
SPECTRAL RIGIDITY FOR SPHERICALLY SYMMETRIC MANIFOLDS

WITH BOUNDARY

MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, AND VITALY KATSNELSON

Abstract. We prove a trace formula for three-dimensional spherically symmetric Rie-
mannian manifolds with boundary which satisfy the Herglotz condition: The wave trace is
singular precisely at the length spectrum of periodic broken rays. In particular, the Neu-
mann spectrum of the Laplace–Beltrami operator uniquely determines the length spec-
trum. The trace formula also applies for the toroidal modes of the free oscillations in
the earth. We then prove that the length spectrum is rigid: Deformations preserving the
length spectrum and spherical symmetry are necessarily trivial in any dimension, provided
the Herglotz condition and a generic geometrical condition are satisfied. Combining the
two results shows that the Neumann spectrum of the Laplace–Beltrami operator is rigid
in this class of manifolds with boundary.

1. Introduction

We establish spectral rigidity for spherically symmetric manifolds with boundary. We
study the recovery of a (radially symmetric Riemannian) metric or wave speed rather
than an obstacle. To our knowledge it is the first such result pertaining to a manifold
with boundary. We require the so-called Herglotz condition while allowing an unsigned
curvature; that is, curvature can be everywhere positive or it can change sign, and we
allow for conjugate points. Spherically symmetric manifolds with boundary are models
for planets, the preliminary reference Earth model (PREM) being the prime example.
Specifically, restricting to toroidal modes, our spectral rigidity result determines the shear
wave speed of Earth’s mantle in the rigidity sense.

The method of proof relies on a trace formula, relating the spectrum of the manifold with
boundary to its length spectrum, and the injectivity of the periodic broken ray transform.
Specifically, our manifold is the Euclidean annulus M = B̄(0, 1) \ B̄(0, R) ⊂ Rn, R > 0
and n ≥ 2, with the metric g(x) = c−2(|x|)e(x), where e is the standard Euclidean metric
and c : (R, 1] → (0,∞) is a function satisfying suitable conditions. (In appendix C we
clarify that any spherically symmetric manifold is in fact of the form we consider – radially
conformally Euclidean.) Our assumption is that the Herglotz condition d

dr (r/c(r)) > 0
is satisfied everywhere. This condition was first discovered by Herglotz [11] and used by
Wiechert and Zoeppritz [18].

By a maximal geodesic we mean a unit speed geodesic on the Riemannian manifold
(M, g) with endpoints at the outer boundary ∂M := ∂B(0, 1). A broken ray or a billiard
trajectory is a concatenation of maximal geodesics satisfying the reflection condition of
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geometrical optics at both inner and outer boundaries of M . If the initial and final points
of a broken ray coincide at the boundary, we call it a periodic broken ray – in general, we
would have to require the reflection condition at the endpoints as well, but in the assumed
spherical symmetry it is automatic. We will describe later (definition 4.1) what will be called
the countable conjugacy condition which ensures that up to rotation only countably many
maximal geodesics have conjugate endpoints. This is a “generic” condition for reasonable
wave speeds.

The length spectrum of a manifold M with boundary is the set of lengths of all periodic
broken rays on M . If M is a spherically symmetric manifold as described above, we may
choose whether or not we include the rays that reflect on the inner boundary r = R. If the
radial sound speed is c, we denote the length spectrum without these interior reflections by
lsp(c) and the one with these reflections by lsp′(c). See figure 1 below for an illustration of
these two types of geodesics. If the inner radius is zero (R = 0), the manifold is essentially a
ball and the two kinds of length spectra coincide. We note that every broken ray is contained
in a unique two-dimensional plane in Rn due to symmetry considerations. Therefore, it will
suffice to consider the case n = 2; the results regarding geodesics and the length spectrum
carry over to higher dimensions.

We denote the Neumann spectrum of the Laplace–Beltrami operator in three dimensions,
∆c = c3∇ · c−1∇, on M by spec(c), where we impose Neumann-type boundary conditions
on both the inner and outer boundary. The spectrum spec(c) includes multiplicity, not just
the set spectrum.

Some earlier results in tensor tomography the methods of which are related to ours may
be found in [14, 15, 16, 17]. We are not aware of prior spectral rigidity results for manifolds
with boundary. Two of the main theorems we prove on spectral rigidity are the following:

Theorem 1.1. Let B = B̄(0, 1) \ B̄(0, R) ⊂ Rn, n ≥ 2 and R ≥ 0, be an annulus (or a ball
if R = 0). Fix ε > 0 and let cτ , τ ∈ (−ε, ε), be a C1,1 function [R, 1] → (0,∞) satisfying
the Herglotz condition and the countable conjugacy condition and depending C1-smoothly
on the parameter τ . If R = 0, we assume c′τ (0) = 0. If lsp(cτ ) = lsp(c0) for all τ ∈ (−ε, ε),
then cτ = c0 for all τ ∈ (−ε, ε).

The result holds true also for the length spectrum lsp′(c) including reflections at the inner
boundary, provided that R > 0.

Theorem 1.2. Let B = B̄(0, 1) \ B̄(0, R) ⊂ R3, R ≥ 0, be an annulus (or a ball if
R = 0). Fix ε > 0 and let cτ , τ ∈ (−ε, ε), be a C∞ function [R, 1]→ (0,∞) satisfying the
Herglotz condition and the countable conjugacy condition and depending C1-smoothly on
the parameter τ . Assume also that the length spectrum is non-degenerate in the sense that
if two periodic broken rays have the same primitive period, then they differ by a rotation.
If R = 0, we assume that all odd order derivatives of cτ vanish at 0. If spec(cτ ) = spec(c0)
for all τ ∈ (−ε, ε), then cτ = c0 for all τ ∈ (−ε, ε).

Theorem 1.1 is restated as theorems 4.6 (for lsp(c)) and 4.7 (for lsp′(c)). We also prove
an analogous theorem for the union of various spectra of this kind (theorem 4.8). We note
that the dimension is irrelevant for the length spectral rigidity results; if the sound speed
is fixed, the length spectrum is independent of dimension.

Using proposition C.1, we find the following corollaries:

Corollary 1.3. Let B = B̄(0, 1) \ B̄(0, R) ⊂ Rn, n ≥ 2 and R ≥ 0, be an annulus
(or a ball if R = 0). Fix ε > 0 and let gτ , τ ∈ (−ε, ε), be a C1,1-regular non-trapping
SO(n)-invariant Riemannian metric making the boundary strictly convex and satisfying the
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Figure 1. The first figure shows a closed orbit whose period is in lsp(c)
and lsp′(c). The second figure shows a closed orbit whose period is in lsp′(c),
but not in lsp(c).

countable conjugacy condition and depending C1-smoothly on the parameter τ . If lsp(gτ ) =
lsp(g0) for all τ ∈ (−ε, ε), then there are rotation equivariant diffeomorphisms ψτ : B → B
so that ψ∗τgτ = g0 for all τ ∈ (−ε, ε).

In dimension n ≥ 3 all rotation equivariant diffeomorphisms (diffeomorphisms commut-
ing with the action of SO(n)) are radial. In dimension n = 2 the diffeomorphisms are also
radial if the metrics are assumed to be O(2)-invariant.

Corollary 1.4. Let B = B̄(0, 1) \ B̄(0, R) ⊂ R3, and R ≥ 0, be an annulus (or a ball if
R = 0). Fix ε > 0 and let gτ , τ ∈ (−ε, ε), be a C∞-regular non-trapping rotation invariant
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Riemannian metric making the boundary strictly convex and satisfying the countable conju-
gacy condition and depending C1-smoothly on the parameter τ . Assume also that the length
spectrum is non-degenerate up to rotations. If spec(gτ ) = spec(g0) for all τ ∈ (−ε, ε), then
there are radial diffeomorphisms ψτ : B → B so that ψ∗τgτ = g0 for all τ ∈ (−ε, ε).

Remark 1.5. While our main results are stated for the Laplace–Beltrami operator, they
are equally valid for the spectra associated to the toroidal modes (see [6, chapter 8.6] for a
precise definition) of an elastic operator. In section 2, we point out that the length spec-
trum may be recovered from either the spectrum of the Laplace–Beltrami operator or the
toroidal mode eigenfrequencies so the results above hold when one has the spectrum asso-
ciated to toroidal modes. In fact, our trace formula (proposition 2.2) to recover the length
spectrum from the spectrum is done for the more general toroidal modes and frequencies.
Nevertheless, we show how our proof and result holds for the Laplace–Beltrami operator as
well. We note that the spectrum of the Laplace–Beltrami operator depends on dimension.

The proofs of these theorems require three key ingredients which we elaborate in the
next subsection:

• A trace formula relating the Neumann spectrum of the Laplacian to the length
spectrum. Thus, we will only need to prove length spectral rigidity since spectral
rigidity (theorem 1.2) follows from the trace formula.
• Sufficiently many periodic broken rays are stable under geometry-preserving per-

turbations of the metric and the derivative of the length of such broken rays is the
periodic broken ray transform of the variation of the metric.
• The periodic broken ray transform uniquely determines a radial function.

Outline of the proof. The breakup of the paper is as follows. In section 2, we discuss the
relevant partial differential operators and their eigenfunctions. We also discuss geodesics
in spherical symmetry and state the trace formula that we will prove (see proposition 2.2).
Section 3 will be devoted to a proof of the trace formula. It will be necessary to use several
transforms and the Debye expansion (see Appendix A) to convert the Green’s function for
the wave propagator written in terms of eigenfunctions to the dynamical Fourier integral
operator (FIO) representation analogous to the one in [8] and [10]. Along the way, the
connection from eigenfunction to geodesics becomes rather explicit. To reinforce this point,
in section 3.3 we revisit the wave propagator constructed in [10] and show how all our
explicit calculations relate to the abstract, geometric construction in that paper. Finally, a
standard application of the method of steepest descent and stationary phase provides the
leading order asymptotics for the trace.

After proving the trace formula, we prove the rigidity of the length spectrum in section 4.
Together with the trace formula this implies the rigidity of the Neumann spectrum of
the Laplace–Beltrami operator. We have a family of radially symmetric wave speeds cτ
parameterized by τ ∈ (−ε, ε). For any periodic broken ray that is locally stable under the
family of deformations, the derivative of its length is the integral of the metric variation
over the periodic broken ray. In the case of closed manifolds and periodic geodesics this is
well known, and in the case of non-periodic broken rays this was observed in [12]. Since the
length spectrum is independent of the parameter τ , these derivatives vanish. The countable
conjugacy condition (definition 4.1) guarantees that sufficiently many periodic broken rays
are stable, so that we may conclude that the periodic broken ray transform of the function

d
dτ c
−2
τ

∣∣
τ=0

vanishes. It then follows from recent results of periodic broken ray tomography
on spherically symmetric manifolds [7] that the function in question has to vanish. Since
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the function is radial, this can be seen as an injectivity result for an Abel-type integral
transform. Consequently cτ is independent of τ and the rigidity of the length spectrum
and thus the spectrum follows.

Acknowledgements. M.V.d.H. gratefully acknowledges support from the Simons Foun-
dation under the MATH + X program and the National Science Foundation under grant
DMS-1559587. J.I. was supported by the Academy of Finland (decision 295853), and he is
grateful for hospitality and support offered by Rice University during visits. V.K. thanks
the Simons Foundation for financial support. We would also like to thank Gunther Uhlmann
for helpful discussions and providing us useful references.

2. Geodesics and Eigenfunctions

In this section, we describe the relevant partial differential operators, associated eigen-
functions, and the connection between toroidal modes and the spectrum of the Laplace–
Beltrami operator. We state our trace formula (proposition 2.2) along with an important
remark related to the Laplace–Beltrami operator described in the introduction. First, let
us provide a preliminary discussion of geodesics in spherically symmetric manifolds.

2.1. Geodesics in a spherically symmetric model. For the moment, we suppose that
n = 2 and equip the annulus M = B̄(0, 1) \ B̄(0, R) with spherical coordinates. For a
maximal geodesic we define its radius as its Euclidean distance to the origin. We let γ(r)
be the maximal geodesic of radius r which has its tip (the closest point to the origin) at
the angular position θ = 0.

For r0 ∈ (R, 1), the geodesic γ(r0) can be parametrized as

[−L(r0), L(r0)] 3 t 7→ (r(t), θ(t))

so that r(0) = r0 and θ(0) = 0. Here L(r0) > 0 is the half length of the geodesic. Using
the conserved quantities c(r(t))−2[r′(t)2 + r(t)2θ′(t)2] = 1 (squared speed) and p = pγ :=
c(r(t))−2r(t)2θ′(t) = r0/c(r0) (angular momentum) one can find the functions r(t) and θ(t)
explicitly.

Using these conserved quantities it is straightforward to show that

(2.1) L(r) =

∫ 1

r

1

c(r′)

(
1−

(
rc(r′)

r′c(r)

)2
)−1/2

dr′ =

∫ 1

r

1

c(r′)2β(r′; p)
dr′,

where β(r; p) :=
√
c−2(r)− r−2p2. We introduce the quantity β because it will appear

naturally in the asymptotic approximations of eigenfunctions in section 3 and its relation
to geodesics will now be clear.

We denote α(r) := θ(L(r)), where θ is the angular coordinate (taking values in R) of
the geodesic γ(r). That is, 2α(r) is the angular distance of the endpoints of γ(r). It may
happen that α(r) > π if the geodesic winds around the origin several times. Using the
invariants given above, one can also find an explicit formula for α(r):

(2.2) α(r) =

∫ 1

r

rc(r′)

c(r)(r′)2

(
1−

(
rc(r′)

r′c(r)

)2
)−1/2

dr′ =

∫ 1

r

p

(r′)2β(r′; p)
dr′.

We will use the following lemma without mention whenever we need regularity of these
functions.
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Lemma 2.1. When c is C1,1 and satisfies the Herglotz condition, then the functions α and
L are C1 on (R, 1).

Proof. This follows from equations (35), (67), and (68) and proposition 15 in [7]. �

2.2. Toroidal modes, eigenfrequencies, and traces. We now use spherical coordinates
(r, θ, ψ). Toroidal modes are precisely the eigenfunctions of the isotropic elastic operator
that are sensitive to only the shear wave speed. We forgo writing down the full elastic equa-
tion, and merely write down these special eigenfunctions connected to the shear wave speed
(full details with the elastic operator may be found in [6, chapter 8.6]). Analytically, these
eigenfunctions admit a separation in radial functions and real-valued spherical harmonics,
that is,

u = nDlY
m
l ,

where

D = U(r) (−k−1)[−θ̂(sin θ)−1∂ψ + ψ̂∂θ],

in which k =
√
l(l + 1) (instead of the asymptotic Jeans relation, k = l + 1

2) and U
represents a radial function (nUl). In the further analysis, we ignore the curl (which signifies
a polarization); that is, we think of nDl as the multiplication with nUl(−k−1). In the above,
Y m
l are spherical harmonics, defined by

Y m
l (θ, ψ) =


√

2X
|m|
l (θ) cos(mψ) if −l ≤ m < 0,

X0
l (θ) if m = 0,√

2Xm
l (θ) sin(mψ) if 0 < m ≤ l,

where

Xm
l (θ) = (−)m

√
2l + 1

4π

√
(l −m)!

(l +m)!
Pml (cos θ),

in which

Pml (cos(θ)) = (−)m
1

2ll!
(sin θ)m

(
1

sin θ

d

dθ

)l+m
(sin θ)2l.

The function, U (a component of displacement), satisfies the equation

(2.3) [−r−2∂r r
2µ∂r + r−2∂r µr − r−1µ∂r + r−2(−1 + k2)µ]U − ω2ρU = 0,

where µ = µ(r) is a Lamé parameter and ρ = ρ(r) is the density, both of which are smooth.
Also, ω = nωl denotes the associated eigenvalue. Here, l is referred to as the angular order
and m as the azimuthal order.

The traction is given by

(2.4) T (U) = NU, N = µ∂r − r−1µ

which vanishes at the boundaries (Neumann condition). The radial equations do not depend
on m and, hence, every eigenfrequency is degenerate with an associated (2l+1)-dimensional
eigenspace spanned by

{Y −ll , . . . , Y l
l }.

We use spherical coordinates (r0, θ0, ψ0) for the location, x0, of a source, and introduce
the shorthand notation (nDl)0 for the operator expressed in coordinates (r0, θ0, ψ0). We now
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write the (toroidal contributions to the) fundamental solution as a normal mode summation

(2.5) G(x, x0, t) = Re
∞∑
l=0

∞∑
n=0

nDl(nDl)0

l∑
m=−l

Y m
l (θ, ψ)Y m

l (θ0, ψ0)
ei nωlt

i nωl
.

On the diagonal, (r, θ, ψ) = (r0, θ0, ψ0) and, hence, Θ = 0. Here Θ is the angular epicentral
distance, cf. (3.2). We observe the following reductions in the evaluation of the trace
of (2.5):

• The functions U(r) are normalized, so that

(2.6)

∫ 1

R
U(r)2ρ(r)r2 dr = 1.

Meanwhile, the spherical harmonic terms satisfy

l∑
m=−l

∫∫
Y m
l (θ, ψ)2 sin θ dθ dψ = 2l + 1

(counting the degeneracies of eigenfrequencies).
• If we were to include the curl in our analyis (generating vector spherical harmonics),

taking the trace of the matrix on the diagonal yields

l∑
m=−l

∫∫
(−k−2)

∣∣∣[−θ̂(sin θ)−1∂ψ + ψ̂∂θ]Y
m
l (θ, ψ)

∣∣∣2 sin θ dθ dψ = 2l + 1.

From the reductions above, we obtain∫
M
G(x, x, t) ρ(x) dx =

∞∑
l=0

∞∑
n=0

(2l + 1) Re

{
ei nωlt

i nωl

}
or

Tr(∂tG)(t) =

∫
M
∂tG(x, x, t) ρ(x) dx =

∞∑
l=0

∞∑
n=0

(2l + 1) Re
{
ei nωlt

}
.

We now write

nfl(t) = Re

{
ei nωlt

i nωl

}
which is the inverse Fourier transform of

nf̂l(ω) =
1

2 i nωl

[
πδ(ω − nωl)− πδ(ω + nωl)

]
.

Moreover, taking the Laplace–Fourier transform yields

(2.7)

∫ ∞
0

nfl(t)e
− iωt dt =

1

2 i nωl

[
i

−(ω − nωl) + i 0
− i

−(ω + nωl) + i 0

]
.

This confirms that the trace is equal to the inverse Fourier transform of
∞∑
l=0

(2l + 1)

∞∑
n=0

1

2 i nωl

[
πδ(ω − nωl)− πδ(ω + nωl)

]
.

In the next subsection, we explain how the toroidal eigenfrequencies {nωl}n,l relate to the
Neumann spectrum of the Laplace–Beltrami operator described in the introduction. We
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also show why all our results and proofs in connection to the trace formula (proposition 2.2)
hold for this spectrum as well.

2.3. Connection between toroidal eigenfrequencies, spectrum of the Laplace–
Beltrami operator, and the Schrödinger equation. We relate the spectrum of a
scalar Laplacian, the eigenvalues associated to the vector valued toroidal modes, and the
trace distribution

∑∞
l=0

∑∞
n=0 (2l + 1) cos(tnωl).

We note that (2.3) and (2.4) for U ensure that v = UY m
l satisfies

(2.8) Pv := ρ−1(−∇ · µ∇+ P0)v = ω2v, N v = 0 on ∂M

where P0 = r−1(∂rµ) is a 0th order operator and ω2 is a particular eigenvalue. Hence
UY m

l are scalar eigenfunctions for the self-adjoint (with respect to the measure ρdx) scalar
operator P with Neumann boundary conditions (on both boundaries) expressed in terms
of N .

The above argument shows that we may view the toroidal spectrum {nω2
l }n,l as also the

collection of eigenvalues λ for the boundary problem on scalar functions (2.8). Thus (2.2)
can be written in the form

Tr (∂tG) =
∑

λ∈spec(P )

cos(t
√
λ),

where the last sum is taken with multiplicities for the eigenvalues. (While G is a vector
valued distribution, the asymptotic trace formula we obtain is for Tr(∂tG), which is equal

to
∑

λ∈spec(P ) cos(t
√
λ) by the normalizations we have chosen.) Up to principal symbols,

P coincides with the ∆c = c3∇ · c−1∇ upon identifying c2 with ρ−1µ. This means that the
length spectra of P and ∆c will be the same even though they have differing subprincipal
symbols and spectra. Thus, the trace formula which will appear to have a unified form,
connects two different spectra to a common length spectrum and the proof is identical for
both.

For concreteness, we recall [10, theorem 1]. Suppose that λ1 ≤ λ2 ≤ · · · → ∞ denote the
Neumann spectrum of the Laplace–Beltrami operator ∆g. We form the distribution

(2.9)
∑

λ∈spec(∆g)

cos(t
√
λ).

Under certain geometric conditions (where there is no symmetry) for a simpler manifold
described there, the authors prove the following: Let T be the singular support of (2.9)
and the only closed geodesics, γ, of period T satisfy certain geometric conditions and have
Maslov indices σγ . Then for t near T , (2.9) is equal to the real part of

(2.10)
∑
Tγ=T

iσγ
T ]γ

(|I − Pγ |)1/2
(t− T + 0 i)−1 + L1

loc,

where T ] is the primitive period and Pγ is a certain Poincaré map described there. Our
results will settle the question of whether there is a formula analogous to (2.10) (same as [10,

(1.3)]) for the distributions
∑

λ∈spec(P ) cos(t
√
λ) and

∑
λ∈spec(c) cos(t

√
λ) in our spherically

symmetric manifold with boundary, encompassing a ball and an annulus1.
We will prove a trace formula using a WKB expansion of eigenfunctions. To this end, it

is convenient to establish a connection with the Schrödinger equation. Indeed, we present

1The ball is representative of Earth’s inner core while the annulus is representative for Earth’s mantle.
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an asymptotic transformation finding this connection. In boundary normal coordinates
(r, θ) (which are spherical coordinates in dimension three by treating θ as coordinates on
the 2-sphere),

P = ρ−1(−r−2∂rr
2µ∂r − µr−2∆θ + P0),

where ∆θ is the Laplacian on the 2-sphere. We write λ = ω2 as before and rewrite the
second-order equation (2.8) in the form

Y =

(
rv
rN v

)
,(2.11)

∂rY = A(r, ω)Y,(2.12)

where

A11 = 2r−1,

A21 = (−∆θ − 2)r−2µ− ω2ρ,

A12 = µ−1,

A22 = −2r−1,

satisfying

JA = −A∗J with J =

(
0 1
−1 0

)
, J2 = −I.

The Neumann condition is applied at r = 1 and at r = R. In preparation of the asymptotic
analysis we will instead invoke the transformation using the same notation (by abuse of
notation, cf. (2.11))

Y =

(
rv
ω−1rN v

)
.

With this definition, the matrix A in (2.12) admits the expansion

A(r, ω) = ω [A0(r) + ω−1A1(r) + ω−2A2(r)],

A0(r) =

(
0 µ−1

−ρ− r−2ω−2µ∆θ 0

)
, A1(r) =

(
2r−1 0

0 −2r−1

)
,

A2(r) =

(
0 0

−2r−2µ 0

)
,

viewing ω as a large parameter. A similarity transform gives

A0R = RΛ, Λ(r) =

(
0 1

−β̃2 0

)
, R(r) =

(
µ−1/2 0

0 µ1/2

)
,

where we have defined

β̃2 = ρ(r)µ(r)−1 + ω−2r−2∆θ.

We then seek an asymptotic transformation L and W

Y = LW with L(r, ω) =
∑
j≥0

Lj(r)ω
−j ,

so that the original matrix system implies

∂rW = ωΛ(r)W.
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Substitution and equating terms with equal powers of ω−1 gives

A0L0 − L0Λ = 0,

A0L1 − L1Λ = ∂rL0 −A1L0,

and so on. We find a simple solution

L0 = r−1R(r).

Then

L0W =

(
µ−1/2w

ω−1µ1/2∂rw

)
,

rv = µ−1/2w,

rN v = µ1/2∂rw,

W1 = rw,

W2 = ω−1r∂rw.

Here, w satisfies the equation

(∂2
r + r−2∆θ + ω2ρµ−1)w = 0, ∂rw = 0 on ∂M.

If y(θ) is an eigenfunction of ∆θ with eigenvalue −k2 and V = V (r) is radial function, we
choose w = wk = V (r)y(θ) so that V (r) must now satisfy

(2.15) ∂2
rV + ω2β2V = 0, ∂rV = 0 on ∂M,

where β = ρ(r)µ(r)−1 − ω−2r−2k2, generating two linearly independent solutions. The
WKB asymptotic solution to this PDE with Neumann boundary conditions will precisely
give us the leading order asymptotics for the trace formula, and is all that is needed. We
note that

rU = µ−1/2V and rT (r) = µ1/2∂rV.

For the boundary condition, we note that we would end up with the same partial differential
equation with different boundary conditions for V in the previous section if we had used
the boundary condition ∂ru = 0 on ∂M . Indeed, one would merely choose Nu = µ∂ru
instead without the 0’th order term. However, the boundary condition for V would be of
the form

∂rV = K(r)V on ∂M

with K signifying a smooth radial function. Nevertheless, the leading order (in ω) asymp-
totic behavior for V stays the same despite the K term as clearly seen in the calculation
of section 3.1.1. Thus, our analysis applies with no change using the standard Neumann
boundary conditions. This should come as no surprise since in [10], the 0’th order term
in the Neumann condition played no role in the leading asymptotic analysis of their trace
formula. Only if one desires the lower-order terms in the trace formula would it play a role.

2.4. Poincaré maps and the trace formula. Here, we describe the relevant Poincaré
map that will appear in the trace formula and state the trace formula that we will prove.
Let R 3 t → γ(t) be a periodic broken bicharacteristic in S∗M of period T > 0 (see [10]
for the relevant definitions). It is associated to the metric c−2(|x|)e, where c is a smooth
radial function, e is the Euclidean metric, and γ undergoes reflections in ∂S∗M according
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to Snell’s law. We also denote by ΦT : S∗M → S∗M the broken bicharacteristic flow of T
units of time as described in [10]. Its fixed point set is given by

CT := {η ∈ S∗M ; ΦT (η) = η}

and without loss of generality, we assume that CT is connected, for otherwise, we would look
at a connected component instead. We impose the clean intersection hypothesis appearing
in [8, 10] so that CT is a submanifold for any T and TmCT = ker(Id−dΦT (m)) at each point
m ∈ CT . This holds for all periodic orbits if and only if c satisfies the periodic conjugacy
condition (definition 4.2) which requires that the endpoints of a single maximal geodesic
segment of a periodic broken ray are never conjugate; see remark 4.3.

By construction, the image of γ belongs to CT . There is an obvious symplectic group
action of SO(3) on T ∗M under which the Hamiltonian 1

2c
2 |ξ|2 is invariant; here, ξ denotes

the dual variable to x. Thus, for each g ∈ SO(3), the set g · Im(γ) given by the group action
also belongs to CT . Assuming that c has no other symmetries (follows from the Herglotz
condition) and the periodic conjugacy condition, all elements of CT are obtained this way.
This is because a periodic orbit will either fail to be periodic or not have period T after a
small perturbation of the angular momentum p; hence, p remains constant on CT . Thus,
CT may be parameterized by Rt × SO(3), revealing that under the Herglotz and periodic
conjugacy conditions

dim(CT ) = 4.

The Herglotz condition ensures that the group action never coincides with the geodesic
flow; without it, the dimension could quite possibly be smaller. Hence, TmS

∗M/TmCT is
only one-dimensional and we obtain an induced map on the quotient space,

I − dΦT : TmS
∗M/TmCT → TmS

∗M/TmCT .

We denote the equivalence class of all closed orbits of period T related to γ by an element
of SO(3) or by a time reversal of γ by [γ]. We write the above map as I −P[γ] and refer to
P[γ] as the Poincaré map associated to the equivalence class of γ. Now, I−P[γ] will end up
being an isomorphism, whose determinant at each point m ∈ CT will stay invariant. Hence,

the quantity
∣∣I − P[γ]

∣∣−1
:=
∣∣det(I − P[γ])

∣∣−1
is well defined as a single number associated

to [γ].
In the above, γ may be multiple revolutions of another closed orbit of minimal period

called the primitive orbit associated to γ, which has a primitive period denoted T ]. Note
that T will merely be a positive integer multiple of T ]. In spherical symmetry, γ is confined
to a disk and it must be a concatenation of geodesic segments that travel from the outer
boundary r = 1 to either the reflection point r = R or the turning point r = R? (see
section 4 for details). We let Nγ denote the number of these segments comprising the
primitive orbit associate to γ.

We now state our proposition pertaining to the trace formula.

Proposition 2.2. Suppose the radial wave speed c satisfies the Herglotz condition and the
periodic conjugacy condition (definition 4.2). Assume additionally that the length spectrum
is non-degenerate in the sense that any two periodic broken rays of the same length are
rotations of each other.

The distribution (Tr (∂tG))(t) =
∑

n,l(2l + 1) cos(tnωl) is singular precisely at the length

spectrum. Suppose T ∈ singsupp(Tr(∂tG)) and let d be the dimension of the fixed point set
for ΦT . Suppose that γ is one of the broken periodic orbits of period T . Then d = 4 and for
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t near T , the contribution of [γ] to the leading singularity of (Tr(∂tG))(t) is the real part of

(t− T + i 0)−(d+1)/2

(
1

2π i

)(d−1)/2

iσγ
∣∣I − P[γ]

∣∣−1/2 T ]γ
2πNγ

cd |SO(3)| ,

where

• σγ is the KMAH index associated to γ defined in [10];
• cd is a constant depending only on d;
• |SO(3)| is the volume of the compact Lie group SO(3) under the Haar measure.

In appendix B we identify this trace formula in the framework of manifolds with symme-
tries given by a compact Lie group. In appendix D we discuss some edge cases that justify
our geometric assumptions.

Remark 2.3. This trace formula is in fact a more general statement than that for the
Neumann Laplace–Beltrami operator, which is just a special case of the above proposition.

Remark 2.4. The periodic conjugacy condition and non-degeneracy of the length spec-
trum are needed to prove that the singular support of the trace is precisely the length
spectrum. However, they are not necessary for spectral rigidity or proving that the spec-
trum determines the length spectrum.

For unique determination of the length spectrum, it is enough that the primitive length
spectrum (excluding all but primitive orbits) is non-degenerate. Given the singularity at
T ], we know what the singularities at 2T ], 3T ], . . . will be. If they are not as expected, then
another broken ray must contribute a singularity at the same place, and we have found the
next primitive length. This allows to recover the primitive length spectrum and therefore
the whole length spectrum from the (shapes and locations of) singularities in the trace.
But if two primitive lengths coincide, there is no way to distinguish the corresponding
singularities.

If we drop the periodic conjugacy condition, then some periodic orbits may fail the
clean intersection hypothesis. This allows us to recover only a part of the length spectrum
from the singularities, but this part is enough. Such problematic periodic broken rays are
ignored anyway in the proof of length spectral rigidity, since they might not be stable under
deformations.

3. Proof of the Trace Formula (proposition 2.2)

In this section, we prove the trace formula in the form of proposition 2.2 for the annulus.
The idea behind the proof is to construct rather explicitly a fundamental solution. First,
we do some preliminary analysis to manipulate G into the right form before taking its
trace. Concretely, in subsection 3.1, we construct WKB eigenfunction solutions to get
explicit formulas for the leading order asymptotics of the eigenfunctions. Afterwards, in
subsection 3.2 we use the classical Poisson summation formula and the Debye expansion
to write the leading order asymptotics for G as a certain propagator, which relates the
eigenfunctions to geodesics in the annulus. At that point, we use section 3.3 to show how
all our constructions are quite natural and directly relate to the wave propagator appearing
in [10]. Finally, we complete the proof in section 3.4 by taking traces and carrying out the
method of steepest descent and stationary phase to obtain the desired asymptotic formula
appearing in proposition 2.2.
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In the further analysis, we employ the summation formula,

(3.1)
l∑

m=−l
Y m
l (θ, ψ)Y m

l (θ0, ψ0) =
(2l + 1)

4π
Pl(cos Θ),

where the Pl are the Legendre polynomials, with Pl(1) = 1, and Θ signifies the angular
epicentral distance,

(3.2) cos Θ = cos θ cos θ0 + sin θ sin θ0 cos(ψ − ψ0).

Remark 3.1. We note that Ĝ is the kernel of the resolvent in the time-harmonic formu-
lation. The normal mode summation becomes

(3.3) Ĝ(x, x0, ω) =
1

2π

∞∑
l=0

∞∑
n=0

(l + 1
2) nf̂l(ω) nDl(nDl)0︸ ︷︷ ︸

=:nHl

Pl(cos Θ),

explicitly showing the eigenfrequencies as simple poles (cf. (2.7)).

We abuse notation and denote

nHl = k−2U(r)U(r0)

in the formula for G to not treat the curl operations at first. This will not cause a risk of
confusion since we will specify the exact moment that we apply the curl operators, which
will be just before taking the trace in subsection 3.4.

3.1. Asymptotic analysis of eigenfunctions. We describe the radial eigenfunctions and
their asymptotic expansions for general k ∈ R. We then introduce the dispersion relations,
ωn(k).

3.1.1. WKB eigenfunctions. Here, we consider asymptotic solutions, V , to (2.15). Depend-
ing on p, we distinguish the following regimes:

• Evanescent (1/c(1) < p < ∞). Here, β2(r) < 0, and the solution is always
non-oscillatory, that is, evanescent. We do not obtain eigenfunctions.
• Diving (R/c(R) < p < 1/c(1)): We summarize the WKB solution of (2.15) in the

vicinity of a general turning point. A turning point, r = R?, is determined by

β2(R?) = 0.

Near a turning point, r ≈ R?, and

β2(r) ' α0(r −R?).

Away from a turning point,

β2 > 0 if r � R?, β2 < 0 if r � R?.

Matching asymptotic solutions yields

B


|β|−1/2 exp

(
−ω

∫ R?
r |β| dr

)
, r � R?

2π1/2α
−1/6
0 ω1/6Ai(−ω2/3α

1/3
0 (r −R?)), r ' R?

2β−1/2 cos
(
−ω

∫ r
R? β dr − π/4

)
, r � R?.
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From these one can obtain a uniform expansion, that is, the Langer approximation

V (r, ω; p) = 2π1/2χ1/6(−β2)−1/4Ai(χ2/3(r)),

χ(r) = −(3/2)ω

∫ r

R?
(−β2)1/2 dr,

valid for r ∈ [R, 1]. One obtains eigenfunctions corresponding with turning rays.
Up to leading order, where r � R?,

V = 2Bβ−1/2 cos

(
ω

∫ r

R?
β dr′ − π/4

)
,

∂rV = −2ωBβ−1/2 sin

(
ω

∫ r

R?
β dr′ − π/4

)
.

Here, B is obtained from the normalization (2.6), which requires the uniformly
asymptotic solution over the entire interval [R, 1]. Applying the Riemann–Lebesgue
lemma, one obtains

(3.4)

∫ 1

R
U(r)2ρ(r)r2 dr ' 2B2

∫ 1

R?
β−1c−2 dr.

Here,
∫ 1
R? β

−1c−2 dr can be identified with the half one-return travel time, 1
2T , say.

• Reflecting (0 < p < R/c(R)): The solutions are oscillatory in the entire interval
[R, 1] (β2(r; p) > 0), correspond with reflecting rays, and are of the form

V = Cβ−1/2 exp

(
iω

∫ r

R
β dr′

)
+Dβ−1/2 exp

(
− iω

∫ r

R
β dr′

)
,

∂rV = iωCβ1/2 exp

(
iω

∫ r

R
β dr′

)
− iωDβ1/2 exp

(
− iω

∫ r

R
β dr′

)
.

to leading order. Imposing the Neumann condition, T (R) = 0, implies that D =
C. The constant C is obtained from the normalization (2.6) using the oscillatory
solution over the entire interval [R, 1]. Applying the Riemann–Lebesgue lemma
yields

(3.5)

∫ 1

R
U(r)2ρ(r)r2 dr ' 2C2

∫ 1

R
β−1c−2 dr.

Here,
∫ 1
R β
−1c−2 dr can be identified with the half one-return reflection travel time,

1
2T , say.

3.1.2. Boundary condition and dispersion relations. We backsubstitute p = ω−1k in β.
Imposing the Neumann boundary condition yields:

• Diving (R/c(R) < p < 1/c(1)):

(3.6) ω

∫ 1

R?
β(r′;ω−1k) dr′ =

(
n+

5

4

)
π (n is the overtone index).

• Reflecting (0 < p < R/c(R)):

(3.7) ω

∫ 1

R
β(r′;ω−1k) dr′ = (n+ 1)π (n is the overtone index).
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All these (radial) quantization-type conditions yield solutions nωk =: ωn(k). Using the
implicit function theorem, we introduce kn = kn(ω) as the solution of

ω − ωn(kn) = 0.

We revisit the general relation between phase and group velocities. We have

cn(k) =
ωn(k)

k
and

Cn =
d(cnk)

dk
= cn + k

dcn
dk

.

The corresponding ray parameter is given by

(3.8) p =
k

ωn(k)
=

1

cn(k)
.

3.2. Poisson’s summation formula.

3.2.1. Analytic continuation. The Legendre equation is of second order and hence admits
two linearly independent solutions: Legendre functions of the first and second kind, Pλ,
Qλ, with integral representations

Pλ(z) =
2

π
Im

∫ ∞
0

[
z − i

√
1− z2 cosh(t)

]−λ−1
dt,

Qλ(z) = Re

∫ ∞
0

[
z − i

√
1− z2 cosh(t)

]−λ−1
dt,

for z ∈ [−1, 1]. These integral representations are valid for λ > −1. Analytic continuation
of the integral representation for Pλ, Qλ into the region Re{λ} ≤ −1 follows the relations

P−λ−1 = Pλ,

Q−λ−1 = Qλ − π cot(λπ)Pλ.

The bottom equation implies that Qλ has simple poles at the negative integers λ =
−1,−2, . . .. The Legendre function of the first kind, Pλ, coincides with the Legendre poly-
nomials for λ = l = 0, 1, 2, . . . (cf. (3.1)).

3.2.2. Application of Poisson’s formula. Poisson’s formula is given by

(3.11)

∞∑
l=0

f(l + 1
2) =

∞∑
s=−∞

(−)s
∫ ∞

0
f(k)e−2 i skπ dk.

Remark 3.2. Poisson’s formula can be obtained from the Watson transformation: If f is
a function analytic in the vicinity of the real axis, and C = C− ∪ C+ is a contour around
the positive real axis, then

(3.12)

∞∑
l=0

f(l + 1
2) = 1

2

∫
C
f(k)[cos(kπ)]−1e− i kπ dk.

The integrand in the right-hand side has simple poles at (2n + 1)/2, n ∈ N0 – where
cos(kπ) = 0. It follows from the residual theorem. Poisson’s formula is obtained as follows.
In the limit s → ∞ the path of integration is C−, while in the limit s → −∞ the path of
integration is C+. One then expands

[cos(kπ)]−1 =
2e− i kπ

1 + e−2 i kπ



16 MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, AND VITALY KATSNELSON

in a series separately for Im{k} > 0 and < 0.

We apply Poisson’s formula to the summation in l in (3.3) while keeping the summation
in n intact. We obtain

(3.13) Ĝ(x, x0, ω) =
1

2π

∞∑
s=−∞

(−)s
∫ ∞

0

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Pk−1/2(cos Θ)e−2 i skπ k dk.

This expression can be rewritten as

Ĝ(x, x0, ω) =
1

2π

∞∑
s=1

(−)s
∫ ∞

0

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Pk−1/2(cos Θ){e−2 i skπ+e2 i skπ} k dk

+
1

2π

∫ ∞
0

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Pk−1/2(cos Θ) k dk.

Traveling-wave Legendre functions. Traveling-wave Legendre functions are given by

Q
(1)
λ =

1

2

(
Pλ + 2

i

π
Qλ

)
,

Q
(2)
λ =

1

2

(
Pλ − 2

i

π
Qλ

)
.

Using (3.9)–(3.10) yields the continuation relations

Q
(1)
−λ−1 = Q

(1)
λ − i cot(λπ)Pλ,(3.14)

Q
(2)
−λ−1 = Q

(2)
λ + i cot(λπ)Pλ.(3.15)

Both have simple poles at the negative integers.

Remark 3.3. Their asymptotic behaviors, as |λ| � 1, are (assuming that Θ is sufficiently
far away from the endpoints of [0, π])

Q
(1)
λ−1/2 '

(
1

2πλ sin Θ

)1/2

e− i(λΘ−π/4),(3.16)

Q
(2)
λ−1/2 '

(
1

2πλ sin Θ

)1/2

e+ i(λΘ−π/4),

upon substituting z = cos Θ. Taking into consideration the time-harmonic factor eiωt, it
follows that Q(1) represents waves traveling in the direction of increasing Θ, while Q(2)

represents waves traveling in the direction of decreasing Θ.

To distinguish the angular directions of propagation, one decomposes

(3.17) Pk−1/2(cos Θ) = Q
(1)
k−1/2(cos Θ) +Q

(2)
k−1/2(cos Θ).



SPECTRAL RIGIDITY FOR SPHERICALLY SYMMETRIC MANIFOLDS WITH BOUNDARY 17

Substituting (3.17) into (3.13), we get

Ĝ(x, x0, ω) =
1

2π

[ ∑
s=1,3,5,...

(−)(s−1)/2

∫ ∞
0

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Q

(1)
k−1/2(cos Θ){e− i(s−1)kπ − ei(s+1)kπ} k dk

+
∑

s=2,4,...

(−)s/2
∫ ∞

0

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Q

(2)
k−1/2(cos Θ){e− i skπ − ei(s−2)kπ} k dk

]
.

In the application of (3.11)–(3.12), the contour C− is followed for the series containing

e− i(s−1)kπ and e− i skπ, while the contour C+ is followed for the series containing ei(s+1)kπ

and ei(s−2)kπ.

3.2.3. Preparation for the method of steepest descent. In preparation of the application of
the method of steepest descent, we rewrite the k-integral from R≥0 to R. We make use of the

analytic extension of Q
(1,2)
k−1/2 from real positive to real negative k values. With (3.14)–(3.15)

we find that

Q
(1,2)
−k−1/2(cos Θ) = e±2 i kπQ

(1,2)
k−1/2(cos Θ) + e± i kπ tan(kπ)Pk−1/2(− cos Θ).

Using the symmetry of f̂n(.;ω), Hn(.), it follows that the integrals over Pk−1/2(cos Θ) cancel.
Then

(3.18) Ĝ(x, x0, ω) =
1

2π

∑
s=1,3,5,...

(−)(s−1)/2

∫ ∞
−∞

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Q

(1)
k−1/2(cos Θ)e− i(s−1)kπ k dk

+
1

2π

∑
s=2,4,...

(−)s/2
∫ ∞
−∞

[ ∞∑
n=0

f̂n(k;ω) Hn(k)

]
Q

(2)
k−1/2(cos Θ)e− i skπ k dk.

The integrands in the terms of these series can be identified as wave constituents travelling
along the surface or boundary, the representations of which can be obtained by techniques
from semi-classical analysis. Indeed, s is referred to as the (multi-orbit) arrival number while
we distinguish the orientation of propagation in the two series. The term s = 1 corresponds
with waves that propagate from source to receiver along the minor arc; the term s = 2
corresponds with waves that propagate from source to receiver along the major arc. At
Θ = 0 and Θ = π the traveling wave Legendre functions have logarithmic singularities,
namely log Θ at Θ = 0 and log(π − Θ) at Θ = π; the singularities cancel when taking the
sums together.



18 MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, AND VITALY KATSNELSON

3.2.4. Traveling wave expansion. Here, we apply to (3.18) the Debye expansion described
in appendix A to obtain a form more closely resembling a wave propagator:

∞∑
n=0

f̂n(k;ω)Hn(k)

= k−2(rr0c(r)c0(r))−1(ρ(r)ρ(r0)β(r; p)β(r0; p))−1/2 1− c−1
n Cn

2 iω
∞∑
i=1

exp
[
− iωτi(r, r0; p) + iNi

π

2

]
,

where the τi are time-delay functions which we will relate to the travel time of a geodesic,
and Ni are integers contributing to the KMAH index as described in appendix A.

Next, we change variables of integration from k to p. We encounter the Jacobian
(cf. (3.8))

dp

dk
=

1

cn

(
Cn
cn
− 1

)
1

k
,

so that

p−1 dp = (1− c−1
n Cn) k−1 dk.

The path of integration is beneath the real axis, while taking ω > 0. After making the
substitution into (3.18), we obtain

Ĝ(x, x0, ω)

=
1

4π

∑
s=1,3,5,...

(−)(s−1)/2(rr0c(r)c0(r))−1(ρ(r)ρ(r0))−1/2

∫ ∞
−∞

(β(r; p)β(r0; p))−1/2

[ ∞∑
i=0

exp
[
− iωτi(r, r0; p) + iNi

π

2

] ]
Q

(1)
ωp−1/2(cos Θ)e− iω(s−1)pπ p−1 dp

+
1

4π

∑
s=2,4,...

(−)s/2(rr0c(r)c0(r))−1(ρ(r)ρ(r0))−1/2

∫ ∞
−∞

(β(r; p)β(r0; p))−1/2

[ ∞∑
i=0

exp
[
− iωτi(r, r0; p) + iNi

π

2

] ]
Q

(2)
ωp−1/2(cos Θ)e− iωspπ p−1 dp.

Remark 3.4. To explicitly reveal the connection with geometrical optics we consider indi-
vidual terms in (3.18), upon changing the variable of integration. We consider the first term,
substitute the resummation inside the integral, and insert the leading order expansion,

Q
(1)
ωp−1/2(cos Θ) '

(
1

2πωp sin Θ

)1/2

e− i(ωpΘ−π/4)
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(cf. (3.16)) to obtain (cf. (3.18))

(3.19)
1

2π
(−)(s−1)/2

∫ ∞
−∞

[ ∞∑
n=0

Un(r; p)Un(r0; p)

ω2
n − ω2

(1− c−1
n Cn)−1

]
Q

(1)
ωp−1/2(cos Θ)e− iω(s−1)pπ p−1 dp

' 1

4π
(−)(s−1)/2(rr0c(r)c(r0))−1(2πρ(r)ρ(r0) sin Θ)−1/2∫
(β(r; p)β(r0; p))−1/2

∞∑
i=1

exp[− iω(τi(r, r0; p) + pΘ + (s− 1)pπ)]

exp[i(π/4)(2Ni − 1)](ωp)−3/2 dp.

In the next section, we review the abstract argument appearing in [10] in order to justify
why we consider the above expression a wave propagator. It will also motivate the method
of steepest descent and stationary phase calculation that we perform in section 3.4.

3.3. Melrose–Guillemin wave propagators. In [10], Guillemin and Melrose show how

the Neumann half-wave propagator, e± i t
√
−∆g , may be written as a sum of operators

denoted Ṽ i
±(t), such that for a fixed t, it is a canonical graph FIO whose canonical relation is

a certain billiard map in phase space that we will briefly describe. In order to avoid corners,
they embed M in a boundaryless manifold M̃ and then Ṽ i

+ is an FIO on M̃ ×M . It maps a
covector (y, η) ∈ S∗Mo to the “time t” endpoint of a broken bicharacteristic that undergoes i
reflections at points xk(y, η) ∈ ∂M , k = 1, . . . , i. Precisely, let ti = ti(y, η) denote the travel
time along the broken bicharacteristic to the last reflection point (xi, ξi) ∈ ∂+S

∗M and let
(xi, ξ

r
i ) ∈ ∂−S

∗M be the reflected covector pointing “inside” M . The canonical graph

maps (y, η) to Φt−ti(xi, ξ
r
i ) ∈ S∗M̃ (here, Φt denotes the bicharacteristic flow described

in section 2). If fewer than i reflections take place by time t or it maps outside of M ,

then Ṽ i
+(t) is microlocally smoothing at such covectors. It will be convenient to denote a

covector locally in polar coordinates as η = |η|g(y) η̂ ∈ T ∗yM . Then the corresponding conic

Lagrangian may by parameterized by a phase function of the form

ϕi(t, x, y, η) = |η|g (−t+ Si(x, y, η̂)),

where, essentially, Si gives the travel time between points x, y of the broken geodesic un-
dergoing i reflections that starts at (y, η̂) (when one finds η̂ ∈ S∗yM that minimizes Si).

For the following calculations, all that is necessary is that Ṽ i
+(t) is a canonical graph FIO

and that ϕi is a phase function that locally parameterizes the conic Lagrangian associated
to the canonical graph. Thus, the Schwartz kernel of Ṽ i

+(t) is indeed given locally (as
described in [10]) by

(2π)−n
∫
ei(−t|η|g+Si(x,y,η))a(t, x, y, η) dη,

where a is a classical symbol of order m = 0. If we introduced spherical coordinates in η
with radial variable ω := |η|g and took the leading order (homogeneous of degree m = 0)

part of the classical symbol a, then it becomes clear that (3.19) has the same form after a
Fourier transform Fω→t with phase function −ω(τi(r, r0; p)+pΘ+(s−1)pπ) corresponding
to Si = ωSi(x, y, η̂) above. The order in ω does not match yet because we have not yet
applied the curl operators nor ∂t. The similarities become clearer as we proceed with the
stationary phase calculations for both operators.



20 MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, AND VITALY KATSNELSON

After taking the trace of the full propagator, the contribution by Ṽ i
+ is

(2π)−n
∫
ei(−t|η|g+Si(x,x,η))a(t, x, x, η) dx dη.

We change variables into polar coordinates by first defining a map f : R+
ω×S∗M → T ∗M ,

f(ω, x, p) = (x, ωp).

Then f? |dT ∗M | = ωn−1dω |dS∗M |. Without loss of generality, since we only consider the
leading order terms, we may assume that a is an m-homogeneous (in η) symbol. After a
change of variables into polar coordinates (keeping in mind that a is supported in a local
coordinate chart where S∗M is trivialized), the above integral is:

(3.20) (2π)−n
∫ ∞

0
e− iωtωn+m−1 dω

∫
M×Sn−1

eiωSi(x,x,p)a(t, x, x, p) dx dp.

Stationary phase with a degenerate phase function. To obtain the leading order
asymptotics, we apply the method of stationary phase. We denote the critical set of Si
(viewed as function on S∗M) locally as CSi = {(x, p) ∈ S∗M ; dx,pS = (dxSi(x, x, p) +
dySi(x, x, p), dpSi) = 0}. We may break up this set into a countable number of disjoint
connected components given by the values of Si:

CSi =

∞⋃
k=1

CTik , CTik = {(x, p) ∈ S∗M ;Si = Tik, dx,pSi = 0}.

By construction of the phase function, CTik is precisely the fixed point set of the bichar-
acteristic flow ΦTik . Let dik be the codimension of CTik . If CTik intersects ∂M transversely,
then we may find independent coordinates z = z1, . . . , z2n−1 such that CTik is given by the
vanishing of z1, · · · , zdik and ∂M is given by z2n−1 = 0. For notation purposes, it will be
convenient to denote zI = (z1, · · · , zdik), zII = (zdik+1, · · · , z2n−2) and O a neighborhood
where such coordinates are valid.

We assume that Si is nondegenerate in the directions normal to the critical manifold
CTik , so that after a change of coordinates still denoted by the same letters, Si is locally
given by

Si(z) = Tik +
1

2

dik∑
r,s=1

〈∂zr∂zsSi(0, zII , z2n−1)zr, zs〉.

This follows precisely from the generalized Morse lemma. The Jacobian due to such a
change of coordinates is identically 1 when restricted to CTik and so we exclude it on our
analysis to have simpler formulas.

To proceed, let J =
∣∣∣∂(x,p)

∂z

∣∣∣ be the Jacobian factor resulting from the change of variables

and ρO a smooth localizer supported in O. Denoting ã = aJ , the contribution of the inner
integral of (3.20) within O is

(2π)−n
∫ ∞

0

∫
eiωSi(z)ρOã(z) dz′ dz2n−1

= (2π)−n
∫ ∞

0

∫
eiω(Tik+ 1

2

∑dik
r,s=1〈∂zr∂zsSi(0,zII ,z2n−1)zr,zs〉)ρOã(z) dzI dzII dz2n−1

∼ ω−dik/2eiωTik(2π)(dik−2n)/2

∫ ∞
0

∫
ã?(0, zII , z2n−1) dzII dz2n−1 +O(ω−dik/2−1).
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In the above, we applied stationary phase in the variables zI corresponding to normal
directions of CTik . This requires the normal Hessian of Si which is non-degenerate:

d2
NSi := (∂zi∂zjS)i,j=1,...,dik |zI=0,

so that the leading amplitude after stationary phase becomes

ã?(t, 0, zII , z2n−1) = ei π
4

sgn(d2NSi)
∣∣d2
NSi

∣∣−1/2
ρOã|CTik .

One may also show that J(0, zII , z2n−1) dzII dz2n−1 is the natural induced measure on CTik
obtained from dS∗M in local coordinates. We label this measure as dµik.

At this point, we may actually write

a(t, z) = a(Tik, z) +O(t− Tik),

and use −Dωe
−iω(t−Tik) = (t − Tik)e− iω(t−Tik). Using integration by parts in ω, we may

replace a(t, z) by a(Tik, z) since the difference will lead to a term that is an order lower in
ω. Substituting this into the inner integral above, setting

αik = ei π
4

sgn(d2NSi)

(
1

2π

)(dim(CTik )−1)/2 ∫
CTik

a
∣∣d2
NSi

∣∣−1/2
dµik,

the leading order term in our trace formula becomes (with m = 0 since a is 0th order)

Re
∑
ik

αik
1

2π

∫ ∞
0

e− iω(t−Tik)ωn+m−1−dik/2 dω

= Re
∑
ik

αik
1

2π

∫ ∞
0

e− iω(t−Tik)ω(dim(CTik )−1)/2 dω.

In the case of isolated periodic geodesics, one has dim(CTik) = 1. The above calculation
would then be the real part of

1

2π

∑
ik

αik

∫ ∞
0

e− iω(t−Tik) dω =
1

2π
lim
ε→0

∑
ik

αik
−1

i(Tik − t)− ε
=

1

2π

∑
ik

αik
i

(Tik − t) + i 0

For the spherically symmetric case, dim(CTik) = 4 which leads to a bigger singularity. In
the next subsection, we apply analogous computations for taking the trace in our setting.

3.4. Proof of Proposition 2.2. We are finally ready to apply the method of steepest
descent and stationary phase to complete the proof of the trace formula.

Proof of proposition 2.2. We interchange the order of summation and integration, and in-
voke the method of steepest descent. We carry out the analysis for a single term, s = 1.
For s = 2, 4, . . . we have to add spπ to τi, and for s = 3, 5, . . . we have to add (s− 1)pπ to
τi, in the analysis below.

We find (one or more) saddle points for each i, where

∂pτi(r, r0, p)|p=pk = −Θ.

Later, we will consider the diagonal, setting r0 = r and Θ = 0. We label the saddle points
by k for each i (and s). We note that r, r0 and Θ determine the possible values for p (given
i) which corresponds with the number of rays connecting the receiver point with the source
point (allowing conjugate points). For s = 1, the rays have not completed an orbit. With
s = 3 we begin to include multiple orbits.
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We carry out a contour deformation over the saddles and obtain

1

2π
(−)(s−1)/2

∫ ∞
−∞

[ ∞∑
n=0

U2;n(r; p)U2;n(r0; p)

ω2
n − ω2

(1− c−1
n Cn)−1

]
Q

(1)
ωp−1/2(cos Θ)

e− iω(s−1)pπ p−1 dp

' 1

4π
(−)(s−1)/2(rr0c(r)c(r0))−1(2πρ(r)ρ(r0) sin Θ)−1/2

∑
i

∑
k

[
ω−2p−3/2(β(r; .)β(r0; .))−1/2

∣∣∂2
pτi(r, r0; .)

∣∣−1/2
]
p=pk

e− iωTik+iMik(π/2),

where

Tik = Ts;ik(r, r0,Θ) = τi(r, r0; pk) + pk∆s,

Mik = Ni − 1
2(1− sgn ∂2

pτi|p=pk),

in which

∆s =

{
Θ + (s− 1)π if s is odd

−Θ + sπ if s is even.

The Mik contribute to the KMAH indices, while the Tik represent geodesic lengths or
travel times. The orientation of the contour (after deformation) in the neighborhood of pk
is determined by sgn ∂2

pτi|p=pk . We note that

• Mik = Ms;ik(r, r0,Θ) for multi-orbit waves (s = 3, 4, . . .) includes polar phase shifts
produced by any angular passages through Θ = 0 or Θ = π as well;
• if r lies in a caustic, the asymptotic analysis needs to be adapted in the usual way.

Next, we apply both curl operations [−θ̂(sin θ)−1∂ψ + ψ̂∂θ], [−θ̂0(sin θ0)−1∂ψ0 + ψ̂0∂θ0 ]
to each term in the sum above and then tensor the vectors together in order to obtain a
sum of 2-tensor fields. This will give us the actual normal mode summation of (3.3). Since
we are interested in only the leading order asymptotics in ω, we need only consider these
operations to the term exp[− iωTik] which gives (ωpk)

2D(θ, ψ, θ0, ψ0) where D is a 2-tensor
field in the angular variables. We also apply an inverse Fourier transform followed by ∂t
to the formula above (since we are interested in the cosine propagator ∂tG) to obtain to
leading order

' 1

4π
(−)(s−1)/2(rr0c(r)c(r0))−1(2πρ(r)ρ(r0) sin Θ)−1/2

∑
i

∑
k

[
p1/2(β(r; .)β(r0; .))−1/2

∣∣∂2
pτi(r, r0; .)

∣∣−1/2
]
p=pk

D(θ, ψ, θ0, ψ0)

1

2π

∫ ∞
0

iω exp[− iω(Tik − t) + iMik(π/2)] dω,

It will now be convenient to denote the above quantity by F (1) if s is even and F (2) if s is
odd.

Thus, we have a sum of kernels of FIOs associated with the wave propagator. (Here, the
summation over i, k signifies the summation over (broken) geodesics while the summation
over s signifies the number of orbits, travelling clockwise or counterclockwise.)
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Since we will need to restrict ∂tG to the diagonal (Θ = 0, r′ = r), we must be careful with

the (sin Θ)−1/2 term. Fortunately, this term comes from the asymptotics of Q
(1)
ωp−1/2 and

Q
(2)
ωp−1/2 which merely represent the two different directions of one particular geodesic. Of

course, a periodic broken orbit has the same period no matter which direction one travels
and in the trace formula, all orbits of a particular period are combined. Hence, we can

combine Q
(1)
ωp−1/2 and Q

(2)
ωp−1/2 near Θ = 0, which is a logarithmic singularity that cancels

when both of the functions are added together, and this will not affect the trace formula.

Precisely, after substituting the asymptotic formula for Q
(1,2)
ωpk−1/2(cos Θ), we may write

for s ≥ 3 odd

F (1,2) ' 1

4π
i−1/2(−)(s−1)/2(rr0c(r)c(r0))−1(ρ(r)ρ(r0))−1/2(

√
2π)∑

i

∑
k

[
p(β(r; .)β(r0; .))−1/2

∣∣∂2
pτi(r, r0; .)

∣∣−1/2
]
p=pk

D(θ, ψ, θ0, ψ0)

1

2π

∫ ∞
0

iω3/2 exp[− iω(τik + pk(s− 1)π − t) + iMik(π/2)]Q
(1,2)
ωpk−1/2(cos(Θ)) dω,

Asymptotically, as Θ→ 0 one has Q
(1)
ωpk−1/2(cos(Θ)) +Q

(2)
ωpk−1/2(cos(Θ)) ' 1 and so

F (1) + F (2) ' − π

(2πi)3/2
(−)(s−1)/2(rr0c(r)c(r0))−1(ρ(r)ρ(r0))−1/2

∑
i

∑
k

[
p(β(r; .)β(r0; .))−1/2

∣∣∂2
pτi(r, r0; .)

∣∣−1/2
]
p=pk

D(θ, ψ, θ0, ψ0)

1

2π

∫ ∞
0

iω3/2 exp[− iω(Tik − t) + iMik(π/2)] dω,

as Θ→ 0.
It will be convenient to denote

As;ik(r, r0,Θ) = (−)(s−1)/2(rr0c(r)c(r0))−1(ρ(r)ρ(r0))−1/2

·
[
p(β(r; .)β(r0; .))−1/2

∣∣∂2
pτi(r, r0; .)

∣∣−1/2
]
p=pk

D(θ, ψ, θ0, ψ0)

where now D is a scalar function, defined as the inner product of the two vector fields that
make up D. One may check using l’Hospital’s rule and equation (3.2) that D|θ=θ0,ψ=ψ0 = 2.

Next, we take the trace of ∂tG by restricting to (r = r0,Θ = 0) and integrating. The
phase function on the diagonal is Tik = τi(r, r, pk) + π(s − 1)pk and we apply stationary
phase in the variables r, θ, ψ with large parameter ω. Since one has ∂pTi(r, r, p) = 0 at
p = pk, the critical points occur precisely when

∂rTi(r, r, p) + ∂r0Ti(r, r, p) = 0, ∂pTi(r, r, p) = 0.

After a quick calculation, the first condition forces Ti to be independent of r. Also, we
showed that for geodesics with turning points, U = O(ω−∞) when r < R?. Finally, using
the inverse Fourier transform,∫ ∞

0
exp[iω(t− T )]ω3/2 dω = cd(t− T + i 0)−5/2, with cd a constant.
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Setting Rik = {(r, θ, ψ); r ∈ [R̃, 1], ∂rTi(r, r, pk) + ∂r0Ti(r, r, pk) = 0} where R̃ = R? or
R depending on pk, we have shown that in fact Tik remains constant over Rik so that
only certain i are allowable. We find that modulo terms of lower order in ω, the trace
microlocally corresponds with [13]

Re
∑
s

∑
i

∑
k

(
1

2π i

)3/2

(t− Ts;ik + i 0)−5/2 iMik cd
1

2

∫
Rik

As;ik(r, r, 0)ρr2 sin θ dr dθ dψ

and we use (3.4), (3.5). Here,

Ts;ik = Ts;ik(r, r; 0) = τi(r, r; pk) +

{
pk(s− 1)π if s odd

pksπ if s even

is independent of r. We note that pk exists only for i, and s, sufficiently large, which reflects
the geometrical quantization.

From this expression, it is clear that the singular support of the trace consists of the
travel times of periodic geodesics.

Remark 3.5. It is now apparent how the above formula relates to the trace formula in [10].

A term above for a certain i, s, k index corresponds to the trace of Ṽ ±i integrated over a
critical manifold CTik (which in our case is Rik) as described in section 3.3. In both cases,
the index i is used to keep track of the number of intersections of the broken ray with the
boundary while the k index specifies a particular periodic ray and period.

The index s in Tik;s describing travel time has no analog for general manifolds and
certainly does not appear in [8] and [10]. This is because the parameter s is merely a
byproduct of using spherical coordinates to construct an FIO on the ball and using the
particular phase function we have. It is used to keep track of the angular distance a
particular geodesic has traversed in the disk, since, while the angular distance is greater
than 2π when a particular geodesic traverses the full disk more than once, our angular
coordinates only range from [0, 2π]. The factor (−)(s−1)/2 is part of the KMAH index
corresponding to antipodal conjugate points in the sphere that the associated geodesic
(when projected to r = 1) passes through. The other part of the KMAH index comes from
Mik.

The Poincaré map appearing in [8] and [10] corresponds to the factor
∣∣p−1
k ∂2

pτi|p=pk
∣∣−1/2

in our trace formula and the factor
∣∣I − P[γ]

∣∣−1/2
described in section 2. In [8], this factor

generally varies over the entire critical manifold CTik when its dimension is greater than 1,
but will not in our case due to the symmetry. In fact, this is how we know that this factor
corresponds to the Poincaré map: it must be a quantity that remains constant over the
critical manifold Rik.

We further simplify the above formula, that is, the integral involving As;ik. First, since
Tik is independent of r, then so is τi(r, r; p) = τi(p). Thus, we may pull ∂2

pτi out of the
integral involving As;ik precisely because we are integrating over a closed orbit:∫

Rik

As;ik(r, r, 0)ρr2 sin θ dr dθ dψ

= (−)(s−1)/2
∣∣p−1
k ∂2

pτi(pk)
∣∣−1/2

∫
Rik

1

c2β(r, pk)
2 sin θ dr dθ dψ.
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We recall that the travel time T for a piece of a geodesic from r0 ro r is

T =

∫ r

r0

dr′

c2β(r′, pk)
dr′.

Hence, denoting T ]ik as the primitive period of the geodesic, we obtain∫
Rik

1

c2β(r, pk)
2 sin θ dr dθ dψ =

T ]ik
Nik

∫ 2π

0

∫ π

0
2 sin θ dθ dψ =

T ]ik
πNik

|SO(3)| ,

where Nik is the number of geodesic segments from R̃ to 1 along the primitive orbit with

length T ]ik, and |SO(3)| is the volume of SO(3) under a Haar measure [5].
Substituting these calculations, the leading order term in the trace formula is

Re
∑
s

∑
i

∑
k

(
1

2π i

)3/2

(t− Ts;ik + i 0)−5/2 iMik+s−1 cd

·
T ]ik
Nik

∣∣p−1
k ∂2

pτi(pk)
∣∣−1/2 1

2π
|SO(3)| . �

In the next section, we use the trace formula to prove our main spectral rigidity theorems
stated in the introduction.

4. Proof of Spectral Rigidity

In this section we will prove that the length spectrum is rigid. By the trace formula this
will imply that the spectrum of the Laplace–Beltrami operator is rigid.

4.1. Conjugacy conditions. The following condition will be convenient:

Definition 4.1. We say that a C1,1 sound speed c satisfies the countable conjugacy con-
dition if there are only countably many radii r ∈ (R, 1) so that the endpoints of the
corresponding maximal geodesic γ(r) are conjugate along that geodesic.

Assuming this condition will eventually imply that the length spectrum is countable.
Throughout this paper “countable” includes empty and finite sets, but for the sake of
brevity we shall not write “at most countable”.

The next condition is directly related to the clean intersection property discussed earlier.
We will return to this condition in section 4.4.

Definition 4.2. We say that the radial wave speed c satisfies the periodic conjugacy condi-
tion if α(r) ∈ πQ implies α′(r) 6= 0. Restating geometrically, this means that if a broken ray
is periodic, then the endpoints of a geodesic segment are not conjugate along the segment.

Remark 4.3. Consider a periodic broken ray of radius r. It satisfies the clean intersection
property mentioned in section 2.4 if and only if either α′(r) 6= 0 (leading to dim(CT ) = 4)
or α′ vanishes in a neighborhood of r (leading to dim(CT ) = 5).

If the second option is true, it will fail at each endpoint of the maximal interval on which
α′ vanishes. Since limr→1 α(r) = 0 when the boundary is strictly convex, such an endpoint
exists. Therefore, assuming the Herglotz condition, the clean intersection property for all
periodic broken rays is equivalent with the periodic conjugacy condition of definition 4.2.
We point out that the function α is not well defined and the dimension of the fixed point
set can be 3 if the Herglotz condition is violated.
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4.2. Conditions for periodicity. A geodesic can be extended into a broken ray. The
geodesic segments of a broken ray are rotations of each other. It is easy to see that the
broken ray corresponding to the geodesic γ(r) is periodic if and only if α(r) ∈ πQ. We
want to understand the set of radii r ∈ (R, 1) for which this is the case.

Lemma 4.4. Let P ⊂ (R, 1) be the set of radii for which the corresponding broken ray is
periodic. Let C ⊂ (R, 1) be the set of radii r for which the endpoints of the geodesic γ(r)
are conjugate along γ(r).

• In fact C = {r ∈ (R, 1);α′(r) = 0}.
• If C has empty interior, then P is dense.

Proof. The radius r ∈ (R, 1) parametrizes a family of geodesics. By rescaling the speed
(from the originally assumed unit speed), we may assume that all geodesics are parametrized
by [−1, 1]. Differentiating the geodesic γ(r) with respect to r gives a non-trivial Jacobi field,
a variation of a geodesic γ(r). The value of the Jacobi field at the endpoints of the geodesic
describes the movement of the endpoints of the geodesic under variation. On the other
hand, α(r) gives the endpoint of the geodesic. Therefore the tangential component of
the Jacobi field at the endpoint is α′(r). It follows from the reparametrization that the
component normal to the boundary vanishes. Thus if α′(r) = 0, then the endpoints of γ(r)
are conjugate along γ(r).

On the other hand, if the endpoints are conjugate, then there is a non-trivial Jacobi field
vanishing at the endpoints. In dimension two there can only be a one-dimensional space of
such Jacobi fields, so the Jacobi field in question must be symmetric in the time parameter
of the geodesic. Then we can identify the Jacobi field as corresponding to a variation of
the parameter r. Combining this with the previous observation shows that

r ∈ C ⇐⇒ α′(r) = 0.

This proves the first claim.
Let R < a < b < 1. To prove the second claim, it suffices to produce r ∈ (a, b) so that

α(r) ∈ πQ; see the discussion right before the statement of this lemma. For a contradiction,
assume that α(r) /∈ πQ for all r ∈ (a, b). Since α is continuous, this implies that α is
constant on (a, b). Thus α′ vanishes on (a, b), so C has interior – a contradiction. �

Lemma 4.5. If the sound speed c ∈ C1,1 satisfies the countable conjugacy condition (def-
inition 4.1) and the Herglotz condition, then C and P are countable, C is closed and P is
dense in (R, 1).

Proof. The countable conjugacy condition directly states that C is countable. Therefore C
cannot have interior, and density of P follows from lemma 4.4. Since α′ is continuous, the
preimage of zero under it, the set C, is closed.

It remains to show that P is countable. If it was uncountable, some level set of α would
be uncountable. An uncountable set has uncountably many accumulation points and α′

vanishes at every accumulation point of a level set of α. This implies that C is uncountable,
which is impossible. �

4.3. Length spectral rigidity. The length spectrum of a manifold M with boundary
is the set of lengths of all periodic broken rays on M . If M is a spherically symmetric
manifold as described above, we may choose whether or not we include the rays that reflect
on the inner boundary r = R. If the radial sound speed is c, we denote the length spectrum
without these interior reflections by lsp(c) and the one with these reflections by lsp′(c). If
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the inner radius is zero (R = 0), the manifold is essentially a ball and the two kinds of
length spectra coincide.

For clarity, we state the following three length spectral rigidity theorems separately.

Theorem 4.6. Let B = B̄(0, 1) \ B̄(0, R) ⊂ Rn, n ≥ 2 and R ≥ 0, be an annulus (or a ball
if R = 0). Fix ε > 0 and let cτ , τ ∈ (−ε, ε), be a C1,1 function [R, 1] → (0,∞) satisfying
the Herglotz condition and the countable conjugacy condition and depending C1-smoothly
on the parameter τ . If R = 0, we assume c′τ (0) = 0. If lsp(cτ ) = lsp(c0) for all τ ∈ (−ε, ε),
then cτ = c0 for all τ ∈ (−ε, ε).

Theorem 4.7. Let B = B̄(0, 1)\B(0, R) ⊂ Rn, n ≥ 2 and R > 0, be an annulus. Fix ε > 0
and let cτ , τ ∈ (−ε, ε), be a C1,1 function [R, 1]→ (0,∞) satisfying the Herglotz condition
and the countable conjugacy condition and depending C1-smoothly on the parameter τ . If
lsp′(cτ ) = lsp′(c0) for all τ ∈ (−ε, ε), then cτ = c0 for all τ ∈ (−ε, ε).

Notice that dimension is irrelevant for the statements; if the sound speed is fixed, the
length spectrum is independent of dimension.

The following theorem states that the same rigidity result is true for any finite disjoint
union of manifolds of the types given in theorems 4.6 and 4.7.

Theorem 4.8. Let N and N ′ be non-negative integers so that N+N ′ ≥ 1. Let R1, R2, . . . , RN ∈
[0, 1) and R′1, R

′
2, . . . , R

′
N ′ ∈ (0, 1) be any numbers. Let n1, n2, . . . , nN and n′1, n

′
2, . . . , n

′
N ′

be integers, each of them at least 2. Fix ε > 0 and let ci,τ : [Ri, 1]→ (0,∞) for i = 1, . . . , N
and c′i,τ : [R′i, 1] → (0,∞) for i = 1, . . . , N ′ be C1,1 functions satisfying the Herglotz condi-

tion and the countable conjugacy condition and depending C1-smoothly on the parameter
τ . For every i such that Ri = 0, we assume d

dr ci,τ (r)
∣∣
r=0

= 0. If the set

N⋃
i=1

lsp(ci,τ ) ∪
N ′⋃
i=1

lsp′(c′i,τ )

is the same for all τ ∈ (−ε, ε), then every sound speed ci,τ and c′i,τ is independent of the
parameter τ .

Remark 4.9. It does not matter whether for every periodic broken ray only the primitive
period is included in the length spectrum, or of its all integer multiples. The proofs of the
three theorems above are the same in both cases.

Even more might be true, and we propose the following conjecture.

Conjecture 4.10. Under certain geometric hypotheses, a spherically symmetric manifold
is uniquely determined by its length spectrum.

A verification of the conjecture would imply that such a manifold is uniquely determined
by its spectrum under some geometric assumptions.

Remark 4.11. Theorem 4.8 may seem like an unnecessary generalization of the two pre-
ceding theorems, but it has geophysical significance. Consider a spherically symmetric
model of the earth. It essentially consists of three different parts, an inner ball and two
nested annuli. The full length spectrum of the Earth is the set of all periodic orbits for
the different polarized waves. The statement in theorem 4.8 (with N = 2 and N ′ = 1)
is, however, incomplete in the sense that the coupling between different polarizations and
transmission at boundaries are ignored. However, this is the best toy model for which
rigidity is currently known.
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Radial symmetry is an excellent approximation of the earth or planets in general. This
symmetry is not exact, and unfortunately our method requires precise symmetry. Assuming
radial symmetry is not merely a matter of technical convenience, but a truly necessary
assumption. A key ingredient in the proof is that many periodic broken rays are stable
under deformations of the metric. In spherical symmetry the broken rays are only stable
under deformations that preserve the symmetry, otherwise they are typically unstable and
the proof falls apart.

The countable conjugacy condition should be a generic property of sound speeds. It is a
technical assumption we do not like to make, but it does not hinder the relevance for our
planetary model.

The Herglotz condition is crucial for the geometry of the problem. Without it the
manifold would trap some geodesics inside and the geometry of broken rays would be very
different. In the commonly used Preliminary Reference Earth Model (PREM) both pressure
and shear wave speeds satisfy the Herglotz condition piecewise. Due to the layered structure
of the Earth both wave speeds have jumps, whereas our result assumes C1,1 regularity.

4.3.1. No inner reflections. In this subsection we prove theorem 4.6. All the lemmas here
are stated under the assumptions of the theorem. By decreasing ε slightly we can assume
that cτ (1) is bounded away from zero and infinity without any loss of generality.

Let Pτ ⊂ (R, 1) be the set of radii for which the corresponding broken ray – which is
unique up to rotations – is periodic with respect to the sound speed cτ . A priori Pτ depends
on τ . If r ∈ Pτ , the corresponding broken ray has nτ (r) reflections and winds around the
origin mτ (r) times. We choose all periodic broken rays to have minimal period, so the
natural numbers nτ (r) and mτ (r) are coprime. If ατ (r) is the angle we defined earlier
(previously without the dependence on τ), we have the identity

πmτ (r) = nτ (r)ατ (r).

We denote the length of the periodic broken ray with radius r by `τ (r). Simple geometri-
cal considerations show that `τ (r) = 2nτ (r)Lτ (r), where Lτ (r) is defined like L(r) in (2.1).
We denote ρτ (r) = r/cτ (r). The Herglotz condition states that ρ′τ (r) > 0.

Lemma 4.12. Assume R > 0. There is a constant C > 1 so that

• 1
C < cτ (r) < C,

• 1
C (s− r) < ρτ (s)− ρτ (r) < C(s− r),

• ατ (r) < C and
• Lτ (r) < C

for all τ ∈ (−ε, ε) and r, s ∈ (R, 1) with s > r.

Proof. It follows from the Herglotz condition that r/cτ (r) ≤ 1/cτ (1), whence cτ (r) ≥
Rcτ (1). Since cτ (1) is uniformly bounded from below, the functions cτ are all uniformly
bounded from below. We assumed the sound speeds to be uniformly bounded from above
in the theorem, so for some constant C > 1 we have 1

C < cτ (r) < C for all τ and r.
We write LHS . RHS if there is a constant C independent of τ , r and s so that

LHS < C ·RHS. By LHS ≈ RHS we mean LHS . RHS . LHS.
Assume s > r. Since cτ is C1,1 and satisfies the Herglotz condition, we have 0 <

ρτ (s) − ρτ (r) . s − r. On the other hand the minimum of ρ′τ depends continuously on τ
and is always positive, so we have also s− r . ρτ (s)− ρτ (r). Thus ρτ (s)− ρτ (r) ≈ s− r.
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It follows from the previous observation that(
1−

(
ρτ (r)

ρτ (s)

)2
)−1/2

≈ (s− r)−1/2.

Combining this with equations (2.2) and (2.1) gives the desired uniform estimates for ατ
and Lτ . �

Lemma 4.13. If R = 0, then limr→0 ατ (r) = π
2 and limr→0 Lτ (r) =

∫ 1
0 cτ (r)−1dr.

Proof. In the limit the corresponding maximal geodesic tends to a diameter of the ball.
This limit is a radial geodesic and it is geometrically obvious that the angle and length
corresponding to it are the limits stated above. �

Lemma 4.14. The length spectrum lsp(cτ ) is countable.

Proof. This follows from countability of Pτ given by lemma 4.5, since lsp(cτ ) = {`τ (r); r ∈
Pτ}. �

We denote by Sτ the set of radii r ∈ (R, 1) for which α(r) ∈ πQ and α′(r) 6= 0. Radii in
this set will correspond to stable broken rays as we shall see in lemma 4.16 below.

Lemma 4.15. The set Sτ is countable and dense in (R, 1).

Proof. Let Cτ denote the set of zeros of α′τ . (We used the same notation in lemma 4.4.)
By lemma 4.5 we know that Pτ is dense and countable and Cτ is closed and countable.
Therefore Sτ = Pτ \ Cτ is dense and countable. �

The next lemma shows that periodic broken rays are stable under variations of the radial
sound speed. Periodic broken rays on a highly symmetric manifold are typically not stable
under all variations of the metric, but we are only looking at variations that preserve the
symmetry.

Lemma 4.16. For every r ∈ S0 there is δ ∈ (0, ε) a C1 function ϕ : (−δ, δ) → (R, 1) so
that

• ϕ(0) = r,
• ατ (ϕ(τ)) = α0(r) (and thus ϕ(τ) ∈ Pτ ),
• nτ (ϕ(τ)) = n0(r) and
• mτ (ϕ(τ)) = m0(r)

for all τ ∈ (δ, δ). In particular, τ 7→ `τ (ϕ(τ)) is differentiable.

Proof. Fix any r ∈ S0. We know that α′0(r) 6= 0, so by the implicit function theorem there is
a C1 function ϕ defined near zero so that ατ (ϕ(τ)) = α0(r) and ϕ(0) = r. Since ατ (ϕ(τ)) is
independent of τ , so are the numbers nτ (ϕ(τ)) and mτ (ϕ(τ)). Differentiability of the length
follows from the fact that the reflection number is constant and L is differentiable. �

Lemma 4.17. Let ϕ : (−δ, δ)→ (R, 1) for any δ > 0 be a C1 function satisfying ϕ(τ) ∈ Pτ
for all τ ∈ (−δ, δ). Let γ0 : [0, T ]→M be a periodic broken ray with radius ϕ(0). Then

2
d

dτ
`τ (ϕ(τ))

∣∣∣∣
τ=0

=

∫ T

0

d

dτ
c−2
τ (γ0(t))

∣∣∣∣
τ=0

dt.



30 MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, AND VITALY KATSNELSON

Proof. A version of this lemma with non-periodic broken rays of finite length and arbitrary
variations of the metric was given in [12, theorem 17]. (There is an error in the formula
of the cited theorem; the factor 2 should be replaced with 1

2 .) Applying that result for
conformal variations and broken rays that have the same starting and ending points gives
the desired claim. �

Lemma 4.18. If f : M → R is a continuous radially symmetric function (identified as a
function f : (R, 1]→ R) and r ∈ P0, then the integral of f over any periodic geodesic (with
respect to sound speed c0) of radius r is

(4.1) 2n0(r)

∫ 1

r

f(s)

c(s)

(
1−

(
rc(s)

sc(r)

)2
)−1/2

ds.

Proof. The proof is a simple calculation, similar to the one leading to equation (2.1). �

Lemma 4.19. If Af(r) is the function of (4.1), then the map f 7→ Af takes continuous
functions to continuous functions and is injective on the space of continuous functions.

Proof. This follows from theorems 5 and 12 (or lemma 25) of [7]. �

In the C∞ setting relevant for the spectrum of the Laplace–Beltrami operator this was
shown by Sharafutdinov [16]. With all these lemmas as ingredients, it is difficult not to
prove theorem 4.6.

Proof of theorem 4.6. Take any radius r ∈ S0 and let ϕ be the function given by lemma 4.16.
We know that τ 7→ `τ (ϕ(τ)) is differentiable (lemma 4.16), `τ (ϕ(τ)) ∈ lsp(cτ ) = lsp(c0) and
lsp(c0) has no interior (lemma 4.14). Therefore this function is constant.

By lemma 4.17 this implies that the variation of the wave speed, f = d
dτ c
−2
τ

∣∣
τ=0

: M →
R, integrates to zero over all periodic geodesics of radius r. This function f is radially
symmetric, so we can think of it as a function (R, 1]→ R. By lemma 4.18 we know that

(4.2)

∫ 1

r

f(s)

c(s)

(
1−

(
rc(s)

sc(r)

)2
)−1/2

ds = 0.

Equation (4.2) is true for a dense set of radii r ∈ (R, 1) by lemma 4.15, so it follows from
lemma 4.19 that in fact f vanishes identically.

We have found that d
dτ cτ = 0 at τ = 0. The choice τ = 0 was in no way important to

this argument, so in fact d
dτ cτ = 0 for all τ ∈ (−ε, ε). This means that all sound speeds cτ

indeed coincide. �

A key step in the reasoning in the preceding proof can be stated as follows: A radially
symmetric function is uniquely determined by its integrals over all periodic broken rays.
There is even a reconstruction formula for this problem: [7, Remark 27]. Radial symmetry
is important, as a general smooth function is not uniquely determined. Only the even part
of the function can be recovered efficiently. This is in sharp contrast to the case of geodesic
X-ray tomography on such manifolds where the ray transform has no kernel. See [7] for
details.

4.3.2. Inner reflections included. In this subsection we will prove theorems 4.7 and 4.8.
The only ingredient we need to add to the proof of theorem 4.6 is the following lemma.

We will prove the lemma after showing how it completes the proofs of the theorems.
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Lemma 4.20. Let M = B̄(0, 1)\B(0, R) ⊂ Rn, R > 1 and n ≥ 2, be an annulus. Equip M
with a radially symmetric C1,1 sound speed satisfying the Herglotz condition. Then the set
of all lengths of periodic broken rays that reflect on the inner boundary r = R is countable.

We note that no assumption was made on conjugate points in the lemma.

Proof of theorem 4.7. We denote the set of all lengths of periodic broken rays with respect
to sound speed cτ that reflect on the inner boundary by Hτ . Then we have lsp′(cτ ) =
lsp(cτ ) ∪ Hτ . As in the proof of theorem 4.6, we have a dense set of radii r ∈ (R, 1) for
which there is a family of corresponding periodic broken rays varying continuously in τ ;
this set was denoted by S0. Since lsp′(cτ ) is independent of τ and each set Hτ is countable,
the lengths of the periodic broken rays in this family must in fact be independent of τ . The
rest of the proof can be concluded as that of theorem 4.6. We only need the integrals of
the variations of the sound speed over broken rays that do not hit the inner boundary. �

Proof of theorem 4.8. We denote the individual Riemannian manifolds in question byM1, . . . ,MN

and M ′1, . . . ,M
′
N ′ , equipped with their respective sound speeds. Each one of them has a

countable length spectrum, so the length spectrum of the whole system is still countable.
We can then use the argument presented in the proof of theorem 4.7 to conclude for each
manifold separately that the sound speed has to be independent of the parameter τ . �

Proof of lemma 4.20. Consider a geodesic joining the two boundaries; a periodic broken
ray of the kind we need to study is a finite union of rotations and reflections of such a
geodesic. We parametrize this geodesic with arc length starting from the inner boundary.
Due to symmetry the geodesic is confined to a two-dimensional plane, and in this plane
we may use polar coordinates. In these coordinates the geodesic is [0, T ] 3 t 7→ (r(t), θ(t)),
with r(0) = R and r(T ) = 1. We denote ρ(r) = r/c(r).

Let the angle between the geodesic and the radially outward pointing normal vector be ω.
(The metric is conformally Euclidean so we may use the Riemannian metric or the Euclidean
metric to measure angles at a point.) We assume for the time being that ω ∈ (0, π2 ). Since
the geodesic has unit speed, we have cosω = ρ(R)θ′(0). With this information it is easy to
see that the constant value of the angular momentum ρ(r(t))2θ′(t) is ρ(R) cosω.

Using unit speed and the conservation of angular momentum one easily finds that the
change in the angular coordinate over the geodesic is

θ(T )− θ(0) =

∫ 1

R

ρ(R) cosω

c(r)ρ(r)2

(
1−

(
ρ(R) cosω

ρ(r)

)2
)−1/2

dr.

This angular difference depends on ω, but it is most convenient to think of it as a function
of z := ρ(R) cosω (the angular momentum). We denote this angular difference by β(z).
Its geometrical meaning is the same as that of α(r) defined earlier, but we use a different
letter to avoid confusion.

Since

(4.3) β(z) =

∫ 1

R

z

c(r)ρ(r)2

(
1−

(
z

ρ(r)

)2
)−1/2

dr,

an easy calculation gives

β′(z) =

∫ 1

R

1

c(r)ρ(r)2

(
1−

(
z

ρ(r)

)2
)−3/2

dr.
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This derivative is positive, so β is in fact a homeomorphism from [0, 1] to its image; the
limits at 0 and 1 can be checked to be finite.

We may exclude radial geodesics. For non-radial geodesics the integral of (4.3) is non-
singular and differentiation under the integral sign is simple. For the similar result corre-
sponding to the diving waves (the function α), the derivative is more complicated; cf. [7,
proposition 15].

The broken ray corresponding to angular momentum z is periodic if and only if β(z) ∈
πQ. Since β is a homeomorphism between intervals, the set of angular momenta z cor-
responding to periodicity is countable. Therefore the set of corresponding lengths is also
countable. �

4.4. Spectral rigidity. We are now ready to prove theorem 1.2. The proof is trivial at
this point, but we record it explicitly for completeness.

Proof of theorem 1.2. Let us first consider the simplest case where c satisfies the periodic
conjugacy condition.

The trace of the Green’s function is determined by spec(c) through proposition 2.2.
Since the trace as a function of t ∈ R is singular precisely at the length spectrum, spec(c)
determines lsp′(c). Then rigidity of the spectrum spec(c) follows from that of lsp′(c); see
theorem 4.7.

Let us then drop the periodic conjugacy condition. The Neumann spectrum spec(c) still
determines the trace of the Green’s function. As pointed out in remark 2.4, the singularities
determine the part of the length spectrum corresponding to periodic broken rays satisfying
the clean intersection property. Under the Herglotz condition and the countable conjugacy
condition a periodic broken ray of radius r satisfies the clean intersection property if and
only if α′(r) 6= 0; see remark 4.3. In the notation of lemma 4.4 and denoting the length
of a geodesic of radius r by `(r), the problematic primitive lengths are precisely `(r) for
r ∈ C ∩ P . Since we assumed the length spectrum to be non-degenerate, none of the
lengths `(r) for r ∈ P \C coincide with the problematic ones. Access to all radii r ∈ P \C
is sufficient for the proof of length spectral rigidity. Notice that C is exactly the same set
that corresponds to possibly unstable periodic broken rays, and this data was ignored in
the proof of length spectral rigidity anyway. �

Appendix A. Debye Expansion

Here, we describe how to relate the sum of eigenfunctions to a kernel closely related to
the propagator. First, we note that∫ ∞

0
nfl(t)e

− iωt dt =
1

ωn(k)2 − ω2

(cf. (2.7)). We substitute, again, k = ωp, and introduce the Debye expansion for p fixed.
Thus we can isolate the different regimes:

• Diving (R/c(R) < p < 1/c(1): The dispersion relations satisfy,

ωn(p) := ωn =

(
n+

5

4

)
πτ(p)−1, τ(p) =

∫ 1

R?
β(r′; p) dr′
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(cf. (3.6)) and the WKB eigenfunctions yield

Un(r; p)Un(r0; p) = 4T−1(rr0)−1

c(r)−1ρ(r)−1/2c(r0)−1ρ(r0)−1/2β−1/2(r; p)β−1/2(r0; p)

sin[(n+ 5
4)πτ(r; p)/τ(p)] sin[(n+ 5

4)πτ(r0; p)/τ(p)],

where

ωτ̃(r; p) = ω

∫ 1

R?
β(r′; p) dr′ +

π

4
,

to leading order. In fact, 2τ T−1 cancels against (1− c−1
n Cn)−1; hence, we premul-

tiply Un(r; p)Un(r0; p) by τ before analyzing the summation. The summation,

(rr0)c(r)ρ(r)1/2c(r0)ρ(r0)1/2β1/2(r; p)β1/2(r0; p)
T

4τ

∞∑
n=0

Un(r; p)Un(r0; p)

ωn(p)2 − ω2

can be carried out to yield

1

τ

∞∑
n=0

sin[(n+ 5
4)πτ̃(r; .)/τ ] sin[(n+ 5

4)πτ̃(r0; .)/τ ]

[(n+ 5
4)π/τ ]2 − ω2

=
1

8 iω

∞∑
i=1

exp
[
− iωτi(r, r0; p) + iNj

π

2

]
,

where

τ1(r, r0; p) =

∣∣∣∣∫ r

r0

β(r′; p) dr′
∣∣∣∣

τ2(r, r0; p) =

∫ r0

R?
β(r′; p) dr′ +

∫ r

R?
β(r′; p) dr′,

τ3(r, r0; p) =

∫ 1

r0

β(r′; p) dr′ +

∫ 1

r
β(r′; p) dr′,

τ4(r, r0; p) =

∫ 1

R?
β(r′; p) dr′ −

∣∣∣∣∫ r

r0

β(r′; p) dr′
∣∣∣∣ ,

τi(r, r0; p) = τi−4(r, r0; p) + 2

∫ 1

R?
β(r′; p) dr′, i = 5, 6, . . .

while

N1 = 0,

N2 = 1,

N3 = 0,

N4 = 1,

Ni = Ni−4 + 1, i = 5, 6, . . .

• Reflecting (0 < p < R/c(R): The dispersion relations satisfy,

ωn(p) := ωn = (n+ 1)πτ(p)−1, τ(p) =

∫ 1

R
β(r′; p) dr′
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(cf. (3.7)) and the WKB eigenfunctions yield

Un(r; p)Un(r0; p) = 4T−1(rr0)−1

c(r)−1ρ(r)−1/2c(r0)−1ρ(r0)−1/2β−1/2(r; p)β−1/2(r0; p)

sin[(n+ 1)πτ̃(r; p)/τ(p)] sin[(n+ 1)πτ̃(r0; p)/τ(p)],

where

ωτ̃(r; p) = ω

∫ r

R
β(r′; p) dr′ +

π

2
,

to leading order. In fact, 2τ T−1 cancels against (1− c−1
n Cn)−1; hence, we premul-

tiply U2;n(r; p)U2;n(r0; p) by τ before analyzing the summation. The summation,

(rr0)c(r)ρ(r)1/2c(r0)ρ(r0)1/2β1/2(r; p)β1/2(r0; p)
T

4τ

∞∑
n=0

Un(r; p)Un(r0; p)

ωn(p)2 − ω2

can be carried out to yield

1

τ

∞∑
n=0

sin[(n+ 1)πτ̃(r; .)/τ ] sin[(n+ 1)πτ̃(r0; .)/τ ]

[(n+ 1)π/τ ]2 − ω2

=
1

4ω

cos[ω(τ − (τ̃(r; .) + τ̃(r0; .))]− cos[ω(τ − (τ̃(r; .)− τ̃(r0; .))]

sin(ωτ)
.

Upon representing the cosines and sine on the right-hand side in terms of complex
exponentials, and then applying the binomial expansion, we obtain

1

τ

∞∑
n=0

sin[(n+ 1)πτ̃(r; .)/τ ] sin[(n+ 1)πτ̃(r0; .)/τ ]

[(n+ 1)π/τ ]2 − ω2
=

1

8 iω

∞∑
i=1

exp[− iωτi(r, r0; p)],

where

τ1(r, r0; p) =

∣∣∣∣∫ r

r0

β(r′; p) dr′
∣∣∣∣ ,

τ2(r, r0; p) =

∫ r0

R
β(r′; p) dr′ +

∫ r

R
β(r′; p) dr′,

τ3(r, r0; p) =

∫ 1

r0

β(r′; p) dr′ +

∫ 1

r
β(r′; p) dr′,

τ4(r, r0; p) =

∫ 1

R
β(r′; p) dr′ −

∣∣∣∣∫ r

r0

β(r′; p) dr′
∣∣∣∣ ,

τi(r, r0; p) = τi−4(r, r0; p) + 2

∫ 1

R
β(r′; p) dr′, i = 5, 6, . . .

To unify the notation, we can introduce Ni = 0, i = 1, 2, . . .

Appendix B. General framework for symmetries in a manifold

In this appendix, we consider more general situations for trace formulas when the mani-
fold has symmetries given by a compact Lie group and we show how the quantities appearing
in proposition 2.2 are special cases of a general framework. Our constructions here are in-
spired by the work in [4, 5, 2]. In particular, we provide general representation of the
critical manifolds CT described in sections 2 and 3.3 under symmetry from a compact Lie
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group G, which corresponds to the principal symbol of ∆g possessing symmetries. See the
works of Cassanas [3] and Gornet [9] for other closely related work.

Let (M, g) be a compact Riemannian manifold with boundary satisfying the same as-
sumptions as in [10]. In fact, all that is necessary is that one may construct a parametrix
in the same form as [10] for the Neumann wave propagator. We assume that a compact Lie
group G has a symplectic group action on T ∗M and it accounts for all the symmetries of
the Hamiltonian p(x, ξ) = |ξ|2g, which is the principal symbol of ∆g. That is, p(g.z) = p(z)
for each z ∈ T ∗M and g ∈ G, where g.z or gz denotes the group action. The assumption
is merely that G accounts for all such symmetries.

The symmetry in the Hamiltonian implies that the fixed point manifolds CT introduced
in section 2 are in fact invariant under the group action: g.CT ⊂ CT for each g ∈ G. The
main assumption we make is that the connected components of CT are the G-orbit of a
particular periodic bicharacteristic γ and it has no other symmetry; i.e. assuming CT is
already connected, CT = Gγ := {g.x; g ∈ G and x ∈ Im(γ)}. We write [γ] to denote this
set, which is also a certain equivalence class of γ as described in section 2. We note that
this assumption captures generic situations since on general manifolds without symmetry,
CT has dimension 1 (see [8, p. 61]), and an increase in dimension should only come from a
group symmetry.

Next, we set L = I − dΦT (m) for m ∈ CT . In the context of group symmetries, the map
I −dΦT : TmS

∗M/ ker(L)→ TmS
∗M/ ker(L) is in general not an isomorphism anymore [8,

lemma 4.4])2. However, the map

I − dΦT : TmT
∗M/ ker(L2)→ TmT

∗M/ ker(L2)

will generically be an isomorphism [2, appendix A.1], [4, 5, 3]. The above map is what we
will now refer to as the Poincaré map, which we denote I−P[γ] as described in section 2. We
also assume the clean intersection hypothesis described in [8, 10] so that CT is a submanifold
and ker(L) = TmCT . See remark 4.3 for a geometric description of the clean intersection
hypothesis in spherical symmetry.

The new part of the trace formula will come from ker(L2)/ ker(L) whose presence is
already seen in the calculation of the normal Hessian for the stationary phase analysis in
section 3.3. Based on the arguments in [4, 5], there is a geometric scalar quantity, which we
denote by d[γ], defined on CT , that is nonvanishing and associated with the action of I−dΦT

on ker(L2)/ ker(L) [4, appendix]. This is a quantity directly related to periodic orbits in
the reduced phase space formally written as T ∗M/G and defined in [1, Chapter 4]. Under
certain geometric conditions,

∣∣I − P[γ]

∣∣ and d[γ] will stay constant over CT = [γ]. For our

SO(3) action, ker(L2)/ ker(L) was only one-dimensional determined by the infinitesimal
generator of dilations in the dual variables. Geometrically, this corresponds to merely
increasing the speed of a particular geodesic. Analytically, for a geodesic γν starting at
ν ∈ S∗M , it corresponds to the Jacobi field J(t) = tγ̇ν(t) (see [8, p. 70] for more details).
Hence, in our SO(3) case, TmT

∗M/ ker(L2) is indeed isomorphic to TmS
∗M/TmCT , but

generally, ker(L2)/ ker(L) will be much bigger when there is symmetry.

Next, our assumptions imply that there is a natural surjective map [0, T ]γ) × G → CT
which usually fails to be injective, where T ]γ is the primitive period of γ. For example, in
the analysis in section 3, one does not need the entire rotation group SO(3) to form CT ,
which would in fact create multiple copies, since certain elements of SO(3) already map γ

2This map happened to be an isomorphism for the SO(n) group in dimension 3, but this will normally
not happen in higher dimensions [4, 5].
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to itself. If the map is locally injective, then following [5, Section 3], we assume there is a
discrete subgroup I(γ) of G that carries γ to itself, and we denote Nγ to be the number of
elements in I(γ), corresponding to the analogous quantity appearing in proposition 2.2.

In summary, we have accounted for all the pieces in our trace formula (proposition 2.2)
in a general Lie group framework so that our formula may be compared to the formula
appearing in [5] albeit in a different setting.

Appendix C. A remark about spherical symmetry

Any spherically symmetric manifold is in fact of the form we consider – radially confor-
mally Euclidean.

Proposition C.1. Let A ⊂ Rn be an annulus (difference of two cocentric balls) and g ∈ Ck
a rotationally symmetric metric in the sense that g = U∗g for all U ∈ SO(n). Then (A, g)
is isometric to a Euclidean annulus with the Euclidean metric multiplied with a conformal
factor c−2(|x|) with c ∈ Ck.

Proof. In this proof it is more convenient to write c−2 = η. This notation is not used
elsewhere.

By rotational symmetry it suffices to consider the metric at points zr = (r, 0, . . . , 0) for
r ∈ [R, 1]. Near zr we take local coordinates (x, y) ∈ R× Rn−1 such that (x, y) represents
the point (r+ x, y) on A. In these coordinates we can write the metric at zr as the matrix

gzr =

(
a(r) b(r)T

b(r) C(r)

)
,

where a(r), b(r) and C(r) are a number, a vector and a matrix depending on r. We will
drop the argument (r) where it is implicitly clear. We will first show that b is identically
zero (if n ≥ 3) or becomes zero after applying a diffeomorphism that preserves rotational
symmetry (n = 2) and C(r) = c(r)I for some scalar function c (trivial for n = 2).

We first consider the case n ≥ 3. For any R ∈ SO(n− 1) we have UR := 1⊕R ∈ SO(n).
Since gzr must be invariant under UR, we have Rb = b and RCR−1 = C. But this holds
for all R ∈ SO(n− 1), so b = 0 and C is a multiple of identity.

We then turn to the case n = 2. Now b and C are scalars, and we write C = c. By
positive definiteness of the metric we have a > 0, c > 0, and b2 < ac.

We write points on A in polar coordinates (r, θ) and define a function Fϕ : A → A

parametrized by a function ϕ : [R, 1]→ R by setting F (r, θ) = (r, θ+ϕ(r)). If ϕ is Ck, then
F is clearly a Ck diffeomorphism. After we fix r0 ∈ [R, 1], we may assume that ϕ(r0) = 0
by rotational symmetry, so that F (zr0) = zr0 . In the Euclidean coordinates (x, y) near zr0
we have

DFzr0 =

(
1 0

α(r0) 1

)
where α(r) = rϕ′(r), which implies

(C.1) F ∗ϕgzr0 =

(
a+ 2bα+ cα2 b+ cα

b+ cα c

)
.

If we choose the function ϕ so that rϕ′(r) = −b(r)/c(r), the metric (C.1) becomes diagonal.
Since c is bounded from below uniformly on [R, 1], the function ϕ(r) = −

∫ r
b(s)/sc(s)ds

is well defined and Ck+1 if the original metric is Ck; additive constants are irrelevant, since
they correspond to rotations of the entire annulus.
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We have now shown that the metric can be assumed to have the form

gzr =

(
a(r) 0

0 c(r)I

)
.

If ρ : [R, 1]→ R is a strictly increasing C1 function, we define the change of variable (again
in polar coordinates) Gρ(r, θ) = (ρ(r), θ). The function ρ is a diffeomorphism and we
denote σ = ρ−1. We will later choose ρ so that ρ(1) = 1 and ρ(R) > 0, which makes
Gρ : A→ B̄(0, 1) \B(0, ρ(R)) a diffeomorphism.

A simple calculation shows that

(C.2) (G−1
ρ )∗gzr =

(
a(σ(r))σ′(r)2 0

0 c(σ(r))(σ(r)/r)2I

)
.

If we construct ρ so that

(C.3) a(σ(r))σ′(r)2 = c(σ(r))(σ(r)/r)2,

the metric (C.2) is a multiple of the identity matrix (conformally Euclidean) and

(B̄(0, 1) \B(0, τ), (G−1
ρ )∗g)

is a manifold of the desired form. We will see that ρ ∈ Ck+1, and this shows the regularity
claim.

For convenience, we change variable from r to s = σ(r). Condition (C.3) now becomes

d

ds
log ρ(s) =

1

s

√
a(s)

c(s)
.

We thus choose

(C.4) ρ(s) = exp

(∫ s

1

1

t

√
a(t)

c(t)
dt

)
.

Since the integrand is strictly positive and Ck, the function ρ is a strictly increasing Ck+1

function as claimed. We also claimed earlier that ρ satisfies ρ(1) = 1 and ρ(R) > 0, and
these properties can be read in the representation (C.4). �

Remark C.2. The diffeomorphism of proposition C.1 is in fact radial if n ≥ 3. It will also
be necessarily radial in two dimensions if the metric is invariant under the action of SO(2),
but also that of O(2).

Appendix D. Some exotic spherically symmetric geometries

Our results assumed several geometric hypotheses. In this appendix we explore some
problematic spherically symmetric geometries which are ruled out by our assumptions.

First, recall that countability of the length spectrum was proven in lemma 4.14 under the
Herglotz and countable conjugacy conditions. It is not known whether the length spectrum
can be uncountable without these assumptions.

Let us then see concrete examples where our assumptions are violated and it leads to
problematic behavior:

Example D.1. If the derivative d
dr

(
r
c(r)

)
vanishes in an open set of radii, then that part

of the manifold is isometric to a cylinder S2(0, a) × (0, b) for some a, b > 0. The great
circles of S2 with the second variable constant are periodic geodesics, and they all have the
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same length T = 2πa. The dimension of the corresponding fixed point set CT is 3. This
manifold is trapping and the periodic orbits in question do not reach the boundary. The
Herglotz condition is violated.

Example D.2. Consider the closed hemisphere of S3 or any other Sn, n ≥ 2. Now all
broken rays are periodic, and all primitive periods are 2π. The primitive length spectrum
is degenerated into a single point. The Herglotz condition fails at the boundary (but only
there), and the endpoints of all maximal geodesics are conjugate. The fixed point set has
full dimension; for n = 3 we have dim(C2π) = 5. This manifold is non-trapping.

Example D.3. Consider the closed hemisphere H ⊂ S2. In polar coordinates we can
identify H near the boundary (equator) with (R, 1]× [0, 2π], where the angles 0 and 2π are
identified in the obvious way. For any L ∈ (0, 2π), we can take the submanifold (R, 1]×[0, L]
and identify angles 0 and L. If L /∈ πQ, then no broken ray near the boundary is periodic.
By angular rescaling we may write this as a rotation invariant metric near the boundary of
the closed disc D̄ and continue it to a rotation invariant metric in the whole disc. Now there
is an open set of points on the sphere bundle containing no periodic orbits, and this open
set can be made large. Only rays going close enough to the center of the disc will contribute
to the length spectrum. This manifold is also non-trapping, the Herglotz condition fails at
the boundary, and the countable conjugacy condition is violated.
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