : (X, dε) → (C(S), d∞,ε)

is a metric isometry, where dε and d∞,ε are the ε-truncations of the metric d and the supremum metric of
C(S) respectively.

Proof. Due to our assumptions RX,S : (X, g) → (C(S), ∥ · ∥∞) is a topological embedding, and since X is
compact the image set RX,S(X) ⊂ C(S) is compact. We note that the collection{

RX,S

(
B
(
R−1

X,S(y),
ε0
2

))
⊂ RX,S(X) : y ∈ RX,S(X)

}
is an open cover of RX,S(X) with respect to the subspace topology of RX,S(X). Here, B(x, r) is a metric
ball of (X, d) centered at x ∈ X of radius r > 0. Thus, for every y ∈ RX,S(X) there is an open set Vy ⊂ C(S)
such that

Vy ∩RX,S(X) = RX,S

(
B
(
R−1

X,S(y),
ε0
2

))
.

Since RX,S(X) is a compact set with an open cover {Vy}y∈RX,S(X) from the metric space (C(∂M), ∥ · ∥∞)
it follows from the Lebesgue’s number lemma that there is ε ∈ (0, ε0] such that for every y ∈ RX,S(X) there
exists z ∈ RX,S(X) such that

B∞

(
y,

ε

2

)
⊂ Vz.

In above, the set B∞(y, ε
2 ) is a metric ball of (C(S), ∥ · ∥∞). By the definition of FLIEε0 , the map RX,S

is a ε0-local isometry. Therefore, the inverse map R−1
X,S : (RX,S(X), ∥ · ∥∞) → (X, d) is an isometry on

the set RX,S(B(R−1
X,S(z),

ε0
2 )), which contains the induced ball B∞(y, ε

2 ) ∩ RX,S(X). This means that

R−1
X,S : (RX,S(X), ∥ · ∥∞) → (X, d) is a ε-local isometry.

Finally, we choose any p, q ∈ X, and aim to show that dε(p, q) = d∞,ε(RX,S(p),RX,S(q)). First note
that d∞(RX,S(p),RX,S(q)) ≤ d(p, q) since RX,S is always a 1-Lipschitz function by the reverse triangle
inequality. We also have that

d∞,ε(RX,S(p),RX,S(q)) ≤ dε(p, q) ≤ ε

If d∞(RX,S(p),RX,S(q)) ≥ ε then d∞,ε(RX,S(p),RX,S(q)) = dε(p, q). If d∞(RX,S(p),RX,S(q)) < ε, then

since R−1
X,S is an ε-local isometry we have that d∞(RX,S(p),RX,S(q)) = d(p, q) < ε and we find that

d∞,ε(RX,S(p),RX,S(q)) = dε(p, q) as desired. □
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2.2. Examples of sufficient or necessary conditions for FLIEε spaces. In this section we are focusing
on Riemannian manifolds with a closed measurement set and aim to extract some geometric properties of
the FLIEε-manifolds. The role of the two subsequent lemmas is to provide a partial characterization of
FLIEε-manifolds.

The following lemma provides a necessary condition for the FLIEε property.

Lemma 14. Let (M, g) be a smooth compact Riemannian manifold

(a) with a smooth boundary S, or
(b) without a boundary but having having a closed measurement set S ⊂ M .

If (M, g, S) satisfies the FLIEε-property for some ε > 0 then the set M \ S contains no geodesics that are
longer than 2 diam(M).

Proof. For a point p ∈ M \ S we choose any unit vector v ∈ SpM and consider the respective maximal
geodesic γ = γp,v of (M, g). Then, we choose 0 < r < ε such that the geodesic γ : [0, r] → M \S is the unique
distance minimizing curve between p and q := γ(r). Thus, d(p, q) = r < ε and by the FLIEε-property there
is t0 > 0 such that γ(t0) or γ(−t0) is in the set S. In particular the curve γ meets the set S in a finite time
to at least one direction.

After a reparametrization we may assume that γ(0) is in S, p = γ(t0) for some t0 > 0 and γ((0, t0]) ⊂ M\S.
Let T := diam(M). If γ(t) ∈ S for some t ∈ (t0, T ], we are done. Thus, without loss of generality we may
suppose that there is T0 > T such that γ((0, T0)) ⊂ M \ S. Then, we consider a point p̃ := γ(T ), and
let 0 < r < min{ε, T0 − T} be so small that γ is the unique distance minimizing curve between p̃ and
q̃ = γ(T + r). Then d(p̃, q̃) = r < ε and by the FLIEε-property, and the assumption γ((0, T0)) is contained
in M \ S, we must have that γ|[0,T+r] is a distance minimizing unit speed curve, or there is T1 ≥ T such
that γ(T1) ∈ S and γ|[T,T1] is a distance minimizing curve. The first case is impossible since T + r is larger
than the diameter of M . Thus, the second case is valid and it implies that T1 ≤ 2T . Therefore, no segment
of the geodesic γ which lies in M \ S is longer than 2 diam(M).

Since γ is a generic geodesic partially contained in M \ S we have proved the claim. □

Remark 15. If S ⊂ Sn−1 is a closure of an open set such that Sn−1 \ S contains a great circle, then by
Lemma 14 the manifold Sn−1 with a measurement set S does not satisfy the FLIEε-property for any ε > 0.
The same is true for a cylinder S× [0, 1] if the measurement set is the boundary (Sn−1×{0})∪ (Sn−1×{1}).

Let (N, g) be a complete Riemannian manifold and M ⊂ N an open bounded set with a smooth boundary.
We say that the set M is geodesically convex if for each pair of points of M there exists an N -distance
minimizing curves between these points contained in M . We would like to emphasize that this type of
convexity does not imply that manifold (M, g) would be a simple. For instance, if we consider the paraboloid

N = {(cos(v)u, sin(v)u, u2) ∈ R3 : v ∈ [0, 2π], u ∈ R},

and T > 0 then the parabolic frustum M := N ∩ {x ∈ R3 : x3 < T} has a strictly convex boundary
∂M = {x ∈ N : x3 = T} and M is geodesically convex in the previous sense. Also, for T large enough the
manifold M is not simple since it has self-intersecting geodesics.

After these preparations we are ready to establish a sufficient condition for the FLIEε-property of the
Riemannian manifold (M, g), when the measurement set S is the boundary of M . This can be seen as the
partial converse of Lemma 14.

Lemma 16. Let (N, g) be a complete Riemannian manifold with an injectivity radius i(N, g) > 0, and
M ⊂ N an open bounded set with a smooth boundary. Suppose that M is geodesically convex. If there is
a number L ∈ (0, 2i(N, g)) such that for any geodesics of (N, g) the length of no connected component of
this geodesic contained in M exceeds the number L then (M, g) with the measurement set ∂M satisfies the
FLIEε-property for every ε ∈ (0, i(N, g)− L

2 ).

Proof. Suppose that the condition of lemma is valid and take any ε ∈ (0, i(N, g)− L
2 ). Let p, q ∈ M be such

that d(p, q) < ε. Since M is convex there exists a unique unit speed geodesic γ of (N, g) connecting p to q
with length L(γ) ≤ L. Furthermore, there are numbers 0 ≤ t ≤ s ≤ L(γ) such that

γ(t) = p, γ(s) = q, s− t = d(p, q), and γ(0), γ(L(γ)) ∈ ∂M.
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If t, s ≤ L(γ)
2 or t, s ≥ L(γ)

2 we have from the assumption L(γ) < 2i(M, g) that one of the geodesic segments
γ|[0,s] or γ|[t,L(γ)] is shorter than i(M, g). Thus, at least one of these segments satisfies the FLIEε-definition.

If t < L(γ)
2 < s then

s = t+ (s− t) <
L(γ)

2
+ ε <

L

2
+ i(N, g)− L

2
= i(N, g).

Thus, the geodesic segment γ|[0,s] satisfies the FLIEε-definition. □

We provide some concrete examples of FLIEε-spaces in the Appendix 6.

2.3. When is the travel time map a global isometry? In the main result of this subsection, Proposition
17, we first derive three equivalent conditions for the travel time map being a global isometry on a compact
length space with a closed measurement set. Then we turn our attention to compact Riemannian manifolds
with boundary, and study two mutually exclusive boundary assumptions:

(i) the boundary is strictly convex,
(ii) the boundary is totally geodesic.

The first case means that the second fundamental form of the boundary is positive definite. A submanifold
is called totally geodesic if any geodesic on the submanifold, with its induced Riemannian metric, is also a
geodesic of the ambient manifold. When the measurement set is the boundary, satisfying the assumption
(i) or (ii), we provide in Proposition 17 two additional conditions which are also equivalent to the isometry
property of the travel time map. The main observation of this subsection is that a compact Riemannian
manifold with a strictly convex boundary and an isometric travel time mapping needs to be essentially
simple. The converse result was observed in [15, Proposition 6].

Proposition 17. Let (X, d) be a compact length space with a closed measurement set S. The following
conditions are equivalent:

(A) RX,S : (X, d) → (C(S), ∥ · ∥∞) is a metric isometry.
(B) For all p, q ∈ X there exist z ∈ S and a distance minimizing curve σ : [0, L] → X from p to z that

goes through q (or from q to z via p).
(C) Any distance minimizing curve between two points of X \ S has a distance minimizing extension

forwards or backwards.

Moreover, if (X, d) = (M, g) is a compact Riemannian manifold with nonempty boundary ∂M = S which is
strictly convex or totally geodesic, then the following two properties are also equivalent with the former three
conditions:

(D) Every pair of interior points of M is connected by a unique geodesic which is distance minimizing
all the way to the boundary (not necessarily both ways).

(E) The Riemannian manifold (M, g)
(i) is non-trapping,
(ii) has no interior conjugate points, in the sense that for no pair of interior points is there a

geodesics connecting these points along which the points are conjugate to each other, and
(iii) each pair of its interior points are connected by a unique distance minimizing geodesic whose

trace is contained in the interior.

Proof. (A) =⇒ (B): By assumption for all p, q ∈ X we have that

∥RX,S(p)−RX,S(q)∥∞ = sup
z∈S

|d(p, z)− d(q, z)| = d(p, q).

By compactness of the set S there exists a point z ∈ S such that either d(p, z) = d(p, q) + d(q, z) or we have
that d(q, z) = d(q, p) + d(p, z). Without loss of generality we assume that the first case is true. Since X is a
length space the points p and q and q and z can be connected by distance minimizing curves. Thus, by the
former equality, the composition of these curves is a distance minimizing curve from p to z going through q.

(B) =⇒ (A): Let p, q ∈ X. Let z ∈ S and σ : [0, L] → X be a distance minimizing curve from p to z that
goes through q. Then

d(p, q) = |d(p, z)− d(q, z)| ≤ sup
x∈S

|d(p, x)− d(q, x)| = ∥RX,S(p)−RX,S(q)∥∞

and since RX,S is 1-Lipschitz we have that d(p, q) = ∥RX,S(p)−RX,S(q)∥∞. Thus RX,S is a metric isometry.
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(B) =⇒ (C): Let p, q ∈ X\S. Let ℓ = d(p, q) and σ : [0, ℓ] → X be a distance minimizing curve connecting
p to q. By the hypothesis we may take z ∈ S and a distance minimizing curve σ̃ : [0, L] → X, parameterized
by the arc length, which goes from p to z via q. Thus, the concatenation of σ̃|[ℓ,L] and σ is a distance
minimizing extension of σ.

(C) =⇒ (B): Let p, q ∈ X\S and let σ : [0, ℓ] → X be a distance minimizing curve connecting p to q. We
use Zorn’s lemma to show that this curve has a maximal distance minimizing extension. For this we let E
to be the set of all distance minimizing extensions of σ, parameterized by their arc length. On the collection
E we introduce a partial ordering: if the curves σ1 and σ2 are in E, we say that σ1 ≤ σ2 if σ2 is a distance
minimizing extension of σ1. Let C ⊂ E be a chain with respect to our partial ordering, that is if σ1, σ2 ∈ C
then one of them is an extension of the other. To apply Zorn’s Lemma we need to show that C has an upper
bound in E. We omit the rest of the details as they are standard results in a compact length space.

Let σ̃ : [a, b] → X be any maximal distance minimizing extension of σ : [0, ℓ] → X. If both σ̃(a) and σ̃(b)
are contained in X\S, then by condition (B) there must exist a distance minimizing extension of σ̃. But σ̃
was assumed to be a maximal distance minimizing extension of σ, this is a contradiction. We conclude that
σ̃(a) or σ̃(b) must be in S and finish our proof that (C) implies (B).

We have proved that (A), (B) and (C) are equivalent. From here onwards we assume that (X, d) = (M, g)
is a smooth Riemannian manifold with boundary ∂M = S, which is either strictly convex or totally geodesic.
We show that (A) and (D) are equivalent.

(D) =⇒ (A): Clearly with the choice S = ∂M the condition (D) implies (B) and (A).
(A) =⇒ (D): Let p, q ∈ M be interior points. As RX,S is a metric isometry, then there exists a distance

minimizing curve σ starting from p, going through q and ending at some boundary point z. For the sake of
contradiction assume that σ̃ is another distance minimizing curve from p to q ending at a boundary point z̃.
We consider the case when ∂M is strictly convex and totally geodesic separately.

We assume that the boundary is strictly convex, then the curves σ and σ̃ are both geodesics of M and
they are contained in the interior of M modulo the end points. As they both go through p and q while being
different, we can use these curves to construct a distance minimizing curve (also a geodesic) from q to z
which is not C1 at some point. This is a contradiction since geodesics are always smooth curves.

Then we assume that the boundary is totally geodesic. It was shown in [28, Chapter 4, Proposition 13]
that the following three conditions are equivalent:

• a submanifold is totally geodesic,
• the second fundamental form of the submanifold vanishes identically,
• each geodesic of the ambient manifold which is tangential to the submanifold stays in the submanifold
for a short time.

It follows from [1] that the distance minimizing curves σ and σ̃ are C1-smooth, have only tangential intersec-
tions with the boundary (in the interior of their domain) and outside the boundary these curves are geodesic
of (M, g). As the points p and q lie in the interior we get from the total geodesicity of the boundary that
the curves σ and σ̃ can only have a transversal intersection with boundary, and this must happen at the
terminal points. Therefore curves σ and σ̃ are geodesics of (M, g), which are contained in the interior of M
modulo the end points. Thus, we arrive in a contradiction by the same argument as in the previous part.

Finally, we show that (A) and (E) are equivalent.
(A) =⇒ (E): If (A) is true then also (E) is true. Due to Lemma 14 it holds that (M, g) is non-trapping.

Let p, q be some interior points, and choose the unique distance minimizing geodesic between p and q which
ends at the boundary. By [23, Proposition 10.32] no geodesic is minimizing beyond the first conjugate point.
Therefore, the points p and q cannot be conjugate along γ. We have verified the conditions conditions (i) –
(iii) of property (E).

(E) =⇒ (A): Let p, q ∈ M be some interior points. Then there is a unique geodesic γ : [0, L] → M such
that γ(L) ∈ ∂M , γ((0, L)) ⊂ M int, γ(0) = q and γ(t0) = p for t0 = d(p, q) ∈ (0, L). We claim that γ is a
distance minimizer in the segment [0, L]. This implies condition (A).

We define

t⋆ := sup{t ∈ [0, L] : d(γ(0), γ(t)) = t}.
Clearly t⋆ ∈ [t0, L]. If t⋆ < L then we get from the boundary assumptions and Klingenbergs lemma [23,
10.32] (see also [30, Lemma 3.2]) that at least one of the following conditions is true:

• The points γ(0) and γ(t⋆) are conjugate along γ,
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• There is another distance minimizing geodesic from γ(0) to γ(t⋆).

Since q = γ(0) and γ(t⋆) are interior points either of these conditions violates the assumptions of condition
(E). Thus t⋆ = L as claimed. □

To close this section we note that a closed manifold does not have a canonical choice of the measurement
set. Furthermore, it is easy to show that even for very large measurement sets the travel time map might or
might not be a global isometry. For instance consider S2 with the measurement set

S = S2 \ (B(e3, r) ∪B(−e3, r)), where r ∈ (0, π/2).

Then the north and south poles e3 and −e3 are contained in the exterior of S and no geodesic between them
can be extended as distance minimizer to some point in S. Thus, the respective travel time map RS2,S is
not a global isometry.

On the contrary with the choice of the measurement set

S = S2 \B(e3, r), where r ∈ (0, π/2),

the travel time map RS2,S is a global isometry since the polar cap B(e3, r) is a simple manifold.
Clearly the northern hemisphere M = {x ∈ Sn−1 : xn ≥ 0} is a smooth compact Riemannian manifold

with a totally geodesic boundary ∂M = {x ∈ Sn−1 : xn = 0}. On M no pair of interior points are antipodal
to each other. Thus, they are connected by a unique great circle which intersects the boundary at exactly
two points having the length π. Therefore, M satisfies condition (B) of Proposition 17. In particular, the
map RM,∂M can be a global isometry even if there are conjugate points between boundary points, but not
if there are interior conjugate points as we showed above.

3. Truncated Compact Length Spaces

In this section we survey some properties of compact length spaces and show that the travel time map of
any FLIEε-space preserves the length structure. We end the section by providing a list of many important
properties between distances and their truncations.

3.1. The travel time map of FLIEε-space preserves the length structure. There is no a priori reason
to assume that for a general compact length space (X, d) with a closed measurement set S ⊂ X the space
(RX,S(X), ∥ · ∥∞) would need to be a length space, even though the ambient Banach space (C(S), ∥ · ∥∞)
is one. The following lemma will show that the length metric dL of RX,S(X), which is induced by the
supremum metric, is finite.

Lemma 18. Let (X, d) be a compact length space with a closed measurement set S ⊂ X. If the travel time
map RX,S is a topolological embedding then the length metric d∞,L of RX,S(X), which is induced by the
supremum metric, is finite. In particular, every pair of points x, y ∈ RX,S(X) is connected by a curve of
finite length.

Proof. For x, y ∈ RX,S(X) we consider the inverse images p := R−1
X,S(x), q := R−1

X,S(y) ∈ X. Since (X, d) is

a length space there is a finite length curve γ : [0, 1] → X such that γ(0) = p and γ(1) = q. Thus, the curve
γ̃ := RX,S ◦ γ : [0, 1] → RX,S(X) is continuous, begins at x and ends at y. Furthermore, since the travel
time map is a contraction we have for any

0 = t0 < t1 < t2 < . . . < tN−1 < tN = 1,

that

∥γ̃(ti−1)− γ̃(ti)∥∞ ≤ d(γ(ti−1), γ(ti)), for all i ∈ {1, . . . , N}.
Since the curve γ has a finite length, the former estimate implies that also the curve γ̃ has a finite length.

We have proved that all points of RX,S(X) can be connected by a curve of finite length contained in
RX,S(X). Therefore, d∞,L is finite. □

Proposition 19. If a compact length space (X, d) with a closed measurement set S ⊂ X satisfies the FLIEε

property for some ε > 0 then the travel time map RX,S : (X, d) → (RX,S(X), d∞,L) is a bijective metric
isometry.
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Proof. We show first that the map RX,S preserves the lengths of curves. Let γ : [0, 1] → (X, d) be a finite
length curve, and denote γ̃ := RX,S ◦ γ. Since the curve γ is uniformly continuous there is δ > 0 such that
whenever the times t, s ∈ [0, 1] are δ-close then the points γ(t), γ(s) are ε-close in (X, d). Let

0 = t0 < t1 < t2 < . . . < tN−1 < tN = 1,

be a partition of [0, 1] such that

ti − ti−1 < δ, for all i ∈ {1, . . . , N}.

Then by the FLIEε property we have that

N∑
i=1

d(γ(ti−1), γ(ti)) =

N∑
i=1

∥γ̃(ti−1)− γ̃(ti)∥∞. (4)

Furthermore, if t ∈ (ti−1, ti) for some i ∈ {1, . . . , N} then both t− ti−1 and ti − t are smaller than δ. Thus,
we have that

d(γ(ti−1), γ(t)) = ∥γ̃(ti−1)− γ̃(t)∥∞, and d(γ(ti), γ(t)) = ∥γ̃(ti)− γ̃(t)∥∞,

and in conjunction with Equation (4) we get that Ld(γ) = L∞(γ̃).

Let p, q ∈ X and denote x := RX,S(p) to y := RX,S(q). Since (RX,S(X), d∞,L) is a compact length space
it follows from Hopf–Rinow–Cohn-Vossen Theorem (c.f [4, Theorem 2.5.28]) that there is a d∞,L-distance
minimizing curve σ̃ : [0, 1] → RX,S(X) from x to y. Since the map RX,S is ε-local isometry it follows from
[4, Lemma 3.4.17] that there exits a unique d-distance minimizing curve σ : [0, 1] → (X, d) starting from p
such that

RX,S(σ(t)) = σ̃(t) for all t ∈ [0, 1].

Since the map RX,S is one-to-one and σ̃(1) = RX,S(q) we must have that σ(1) = q. Thus, σ is d-distance
minimizing curve from p to q, and due to the first part of the proof we get

d(p, q) = Ld(σ) = L∞(σ̃) = d∞,L(x, y).

This concludes the proof. □

3.2. Properties of the truncation. A correspondence between any two sets X and Y is a subset of X×Y
satisfying the following two conditions:

(I) for any x ∈ X there is y ∈ Y such that (x, y) ∈ R
(II) for any y ∈ Y there is x ∈ X such that (x, y) ∈ R.

If the sets X and Y are equipped with metrics dX and dY respectively then the distortion of the correspon-
dence R is the number

dis(R) = sup{|dX(x, x′)− dY (y, y
′)| : (x, y), (x′, y′) ∈ R}.

In particular, if (X, dX) and (Y, dY ) are compact metric spaces, then it was proven in [4, Theorem 7.3.24.]
that

dGH((X, dX), (Y, dY )) =
1

2
inf
R
(dis(R)), (5)

where the infimum is taken over all correspondences between metric spaces (X, dX) and (Y, dY ).
The following lemma summaries some properties between a metric d of a compact metric space X and its

ε-truncation dε, which was given in Definition 7.

Lemma 20. Let (X, dX) be a compact metric space and ε > 0. Then

(1) The topologies of dX and the ε-truncated metric dX,ε coincide.
(2) The length structures induced by dX and dX,ε coincide.

(3) Let K1,K2 ⊂ X be closed. If dX,dX

H (K1,K2) < ε then

d
X,dX,ε

H (K1,K2) = dX,dX

H (K1,K2). (6)

(4) If (Y, dY ) is a compact metric space and f : (X, dX) → (Y, dY ) is a metric isometry then f is also a
metric isometry between the truncated spaces (X, dX,ε) and (Y, dY,ε).
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(5) We always have that

dGH((X, d), (X, dε)) =
1

2
max{diam(X)− ε, 0} (7)

(6) If (X, dX) and (Y, dY ) are compact length spaces such that the respective truncated spaces (X, dX,ε)
and (Y, dY,ε) are isometric then the original spaces (X, dX) and (Y, dY ) are also isometric.

Proof. 1. Clearly all small balls of metrics dX and dX,ε agree as sets. Thus, the first claim follows from the
definition of the open sets in metric spaces.

2. If γ : [0, 1] → X is a curve then we see by a similar argument as in the proof of Theorem 19 that the
length of γ is the same with respect to both metrics dX and dX,ε. Thus, the length structures induced by
dX and dX,ε coincide.

3. Let K1,K2 ⊂ X be closed and dH(K1,K2) < ε. We denote dH(K1,K2) := δ. Then for each ε̃ ∈ (δ, ε)
it holds that

K2 ⊂
⋃

x∈K1

Bd(x, ε̃) =
⋃

x∈K1

Bdε(x, ε̃), and K1 ⊂
⋃

y∈K2

Bd(y, ε̃) =
⋃

y∈K2

Bdε(y, ε̃).

Thus, we get from the definition of the Hausdorff distance that

d
X,dX,ε

H (K1,K2) ≤ δ.

On the other hand by the definition Hausdorff distance we may without loss of generality assume that for
each j ∈ N large enough we have that

K1 \ Uj ̸= ∅, where Uj :=
⋃

y∈K2

Bd

(
y, δ̃ − 1

j

)
=
⋃

y∈K2

Bdε

(
y, δ − 1

j

)
.

Thus,

dX,dε

H (K1,K2) ≥ δ.

We have verified the equality (6).
4. Since the map f : (X, dX) → (Y, dY ) is a metric isometry we have

dX(p, q) = dY (f(p), f(q)), for all p, q ∈ X.

Therefore dX(p, q) ≤ ε if and only if dY (f(p), f(q)) < ε. Therefore,

dX,ε(p, q) = dY,ε(f(p), f(q)), for all p, q ∈ X.

5. Suppose first that ε ≤ diam(X). Then by [4, Exercise 7.3.14] we have that

dGH((X, d), (X, dε)) ≥
1

2
|diam(X, d)− diam(X, dε)| =

1

2
(diam(X, d)− ε).

On the other hand the diagonal set

R := {(x, x) : x ∈ X}
is a correspondence between the spaces (X, d) and (X, dε) whose distortion is

dis(R) = sup
x,x′∈X

|d(x, x′)− dε(x, x
′)| = diam(X)− ε.

Hence, equation (5) implies

dGH((X, d), (X, dε)) =
1

2
(diam(X)− ε).

in this case. If ε > diam(X) then d = dε and the identity map of X is an isometry. Thus, equation (7) is
true.

6. If f : (X, dX,ε) → (Y, dY,ε) is a bijective isometry then the same map between the original length
spaces is a ε-local isometry. Thus, by earlier parts of this lemma, and the proof of Proposition 19 the map
f : (X, dX) → (Y, dY ) is a metric isometry. □

Remark 21. By the previous lemma the truncated Gromov–Hausdorff-distance is a valid metric in the space
of compact length spaces, no matter what ε > 0 is chosen. However, this is not true if we drop the length
space assumption as the following example illustrates. The Gromov–Hausdorff distance between the sets
X = {0, 1} and Y = {0, 2} with the obvious metrics is 1

2 , but dGH(Xε, Yε) = 0 for all ε ∈ (1/2, 1).
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4. Verification of the BLIEε-property from the travel time data of a FLIEε-space

By Proposition 13 we know that each FLIEε-space (X, d) with a closed measurement set S ⊂ X is also
a BLIEε-space after possible choosing a smaller ε. However, the proof is based on a compactness argument
and does not directly give us a method to show that R−1

X,S is a ε-local isometry based on the travel time

data RX,S(X). It was shown in [4, Section 2.4.] that a complete metric space is a length space if and only
if every pair of points has a midpoint. For our purposes we introduce the following generalization of the
midpoint property.

Definition 22. Let ε > 0 and let (X, d) be a metric space. We say that (X, d) satisfies the ε-local midpoint
property if for all x, y ∈ X with d(x, y) < ε, there exists m ∈ X such that d(m,x) = d(m, y) = 1

2d(x, y).

According to the following proposition the ε-local isometry property of the inverse map R−1
X,S is equivalent

to the ε-local midpoint property of the travel time data and ε-local isometry property of the travel time map
RX,S . Furthermore, if we know a priori that (X, d) and S satisfy the FLIEε0 for some ε0 > 0 we can find
the best ε > 0 for which the ε-local midpoint property is valid for the travel time data. Then, the space
(X, d) and S need to automatically be in both FLIEε- and BLIEε-classes.

Proposition 23. Let ε > 0 and let (X, d) be a compact length space with a closed measurement set S ⊂ X
such that the travel time map RX,S is a topological embedding. The following conditions are equivalent.

(1) (X, d) with measurement set S is BLIEε

(2) The space (X, d) with the set S satisfy the FLIEε-property and the compact metric space RX,S(X)
with the supremum norm satisfies the ε-local midpoint property.

(3) (X, d) with the set S satisfy the FLIEε0 property for some ε0 ∈ (0, ε) and RX,S(X) with the supremum
norm satisfies the ε-local midpoint property.

Proof. 1 =⇒ 2: We assume that the map R−1
X,S : (RX,S(X), ∥ · ∥∞) → (X, d) is a ε-local metric isometry and

show first that also the forward map RX,S is a ε-local isometry. Let p, q ∈ X, and suppose that d(p, q) < ε.
Since the map RX,S is nonexpansive and we have that

∥RX,S(p)−RX,S(q)∥∞ ≤ d(p, q) < ε.

Thus, ∥RX,S(p)−RX,S(q)∥∞ = d(p, q). This is precisely the condition for RX,S to be a ε-local isometry.
We now show that the compact metric space (RX,S(X), ∥ · ∥∞) satisfies the ε-local midpoint property.

Let p, q ∈ X be such that ∥RX,S(p)−RX,S(q)∥ < ε, then d(p, q) = ∥RX,S(p)−RX,S(q)∥∞. Since (X, d) is
a length space it satisfies the midpoint property globally per [4, Lemma 2.4.8.]. Thus there exists a point
m ∈ X such that d(p,m) = d(q,m) = 1

2d(p, q). Furthermore, d(p, q) = d(p,m) + d(m, q) so we observe that
since RX,S is a nonexpansive map we have that

∥RX,S(p)−RX,S(m)∥∞ + ∥RX,S(m)−RX,S(q)∥∞
≤ d(p,m) + d(m, q) = d(p, q) = ∥RX,S(p)−RX,S(q)∥∞ < ε

Thus ∥RX,S(p) −RX,S(m)∥∞, ∥RX,S(m) −RX,S(q)∥∞ < ε, and by the local ε-local isometry property we
have that

∥RX,S(p)−RX,S(m)∥∞ = d(p,m) =
1

2
d(p, q) =

1

2
∥RX,S(p)−RX,S(q)∥∞,

and similarly ∥RX,S(q)−RX,S(m)∥∞ = 1
2∥RX,S(p)−RX,S(q)∥. Hence, RX,S(m) ∈ RX,S(X) is a midpoint

of RX,S(p) and RX,S(q).
2 =⇒ 3: Condition 2 is stronger than condition 3.
3 =⇒ 1: Suppose that the compact metric space (RX,S(X), ∥ · ∥∞) satisfies the ε-local midpoint property.

Let RX,S(p),RX,S(q) ∈ RX,S(X) be such that ∥RX,S(p)−RX,S(q)∥∞ < ε. A number 0 ≤ k
2n ≤ 1 for some

k, n ∈ N is called a dyadic rational, and the set D of these rationals form a dense subset of [0, 1]. From here
we utilize the ε-local midpoint property and follow the steps in the proof of [4, Theorem 2.4.16] to find a
function γ : D → RX,S(X) which satisfies the following Lipschitz property

∥γ(t)− γ(t′)∥∞ ≤ |t− t′|∥γ(0)− γ(1)∥∞, for any t, t′ ∈ D. (8)

Since the metric space (RX,S(X), ∥ · ∥∞) is complete we get from [4, Proposition 1.5.9.] that the map γ has
a unique Lipschitz continuous extension to [0, 1]. Therefore, γ : [0, 1] → RX,S(X) is a Lipschitz continuous
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path connecting RX,S(p) to RX,S(q). Furthermore, the estimate (8) implies that

L∞(γ) = ∥RX,S(q)−RX,S(q)∥∞.

Since the space (X, d) with the measurement set S satisfy the FLIEε0 -property it follows from Proposition 19
that the map RX,S is a metric isometry between the length spaces (X, d) and (RX,S(X), d∞,L). Therefore,
we have that

d(p, q) = d∞,L(RX,S(p),RX,S(q)) = L∞(γ) = ∥RX,S(p)−RX,S(q)∥∞.

This implies that R−1
X,S is a ε-local isometry. □

5. Proofs of the Main Theorems

Equation (5) implies a well known upper bound for the Gromov–Hausdorff distance between compact
metric spaces (X, dX) and (Y, dY ):

dGH(X,Y ) ≤ 1

2
max{diam(X),diam(Y )} (9)

We are ready to prove our second main result.

Proof of Theorem 9. First we consider the case when

d
C(S1)
H (RX1,S1

(X1),RX2,S2,ϕ(X2)) < ε. (10)

By Proposition 12 the maps RXi,Si : (Xi, do) → (C(Si), ∥ · ∥∞) are ε-local isometries for both i ∈ {1, 2}.
Since the map ϕ : S1 → S2 is a homeomorphism, the induced map

Φ: (C(S2), ∥ · ∥∞) → (C(S1), ∥ · ∥∞), Φ(f) = f ◦ ϕ
is an isometry. Thus, the map Φ ◦ RX2,S2

: (X2, d2) → (C(S1), ∥ · ∥∞) is a ε-isometry with the range

(Φ ◦ RX2,S2)(X2) = RX2,S2,ϕ(X2).

Moreover, we get from the Definition 4 and Proposition 13 that the mapsRX1,S1
and Φ◦RX2,S2

are isometries
from the truncated spaces (X1, d1,ε) and (X2, d2,ε) into the truncated complete metric space (C(S1), d∞,ε).
Therefore, we get from the assumption (10) and Lemma 20 that

d
C(S1),d∞,ε

H (RX1,S1
(X1),RX2,S2,ϕ(X2)) = d

C(S1),∥·∥∞
H (RX1,S1

(X1),RX2,S2,ϕ(X2)).

Hence, the inequality (3) follows from Definition 8 of the truncated Gromov–Hausdorff distance.
Then we suppose that the estimate (10) does not hold. Since the diameters of the truncated space (Xi, di,ε)

do not exceed ε we get from (9) that dεGH((X1, d1), (X2, d2)) ≤ ε
2 . Thus, the inequality (3) follows trivially.

If d
C(S1)
H (RX2,S2

(X1),RX2,S2,ϕ(X2)) = 0 then the inequality (3) implies that the truncated spaces (X1, d1,ε)
and (X2, d2,ε) are isometric. Thus, it follows from Lemma 20 that there is a metric isometry between the
spaces X1 and X2. □

In order to prove the uniqueness result for Finsler manifolds in Corollary 10 we need to find a boundary
adapted version of the classical Myers–Steenrod theorem [27]: Every bijective metric isometry between
complete smooth Riemannian or Finsler manifolds is a smooth Riemannian or Finslerian isometry. The
Finsler version of this result was given for instance in [24, Theorem A].

Proposition 24 (Myers–Steenrod Theorem for Compact Manifolds with Boundary). Let (M1, F1) and
(M2, F2) be compact, connected smooth reversible Finsler manifolds with boundary. If a map f : M1 → M2

is a bijective metric isometry, then it is also a Finslerian isometry in the sense that it is a smooth map that
pulls the metric F2 back to F1.

Proof. We prove first that the map f and its inverse are smooth. To this end we note that by the invariance
of domain the function f maps the interior of M1 onto the interior of M2 and the boundary of M1 onto the
boundary of M2. For the interior the claim follows from the proof of traditional Myers–Steenrod theorem
presented for instance in [31, Theorem 5.6.15.] for Riemannian manifolds and in [24, Theorem A] for Finsler
manifolds. Hence, it suffices to show that f and f−1 are smooth near the boundaries.

We note that for each i ∈ {1, 2} we can use the Finslerian distance di of the manifold Mi to induce an
intrinsic distance to each connected component of the boundary ∂Mi. In particular, this distance agrees
with the Finslerian distance ρi of the closed Finsler manifold (∂Mi, Fi|∂Mi

). Thus, the restriction map
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f : (∂M1, ρ1) → (∂M2, ρ2) is a metric isometry for the Finslerian distances on each connected component
of ∂M1. By the Myers–Steenrod theorem the restriction map f |∂M1 : (∂M1, F1|∂M1) → (∂M2, F2|∂M2) is a
smooth Finslerian isometry.

Since Mi is compact there exists ε > 0 such that the boundary normal exponential map

exp∂Mi
: [0, ε)× ∂Mi → Mi, exp∂Mi

(s, z) = γz,νi(z)(s),

is a diffeomorphism onto its image [9, Lemma 3.3]. Here γz,νi(z) is the geodesic of (Mi, gi) whose initial
conditions are (z, νi(z)) and νi is the inward pointing boundary normal vector field. The inverse φi of the
map exp∂Mi

is called the boundary normal coordinates and for each point p ∈ Mi, which also lies in the
domain of φi, we have that φi(p) = (si(p), zi(p)) ∈ [0, ε) × ∂Mi where zi(p) is the closest boundary point
to p and si(p) = di(zi(p), p) = d(∂Mi, p) is the distance from p to ∂Mi. For further information about the
boundary normal coordinates we refer to [23, Example 6.44.].

Since the restriction map f |∂M1 is a smooth Finslerian isometry we have that the map

[0, ε)× ∂M1 ∋ (s, z) 7→ (s, f(z)) ∈ [0, ε)× ∂M2 (11)

is smooth. As the map f is a metric isometry it holds that for each p ∈ M1, which is also in the domain of
the φ1, we have that

s1(p) = s2(f(p)), and f(z1(p)) = z2(f(p)).

Therefore, the local representation φ2 ◦ f ◦ φ−1
1 of the map f , is just given by the formula (11). Thus, the

map f is also smooth near the boundary of ∂M1. By reversing the roles of M1 and M2 we can analogously
show that f−1 is smooth near ∂M2.

Finally, to verify the pullback property f∗F2 = F1. By the proof of the original version of the theorem
the pullback property holds over the interior. Because f is a diffeomorphism of the whole manifold with
boundary and the metrics are continuous, the pullback property holds over the boundary as well. □

We are ready to prove Corollary 10.

Proof of Corollary 10. If d
C(S1)
H (RX2,S2

(M1),RX2,S2,ϕ(M2)) = 0 then by the same reasoning as above there
is a metric isometry between the manifolds M1 and M2. Hence, the uniqueness claim of type (a) follows
from the classical Myers–Steenrod result. The uniqueness claim of type (b) follows from the generalization
of the Myers–Steenrod theorem, given in Proposition 24. □

As to be expect the proof of Theorem 6 builds heavily on the proof of Theorem 9. However, in order to
prove Theorem 6 we need to justify the existence of the Lipschitz constant appearing in the inequality (16).
The following proposition achieves exactly this.

Proposition 25. The original and truncated Gromov–Hausdorff distances are comparable in the following
sense:

(I) Let ε > 0. If (X, dX) and (Y, dY ) are compact metrics spaces then

dεGH(X,Y ) ≤ dGH(X,Y ). (12)

(II) Let ε > 0 and D > 0. If (X, dX) and (Y, dY ) are compact length spaces with diam(X),diam(Y ) ≤ D
then

dGH(X,Y ) ≤
(2D

ε
+ 1
)
dεGH(X,Y ). (13)

Proof. Claim (I): We first consider the case when dGH(X,Y ) < ε. To verify the inequality in (12) we take
any j ∈ N such that dGH(X,Y ) + 1

j < ε. Then by the definition of Gromov–Hausdorff distance there is a

metric space (Z, dZ) and isometric embeddings f : (X, dX) → (Z, dZ) and g : (Y, dy)) → (Z, dZ) such that

dZ,dZ

H (f(X), g(Y )) ≤ dGH(X,Y ) +
1

j
< ε.

Thus it follows from Lemma 20 that

dZ,dZ

H (f(X), g(Y )) = d
Z,dZ,ε

H (f(X), g(Y )),

and that the maps

f : (X, dX,ε) → (Z, dZ,ε), and g : (Y, dY,ε) → (Z, dZ,ε)
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are metric isometries between the respective truncated spaces. Hence, the inequality (12) holds due to the
arbitrarity of the integer j.

Since the diameter of (X, dX,ε) and (Y, dY,ε) is at most ε we can use the estimate (9), in the case
dGH(X,Y ) ≥ ε, to obtain the inequality (12).

Claim (II): First consider the case where dεGH(X,Y ) < ε
4 . To verify the inequality (13) let δ ∈ (dεGH(X,Y ), ε

4 ).
By [4, Theorem 7.3.25] we have

dεGH(X,Y ) :=
1

2
inf(disε(R)),

where the infimum is taken over all correspondences R between the sets X and Y . Furthermore, in the above
we used the notation for the distortion

disε(R) = sup{|dX,ε(x, x
′)− dY,ε(y, y

′)| : (x, y), (x′, y′) ∈ R}, (14)

between the truncated spaces.
Since dεGH(X,Y ) < δ < ε

4 , we may find a correspondence R such that disε(R) ≤ 2δ < ε
2 . Our goal is to

show that the distortion of the correspondence R between the original compact length spaces (X, dX) and

(Y, dY ) is bounded from above by 2δ
(

2D
ε + 1

)
. From here, we arrive in the estimate

dGH(X,Y ) ≤ δ
(2D

ε
+ 1
)
,

which holds true for any δ > 0 satisfying dεGH(X,Y ) < δ < ε
4 . Thus, we have verified the inequality (13).

Let x, x′ ∈ X be such that dX,ε(x, x
′) ≤ ε

2 . Then we choose y, y′ ∈ Y such that (x, y), (x′, y′) ∈ R, and
incorporate (14) to obtain the estimates

|dY,ε(y, y′)− dX,ε(x, x
′)| ≤ disε(R) ≤ 2δ <

ε

2
and dY,ε(y, y

′) < ε.

Therefore,

dX,ε(x, x
′) = dX(x, x′) and dY,ε(y, y

′) = dY (y, y
′).

In particular, we have proven that for any (x, y), (x′, y′) ∈ R we have that

|dX(x, x′)− dY (y, y
′)| ≤ 2δ,

if dX,ε(x, x
′) < ε

2 .
Now let (xa, ya), (xb, yb) ∈ R be arbitrary. Since X is a compact length space, the points xa and xb can

be connected by a distance minimizing curve. Thus, we can find a finite number of points x0, . . . , xN with
x0 = xa and xN = xb which satisfy the following three properties:

dX(xa, xb) =

N∑
i=1

dX(xi, xi−1), dX(xi, xi−1) =
ε

2
, dX(xN , xN−1) <

ε

2
. (15)

By combining (15) we obtain the estimate N ≤ 2
εdX(xa, xb)+1. Since R is a correspondence between X and

Y , we can find points y1, . . . , yN−1 ∈ Y such that (xi, yi) ∈ R. Now triangle inequality, (15), the previous
part of the proof and the assumption diam(X) ≤ D imply that

dY (ya, yb)− dX(xa, xb) ≤ 2δ
(2D

ε
+ 1
)
.

Since Y is also a compact length space, whose diameter does not exceed D, we can repeat the steps above
to show that

|dX(xa, xb)− dY (ya, yb)| ≤ 2δ
(2D

ε
+ 1
)
, for all (xa, ya), (xb, yb) ∈ R.

Hence, the distortion of R between (X, dX) and (Y, dY ) has the upper bound 2δ
(

2D
ε + 1

)
. For the other

case, we assume that dεGH(X,Y ) ≥ ε
4 . Since the diameters are bounded from above by the number D we get

from the estimate (9) that

dGH(X,Y ) ≤ D

2
<

D

2
+

ε

4
=
(2D

ε
+ 1
)(ε

4

)
≤
(2D

ε
+ 1
)
dεGH(X,Y ),

as claimed. □
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Remark 26. We note that in the light of Remark 21 that part (II) of Proposition 25 is not true without the
length space assumption. We provide an example for the Lipschitz estimate of Part (II) of Proposition 25.
Consider the closed intervals [0, 1] and [0, 2] and recall that their Gromov–Hausdorff distance is exactly 1

2 .

For ε > 0 we consider the truncated intervals [0, 1]ε and [0, 2]ε. If we choose ε = 3
4 and D = 2, then

dGH([0, 1]ε, [0, 2]ε) ≥
1

8
.

Since diam([0, 1]),diam([0, 2]) ≤ D we have that 2D
ε + 1 = 19

3 , and

dGH([0, 1], [0, 2]) =
1

2
<

19

24
=
(19
3

)(1
8

)
≤
(2D

ε
+ 1
)
dεGH([0, 1], [0, 2]).

We are ready to provide a proof for our first main Theorem 6.

Proof of Theorem 6. We first assume that

d
C(S1)
H (RX1,S1

(X1),RX2,S2,ϕ(X2)) < ε. (16)

By following the steps of the proof of Theorem 9 we get from the assumption (16) that

dεGH((X1, d1), (X2, d2)) ≤ d
C(S1)
H (RX1,S1(X1),RX2,S2,ϕ(X2)).

From here we use Part (II) of Proposition 25 in conjunction with the assumed diameter bound to see
that the inequality (2) is true. Then we suppose that the estimate (16) is false. Since the diameters of the
truncated manifolds do not exceed the number ε we get from (9) that dεGH((X1, d1), (X2, d2)) ≤ ε

2 . Thus,
the inequality (2) follows trivially from Part (II) of Proposition 25. The final uniqueness claim follows from
the estimate (2) since compact metric spaces whose Gromov–Hausdorff distance is zero are isometric. □

6. Examples of FLIEε-manifolds

6.1. Examples of FLIEε domains in Rn. In this section we consider a smooth and bounded domain
Ω ⊂ Rn equipped with the natural length metric dΩ. Note that if ∂Ω has concave parts then dΩ may not
coincide with the Euclidean distance. We provide three examples of FLIEε-space (Ω, dΩ) with the closed
measurement set ∂Ω. As a basic example, due to Proposition 17, all smooth and bounded convex subsets of
Rn satisfy the FLIEε-condition, for every ε > 0.

Next we show that the annulus Ω = B(0, R)\B(0, r) ⊂ Rn, for 0 < r < R, is FLIEε with ε = 1
2πr.

Consider points x1, x2 ∈ Ω such that dΩ(x1, x2) < 1
2πr and let σ be a distance minimizing curve in Ω

connecting x1 to x2 which is not a straight line. We can write σ = σ2 ◦ α ◦ σ1 where σi is a line segment
from xi to Sn−1(r) and α is a part of a great circle on Sn−1(r) such that α and σi have the same velocity
when they meet. Thus, dΩ(x1, x2) = s(x1) + ℓ + s(x2) where s(xi) is the length of σi and ℓ is the length

of α. Due to Pythagorean theorem σi has length s(xi) =
√

∥xi∥2 − r2. Furthermore, with respect to the
round metric the distance of the intersection points Sn−1(r) ∩ σi = {wi} from the orthogonal projections
Pxi of xi onto Sn−1(r) is rδ(∥xi∥)), where δ(t) = arccos( rt ) for t ≥ r. That is, wi ∈ C(xi) where these sets

are boundaries of metric balls on the sphere Sn−1(r) centered at Pxi having radius rδ(∥xi∥) with respect to
the round metric.

We extend σ2 by a straight line to some point z ∈ Sn−1(r) and call this curve σ̃2. We claim that the
curve σ̃ = σ̃2 ◦ α ◦ σ1, whose length is s(x1) + ℓ + s(z), is a distance minimizing curve from x1 to z. To
verify this, we recall that α is the section of σ that is a segment of a great circle α̃ say of Sn−1(r). Due to
symmetries both points Px1 and Pz lie on the great circle α̃. In fact, since σ has length less than 1

2πr, the
distance dΩ(Px1, P z) is strictly less than πr. Therefore, α̃ is the only great circle containing both Px1 and
Pz, and α is a distance minimizing curve between the disjoint sets C(x1) and C(z) which contain w1 and
w2 respectively. Finally, we note that by following the same reasoning as above any distance minimizing
curve from x1 to z needs to have the same structure as σ̃: starting as a line segment from x1 to C(x1) from
where continuing as a segment of a great circle to C(z), and ending as a line segment to z. By the previous
argument σ̃ is a distance minimizing curve from x1 to z.

It was shown in [33, Theorem 6.2] that the condition (C) of Proposition 17 is satisfied for a planar domain
if and only if the domain is simply connected. Thus, the closure of a planar domain Ω satisfies FLIEε for all
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ε > 0 if and only if Ω is simply connected. Hence, the global isometry property of the travel time map can
be satisfied by some non-convex sets.

6.2. A spherically symmetric FLIEε-manifold with a convex boundary and interior conjugate
points. This appendix provides an example of a Riemannian manifold with strictly convex boundary and
interior conjugate points, which satisfies the FLIEε-property for some ε > 0. We provide numerical evidence
for this claim by using Wolfram Mathematica.

6.2.1. Herglotz manifolds and the FLIEε-property. We consider the closed Euclidean unit disk of R2 equipped
with a radial Riemannian metric g conformal to the Euclidean metric e. We write g = c−2e where c is a
positive smooth function called the sound speed. In Euclidean polar coordinates (r, θ) of the disk we write

g(r) =
dr2 + r2dθ2

c(r)2
. (17)

We say that the metric g satisfies the Herglotz condition if

d

dr

(
r

c(r)

)
> 0, for all r ∈ [0, 1]. (18)

If M is the unit disk in R2 and g is a spherically symmetric Riemannian metric on M satisfying the Herglotz
condition, we say that (M, g) is a Herglotz manifold.

The spherically symmetric manifold (M, g) is non-trapping if and only if the Herglotz condition is satisfied.
This is also equivalent to the property: The level sets, circles in R2, of the sound speed c are strictly convex
with respect to the metric g. Thus, the boundary of a Herglotz manifold is strictly convex. Furthermore, if
the Herglotz condition is satisfied then any geodesic of (M, g) has a unique point closest to the origin, which
we call the tipping point. If the geodesic γ is parameterized by the arc length then the tipping point of γ is
γ(L(γ)/2), where L(γ) stands for the length of γ.

We divide every geodesic into two parts with respect to the tipping point. We call these parts the halves of
the geodesics, and recall that in the polar coordinates on each half the radial component r(t) of the geodesic
γ(t) is strictly monotonic. We have ṙ < 0 on one of the halves and ṙ > 0 on the other.

The following proposition gives a characterization of FLIEε-property on Herglotz manifolds. Later we use
this proposition to numerically verify that our example satisfies the FLIEε-property.

Proposition 27. Let ε > 0. The following hold for a Herglotz manifold (M, g).

(1) If (M, g) is FLIEε then there is a uniform δ > 0 such that each geodesics γ is minimizing on the

segments [0, L(γ)
2 + δ] and [L(γ)

2 − δ, L(γ)]. In particular, each geodesic is minimizing past the tipping
point.

(2) If there is a uniform δ > 0 so that any geodesic γ with γ(0) ∈ ∂M is minimizing from γ(0) to

γ(L(γ)
2 + δ), then (M, g) is FLIEε for all 0 < ε < 2δ.

Proof. Claim 1: We recall that i(M, g) stands for the injectivity radius of (M, g), and choose δ = min
{

ε
3 ,

i(M,g)
3

}
.

Then we consider any unit speed geodesic γ : [0, L(γ)] → M so that γ(L(γ)
2 ) is the tipping point and γ(0)

and γ(L(γ)) are on the boundary. Then the points p = γ(L(γ)
2 )− δ) and q = γ(L(γ)

2 ) + δ) are closer than ε
to each other and the curve γ is the only minimizing curve from p to q. Since (M, g) is FLIEε at least one of
the geodesic segments γ|

[0,
L(γ)

2 )+δ]
or γ|

[
L(γ)

2 −δ,L]
is minimizing. Thus, by the spherical symmetry they both

are. We have proved the claim in item (1).
Claim 2: We assume that each geodesic γ with γ(0) ∈ ∂M is minimizing from γ(0) to

γ(L(γ)
2 )+δ), and choose 0 < ε < 2δ. Suppose that p, q ∈ M are so that d(p, q) < ε. Since Herglotz-manifolds

are non-trapping it follows from Hopf-Rinow theorem there is a unit speed geodesic γ parametrized so that
γ(0) ∈ ∂M , γ(t) = p and γ(s) = q for some t < s and γ|[t,s] is minimizing. There are two cases on how the
points p and q can lie on the geodesic γ. Either they are on the same half geodesic or on the opposite sides

of the tipping point γ(L(γ)
2 ).

If p and q are on the same half geodesic, then by the radial symmetry we can assume that s, t ∈ [0, L(γ)
2 ].

Thus, by the assumption γ is minimizing from γ(0) to q. If p and q are on opposite sides of the tipping

point γ(L(γ)
2 ) we have by the assumption d(p, q) < ε < 2δ, that s, t ∈ [L(γ)

2 − δ, L(γ)
2 + δ]. Therefore our

assumption gives that γ is minimizing from γ(0) to q. □
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6.2.2. Example Herglotz manifolds. Consider the unit diskM equipped with the Riemannian metric g = c−2e
where the sound speed is defined by

c(r) = exp

(
−k

2
exp

(
− r2

2σ2

))
(19)

with k = 1.6 and σ = 0.4. The behavior of this family of Riemannian metrics as a function of the two
parameters was considered in [26, p. 16]. It is is easy to verify numerically that this metric satisfies the
Herglotz condition, and Figure 1a shows the existence of interior conjugate points. Two intersecting geodesics
of this metric are depicted in Figure 1b.

We verify numerically with Wolfram Mathematica that it satisfies the FLIEε-property for some ε > 0.
The Mathematica code can be found in the accompanying file conjugate-points-example.nb.

6.2.3. Interior conjugate points. We follow the conventions and notations of [6]. For a given radius r ∈ [0, 1]
let γ(r) be a geodesic with end points on the unit circle and the tipping point at radius r. There are multiple
choices for γ(r) but for our purposes we can choose any. Recall that the length of either half of γ(r) depends
only on r and can be computed by the formula

L(r) =

∫ 1

r

1

c(s)

(
1−

(
rc(s)

sc(r)

)2
)−1/2

ds. (20)

The angular distance between the tipping point and either of the end points of γ(r) also only depends on r
and can be computed by the formula

α(r) =

∫ 1

r

rc(s)

c(r)s2

(
1−

(
rc(s)

sc(r)

)2
)−1/2

ds. (21)

We call α the opening angle. Note that α is C1. It was shown in [6, Lemma 4.4] that the set of radii r ∈ [0, 1]
so that the end points of γ(r) are conjugate to each other along γ(r) is

C = { r ∈ [0, 1] : α′(r) = 0 }. (22)

This can be extended to give a method for confirming that the end points of γ(r) on the level set {r = r0}
are conjugate to each other along γ(r). For a given radius r0 ∈ [0, 1] define the function α̃(r; r0) by replacing
the upper limit of the integral in (21) with r0. Then α̃(r; r0) computes the angular distance between the
tipping point and either of the end points of γ(r) on {r = r0}. The proof of [6, Lemma 4.4] shows that the
set of radii such that the end points of γ(r) on {r = r0} are conjugate to each other along γ(r) is

Cr0 = { r ∈ [0, r0] : ∂rα̃(r; r0) = 0 }. (23)

A plot of the modified opening angle α̃ for the metric g is shown in Figure 1a.

6.2.4. Verification of the FLIEε-property. To verify that (M, g) satisfies the FLIEε-property we implement
the following test numerically.

We begin with finding intersecting pairs of geodesics. For a given radius r0 ∈ [0, 1] find all radii r1 ∈ [0, 1]
so that the geodesics γ(r0) and γ(r1) have a common end point and intersect an additional time at radius
r2 ∈ [max(r0, r1), 1) away from the origin. Let S be the set of such radii triplets.

We use the following strategy to find the set S numerically. Define the another variant of the opening
angle function by

α(r; r′, r′′) =

∫ r′′

r′

rc(s)

c(r)s2

(
1−

(
rc(s)

sc(r)

)2
)−1/2

ds (24)

for radii 0 < r ≤ r′ ≤ r′′ ≤ 1. That is α(r; r′, r′′) computes the angular distance along the geodesic γ(r)
between its point at radius r′ and its point at radius r′′. Then we see that (r0, r1, r2) ∈ S if and only if

α(r0; r0, r2) + α(r0; r0, 1) = 2πm± α(r1; r2, 1) (25)

or
α(r0; r0, r2) + α(r0; r0, 1) = 2πm± [α(r1; r1, r2) + α(r1; r1, 1)] (26)

for some m ∈ Z. The integer m describes the relative winding number of the two geodesic segments.
Conditions (25) and (26) can be tested explicitly. The strategy used to find S is illustrated in Figure 1b.
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Figure 1. Two illustrations of our example of a Herglotz manifold.

0.25 0.5 0.75 1
radius

π

4

π

2

opening angle

(a) A numerical plot of the (half) opening angle
α̃(r; r0) as a function of r for r0 = .9. There is clearly
a critical point somewhere near r = .32, and the con-
dition ∂rα̃(r, r0) = 0 corresponds exactly to a pair of
conjugate points at radius r0. Our model therefore
has interior conjugate points. The opening angle at
r = 0 is always π

2
.

(b) The red and blue curves are geodesics of the
sound speed of our example. The dashed lines in-
dicate the location of the tipping points of the two
geodesics. The dashed black lines highlight the in-
tersection points of the two geodesics. See text for
how such twice intersecting pairs of geodesics are de-
tected numerically.

For all triplets of radii in S we compute the lengths of the segments of the two geodesics between the
shared points similarly to the angle computation described above. We define a subset S̃ ⊂ S keeping only
the cases ones where minimization fails, and for S̃ we compute the amount of time each geodesic extends
beyond the midpoint. Numerical computations suggest that these times are bounded from below by 0.29.
Therefore in Proposition 27 we can set δ = 0.29 and conclude that our example manifold is FLIE0.29.

6.3. A closed FLIEε-manifold with pairs of conjugate points outside the measurement set. We
consider a closed Riemannian manifold with a measurement set S which is a closure of an open set. In this
example we are allowed to measure distances through S. Let Γ ⊂ S2 be a half of a great circle connecting
the north and the south poles. We observe that this is the smallest set of S2 which intersects with all great
circles. Thus, in the light of Lemma 14 our measurement set should include this type of set. However, as
explained in the introduction of this paper the travel time map RS2,Γ is not one-to-one. Thus, we study a
closure of a neighborhood of the set Γ.

Let r > 0 be small and define

S =
⋃
x∈Γ

B(x, r).

Clearly the set S2 \ S has many circular arcs which are longer than π. Thus, the set S2 \ S has conjugate
pairs and not all geodesics contained in this set are globally distance minimizing. We claim that the sphere
S2 with the closed measurement set S satisfies the FLIEε-property for ε = r, but not for all ε > 0.

First we note that each great circle meets the set S and this can happen in two different ways. Let C be
a great circle and denote the polar caps B(±e3, r) by P1 and P2 respectively. If C does not meet P1 ∪ P2

then C ∩S has only one connected component whose length is at least 2r. If C meets P1 then by symmetry
it also meets P2. Thus, by the definition of the set S it holds that C ∩S has two connected components and
at least one of them has a length greater or equal to 2r.

Let p, q ∈ S2 be two points that are not antipodal. If p ∈ S or q ∈ S we have nothing to prove. Thus we
may assume that p, q ∈ S2 \ S and let C be the unique great circle connecting these two points. Suppose
that, d(p, q) < 2r, and let A be a connected component of S∩C which has a length larger or equal to 2r. We
split C into a short and long circular arcs C1 and C2 which both start from p and end at q. Since d(p, q) < 2r
and p, q /∈ S the set A must be contained in C2.

Without loss of generality we assume that q is closer to A than p and let z ∈ A be the closest point of A
to q. Since d(p, q) < 2r it holds that the set −A := {−x : x ∈ A} cannot be completely contained in C1.
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Thus, p, q and z must all be in the same half circle of C which is then the shortest path of S2 from p to z.
We have proved that d(p, z) = d(p, q) + d(q, z). This equality implies that S2 and closed measurement set S
satisfy the FLIEε-property for ε = r.

Finally, we would like to emphasize that since we are allowed to measure the distances through the set S
it does not matter if the set C1 ∩ (C ∩ S) is not empty. However, the choice d(p, q) < 2r is crucial since if
the d(p, q) ≥ 2r the set C1 can contain A or −A and it would be always faster to go from p to z along C2. In
this case the FLIEε property fails. Thus, S2 with the closed measurement set S is not FLIEε for all ε > 0.
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