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THREE TRAVEL TIME INVERSE PROBLEMS ON SIMPLE

RIEMANNIAN MANIFOLDS

JOONAS ILMAVIRTA, BOYA LIU, AND TEEMU SAKSALA

Abstract. We provide new proofs based on the Myers–Steenrod theorem
to confirm that travel time data, travel time difference data and the broken
scattering relations determine a simple Riemannian metric on a disc up to the
natural gauge of a boundary fixing diffeomorphism. Our method of the proof
leads to a Lipschitz-type stability estimate for the first two data sets in the
class of simple metrics.

1. Introduction

We study three geometric inverse problems. The task is to reconstruct a simple Rie-
mannian manifold from (1) travel time data, (2) travel time difference data, or (3)
the broken scattering relations. A compact Riemannian manifold is called simple if
the boundary is strictly convex and the exponential map is a global diffeomorphism.

The third problem has been solved previously for dimension three and higher in
general geometry, and we extend the result to dimension 2 in simple geometry.
For the other problems previous results give Hölder or similar stability in great
generality, and we show that in simple geometry we improve this to Lipschitz. In
many previously known cases (e.g. uniqueness on simple manifolds for problems 1
and 2) our proofs are elementary due to simple geometry.

If the Earth is modeled as a Riemannian manifold (which is a popular albeit not
exactly accurate choice; cf. [1, 3]), these problems correspond simplified versions of
problems arising from seismology. The Earth is full of small-scale inhomogeneities
that cause seismic waves to scatter. Seen on the scale of the whole planet, these
inhomogeneities such as rocks are best seen as point-like objects of zero size even
though a single point is irrelevant from the point of view of the elastic wave equation.
The model for scattering is mesoscopic: the scatterers are big enough to cause the
waves to scatter but small enough to be considered mere points on the global scale
that fill the planet densely. For the first two problems no such considerations are
needed, and the point sources can be either natural (e.g. earthquakes) or artificial
(e.g. produced by focusing waves). Seismic ray paths correspond to geodesics.
We will focus on the geometric problems in this paper and ignore details of the
physical model. We introduce the inverse problems in physical terms below and in
mathematical terms in the following subsections.

In the first and second inverse problems we record the arrival times of seismic waves,
initiated by a dense set of point sources going off at some unknown origin times,
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measured on a dense set of receivers on the surface of the planet. The arrival time
of a wave is the difference of the travel time (distance from the source to receiver)
and the origin time. In our first main result (Theorem 9), we assume that origin
times are known and show that the collection of travel times stably determine the
isometry class of a simple Riemannian metric. If the origin time of a seismic event is
unknown and we have measured the corresponding arrival times, then by computing
the difference of arrival times we obtain a travel time difference. In our second main
result (Theorem 13), we show that the travel time differences stably determine a
simple metric up to a Riemannian isometry.

In our third inverse problem, the data consists of the knowledge of ingoing directions
on the boundary of the planet and for each such direction the set of all outcoming
directions and the associated travel times of all single-scattered geodesics. This data
is encoded in the broken scattering relations. Our third main result (Theorem 15)
shows that this data determines a simple metric up to a Riemannian isometry.

1.1. Inverse problem 1: Travel time data. Let (M, g) be a compact, connected,
oriented, and smooth Riemannian manifold with smooth boundary ∂M . For any
points x, y ∈ M , we use the notation d(x, y) for the Riemannian distance between
them. The first data set we study in this paper is the travel time data.

Definition 1. For every point p ∈ M its travel time function rp : ∂M → R is

defined by the formula rp(z) = d(p, z). The travel time map of the Riemannian

manifold (M, g) is then given by the formula

R : (M, g) → (C(∂M), ‖ · ‖∞) (1)

with R(p) = rp. The image set R(M) ⊂ C(∂M) of the travel time map is called

the travel time data of the Riemannian manifold (M, g).

Remark 2. The travel time data of a Riemannian manifold is an unlabelled col-

lection of travel time functions. The locations of point sources related to these

functions are unknown.

It was showed in [8, Section 3.8] and [10] that the travel time data determines any
compact, connected, oriented, and smooth Riemannian manifold up to an isome-
try. A corresponding uniqueness result for a partial travel time data of a compact
manifold with strictly convex boundary was established in [15]. If the metric is
Finslerian, then the travel time data can be used to determine the metric, up to
a natural obstruction, in the directions of the tangent bundle corresponding with
distance minimizing geodesics that reach the boundary [1]. The authors also ver-
ified that this is the largest set in which a Finsler metric can be determined from
its travel time data. Approximate reconstruction of the Riemannian manifold and
Hölder-stability of the travel time data, under certain geometric bounds, have been
studied in [2, 9].

In the present paper we study the uniqueness and Lipschitz-stability of the travel
time data on simple Riemannian manifolds. It is important for our proofs that on a
simple manifold there are no conjugate points, and consequently any two points on
the manifold, including the boundary, are joined by a unique geodesic depending
smoothly on the endpoints.
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We will make use of the Myers–Steenrod theorem: “Every distance-preserving map
between two connected Riemannian manifolds is actually a smooth isometry of
Riemannian manifolds [13, 14].” This result is true also on simple manifolds with
boundary [2, Lemma 29]. In Proposition 6 of this paper we use this theorem
to show that the travel time map on simple Riemannian manifolds is a metric
isometry and provide a new, short proof for Proposition 8 for the aforementioned
uniqueness result in the class of simple Riemannian manifolds. Our first main result
(Theorem 9) is a Lipschitz-type stability result for the travel time data on simple
Riemannian manifolds.

1.2. Inverse problem 2: Travel time difference data. The second data set
studied in this paper is the travel time difference data.

Definition 3. The travel time difference function of a point p ∈M is the function

Dp : ∂M × ∂M → R,

Dp(z, w) = d(p, z)− d(p, w).

Then the travel time difference map and the travel time difference data of the

Riemannian manifold (M, g) are

D : (M, g) → (C(∂M × ∂M), ‖ · ‖∞)

with D(p) = 1
2Dp, and its image set

D(M) ⊂ C(∂M × ∂M),

respectively.

The factor 1
2 in D(p) = 1

2Dp is convenient in making the map D an isometry.

This data was introduced in [12], where instead of doing boundary measurements,
the travel time difference Dp(z, w) was measured for every source point p ∈ N

between any receiver points z, w ∈ F , where F ⊂ N contains an open subset of
a closed Riemannian manifold (N, g). The authors showed that the knowledge of
the metric on F , in conjunction with the travel time difference data, determine the
isometry type of (N, g). This result was later extended for the boundary measure-
ments on compact manifolds in [4]. On complete manifolds the uniqueness and a
non-quantitative stability of the travel time difference data was obtained in [6, 7].

In the present paper we revisit the travel time difference data on simple Riemannian
manifolds. We provide a new short proof for the uniqueness of the geometry from
this data (Proposition 12) by utilizing the Myers–Steenrod Theorem. Our second
main result is a Lipschitz-type stability for the travel time difference data on simple
manifolds (Theorem 13).

1.3. Inverse problem 3: Broken scattering relations. Our third main result
is the uniqueness result for the broken scattering relations on simple manifolds.
Let TM and SM be the tangent and the unit sphere bundles of (M, g), respectively.
The geodesic flow of (M, g) is denoted by

φ : SM × R → SM, φt(η) = (γη(t), γ̇η(t)),

and γη is the geodesic of (M, g) given by the initial conditions (γη(0), γ̇η(0)) = η ∈
SM.
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Let π : TM →M be the canonical projection to the base points given by π(z, v) =
π(v) = z, and let ν be the inward pointing unit normal vector field on the boundary
of M . The boundary of the sphere bundle is the set

∂SM = {v ∈ SM : π(v) ∈ ∂M}.

We call the set
∂inSM = {v ∈ ∂SM : 〈v, ν〉g > 0}

the inward pointing bundle at the boundary. Similarly, we define the outward
pointing bundle as

∂outSM = {v ∈ ∂SM : 〈v, ν〉g < 0}.

The unit ball bundle of ∂M is then defined by

B∂M = {ξ ∈ T∂M ; |ξ| < 1}. (2)

There are natural diffeomorphisms

Nin : ∂inSM → B∂M and

Nout : ∂outSM → B∂M

given by the fiberwise projection Nin/out(ξ) = ξ − 〈ξ, ν〉gν in the direction of the
normal vector ν. The point of these maps is to identify the bundle B∂M , which
is intrinsic to ∂M , with the bundles ∂inSM and ∂outSM which in principle carry
information of how the boundary sits within the unknown manifold M .

We are ready to define the broken scattering relations.

Definition 4. For each T > 0, the broken scattering relation BT on B∂M is such

that the vectors v1, v2 ∈ B∂M satisfy v1BTv2 if and only if there exist two numbers

t1, t2 > 0 for which t1 + t2 = T and π(φt1 (N
−1
in v1)) = π(φt2 (N

−1
in v2)).

The family {BT : T > 0} of relations is called the broken scattering relations of

Riemannian manifold (M, g).

Remark 5. We emphasize that a study of broken scattering relations requires the

knowledge of the unit ball bundle, which is equivalent to knowing the first funda-

mental form of ∂M .

Our third main result (Theorem 15) shows that the broken scattering relations de-
termine any simple Riemannian manifold up to a Riemannian isometry. A stronger
version of this result (for dim(M) ≥ 3) has been presented originally in [11], where
the authors only assumed that (M, g) is a smooth compact Riemannian manifold
with smooth boundary. In [3] this result was extended to cover reversible Finsler
metrics that satisfy a convex foliation condition.

Up to our best knowledge, Theorem 15 of this paper is novel in the two dimensional
case. As in [11], our proof is based on a reduction step (Proposition 14) to the travel
time data. Due to simplicity, we can provide a new proof for the reduction. This
and our Proposition 8 yield a novel streamlined proof for the uniqueness of the
broken scattering relations for simple metrics of all dimensions.

1.4. Outline of the paper. In Sections 2, 3 and 4 of this paper, we consider
the travel time data, travel time difference data, and broken scattering relations,
respectively. In Section 5 we consider a diffeomorphism invariant travel time and
travel time difference data and provide a stability result for them.
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2. Uniquenss and Stability of the Travel Time Data

We recall that every simple Riemannian manifold is diffeomorphic to the closed
unit ball Dn of Rn. Thus, from here onwards we study simple metrics on D

n.

Proposition 6. Let g be a simple Riemannian metric on D
n. The travel time map

R, given by formula (1), is a metric isometry.

Proof. By triangle inequality the map R is easily seen to be 1-Lipschitz. To prove
the reverse estimate, let x, y ∈ D

n. Since g is simple, there exists a unique distance
minimizing geodesic γ connecting the points x and y to some boundary point z ∈
S
n−1.

Since γ exits Dn at z, and all three points x, y, z are on the same distance minimizing
curve γ, we have

|rx(z)− ry(z)| = |d(x, z)− d(y, z)| = d(x, y).

Thus we have verified the equality

‖R(x) −R(y)‖∞ = d(x, y) for all x, y ∈ D
n.

The proof is complete. �

Since Dn is compact, the previous proposition yields thatR(Dn) is a compact subset
of the Banach space (C(Sn−1), ‖ · ‖∞). In order to compare two such image sets,
we next define a notion of distance between them.

Definition 7. We set the distance of travel time data of two simple Riemannian

metrics g1 and g2 on D
n to be

d
C(Sn−1)
H (R1(D

n),R2(D
n)) ≥ 0,

where d
C(Sn−1)
H is the Hausdorff distance of C(Sn−1) and the travel time maps Ri

are as in formula (1).

Moreover, we say that the travel time data of the simple Riemannian metrics g1
and g2 on D

n coincide if

d
C(Sn−1)
H (R1(D

n),R2(D
n)) = 0.

If Φ: Dn → D
n is a diffeomorphism whose restriction on S

n−1 is the identity map
and g1 is any simple metric of Dn, then the pullback metric g2 := Φ∗g1 is a simple
metric on D

n isometric to g1. Thus the equality

d2(p, z) = d1(Φ(p),Φ(z)) = d1(Φ(p), z)

(valid for all p ∈ D
n and z ∈ S

n−1) yields the equations R2(D
n) = R1(D

n) and

d
C(Sn−1)
H (R1(D

n),R2(D
n)) = 0.

In other words, the travel time data is invariant under boundary fixing diffeomor-
phisms. This is the natural gauge of the problem of determining the metric from
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its travel time data. In the following proposition we confirm that this is the only
obstruction.

Proposition 8. If the travel time data of simple Riemannian metrics g1 and g2
on D

n coincide, then the map

R−1
2 ◦ R1 : (D

n, g1) → (Dn, g2),

is a Riemannian isometry whose boundary restriction is the identity map.

Proof. Due to Definition 7 we have

R2(D
n) = R1(D

n). (3)

Then by Proposition 6, the map

Ψ := R−1
2 ◦ R1 : (D

n, d1) → (Dn, d2)

is a well defined bijective metric isometry. Thus by the Myers–Steenrod theorem,
the map Ψ is a smooth Riemannian isometry.

We get from equation (3) that for every z ∈ S
n−1 we have

d2(Ψ(z), z) = d1(z, z) = 0,

which ensures that Ψ is the identity at the boundary. �

To measure how close two compact metric spaces X and Y are to each other, we
use the Gromov–Hausdorff distance

dGH(X,Y ) := inf{dZH(f(X), g(Y ));

Z is a metric space,

f : X → Z and g : Y → Z

are isometric embeddings}.

(4)

This distance is zero if and only if the metric spaces X and Y are isometric (see [5]).
We are ready to formulate and prove our first main result:

Theorem 9 (Stability of the Travel Time Data). Let n ≥ 2, and let g1 and g2 be

two simple Riemannian metrics of Dn. Then

dGH((Dn, g1), (D
n, g2)) ≤ d

C(Sn−1)
H (R1(D

n),R2(D
n)). (5)

In particular, if the travel time data for two metrics coincide, then they agree up to

a boundary fixing isometry.

Proof. Inequality (5) follows from Proposition 6 and the definition of Gromov–
Hausdorff distance. �

3. Uniqueness and Stability of the Travel Time Difference Data

Proposition 10. If g is a simple metric on D
n, then its travel time difference

map D, given in Definition 3, is a metric isometry.
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Proof. First we observe that by triangle inequality the map D is 1-Lipschitz. For
the reverse estimate, let x, y ∈ D

n. Since g is a simple metric, there exists a unique
globally distance minimizing geodesic γ that goes through x and y, having some
endpoints z, w ∈ S

n−1. Since all four points x, y, z, w are on the same distance
minimizing curve, we have

|(D(x) −D(y))(z, w)| =
1

2
|d(x, z)− d(y, z) + d(y, w)− d(x,w)| = d(x, y).

Thus the map D is a metric isometry as claimed. �

Definition 11. We set the distance of the travel time difference data of two simple

Riemannian metrics g1 and g2 on D
n to be

d
C(Sn−1

×S
n−1)

H (D1(D
n),D2(D

n)) ≥ 0,

where d
C(Sn−1

×S
n−1)

H is the Hausdorff distance of the Banach space (C(Sn−1 ×
S
n−1), ‖ · ‖∞) and the travel time difference maps Di are as in Definition 3.

Moreover, we say that the travel time difference data of the simple Riemannian

metrics g1 and g2 on D
n coincide if

d
C(Sn−1)
H (D1(D

n),D2(D
n)) = 0.

Clearly the travel time difference data is invariant under boundary fixing diffeo-
morphisms. In the following proposition we show that this is the only obstruction
of determining the metric from its travel time difference data.

Proposition 12. If the travel time difference data of simple Riemannian metrics

g1 and g2 on D
n coincide, then the map

D−1
2 ◦ D1 : (D

n, g1) → (Dn, g2),

is a Riemannian isometry whose boundary restriction is the identity map.

Proof. By Definition 11 we have

D1(D
n) = D2(D

n) (6)

as subsets of the Banach space C(Sn−1 × S
n−1). Therefore, Proposition 10 implies

that the map

Θ := D−1
2 ◦ D1 : (D

n, d1) → (Dn, d2)

is a well defined bijective metric isometry. By the Myers–Steenrod theorem, the
map Θ is a smooth Riemannian isometry.

For every z ∈ S
n−1, equation (6) yields

d2(Θ(z), z) = d2(Θ(z), z)− d2(Θ(z),Θ(z)) = d1(z, z)− d1(z,Θ(z)) = −d1(Θ(z), z),

and so Θ is the identity on the boundary as claimed. �

Our second main result is as follows.

Theorem 13 (Stability of the Travel Time Difference Data). Let n ≥ 2, and let

g1 and g2 be two simple Riemannian metrics of Dn. Then

dGH((D
n, g1), (D

n, g2)) ≤ d
C(Sn−1

×S
n−1)

H (D1(D
n),D2(D

n)). (7)
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In particular, if the travel time difference data for two metrics coincide, then they

agree up to a boundary fixing isometry.

Proof. Inequality (7) follows from Proposition 10 and the definition of Gromov–
Hausdorff distance. �

4. Uniqueness of the Broken Scattering Relations

Suppose that g1 is a simple metric on D
n and g2 is the pullback metric of g1 under

some boundary fixing diffeomorphism Φ of Dn. Then the first fundamental forms
of these metrics on S

n−1 are the same. The broken scattering relations of these
metrics also coincide.

In this section we show that two simple metrics of Dn whose first fundamental forms
on S

n−1 and broken scattering relations coincide, agree up to a diffeomorphism
fixing S

n−1. This is obtained via the following reduction step to the travel time
data.

Proposition 14. Let g1 and g2 be two simple Riemannian metrics on D
n whose

first fundamental forms agree on S
n−1. If the broken scattering relations of these

metric coincide, then their travel time data also agree.

Proposition 14 will be proved at the end of this section with the help of auxiliary
lemmas. We will first present and prove our third main result.

Theorem 15 (Uniqueness of the Broken Scattering Relations). Let n ≥ 2, and

let g1 and g2 be two simple Riemannian metrics of D
n whose first fundamental

forms on S
n−1 agree. If the broken scattering relations of these metric coincide,

then there exists a smooth Riemannian isometry Ψ: (Dn, g1) → (Dn, g2) whose

boundary restriction Ψ: Sn−1 → S
n−1 is the identity map.

Proof. By Proposition 14 the travel time data of the metrics g1 and g2 coincide,
and we can choose the Riemannian isometry Ψ as in Proposition 8. �

The exit time function τexit : SD
n → [0,∞] of (Dn, g) is defined so that the max-

imal domain of definition for the geodesic with initial conditions η ∈ SDn is
[−τexit(−η), τexit(η)]. If g is a simple metric, the exit time is always finite and
continuous in η ∈ SDn (see e.g. [3, Lemma 13]). Moreover, the boundary point
γv(τexit(η)) is the first point where the geodesic γv hits the boundary.

Lemma 16. Let g be a simple Riemannian metric of Dn. Let v1, v2 ∈ ∂inSD
n be

such that the geodesics γv1 and γv2 do not have exactly the same endpoints on the

boundary. There exists v3 ∈ ∂inSD
n such that γv3 intersects γv1 but not γv2 .

Proof. Let z ∈ S
n−1 be and endpoint of γv1 that is not an endpoint of γv2 . Therefore

short geodesics with both endpoints sufficiently close to z will not meet γv2 . (These
geodesics can be thought of as being almost tangent to the boundary.) By strict
convexity of the boundary at z such geodesics exist, and some of them meet γv1 .
We simply let v3 to be the initial data of one of these geodesics. �
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Remark 17. Lemma 16 may fail if the boundary is not strictly convex. On the

closed hemisphere of S2 every pair of geodesics intersects each other. This follows

easily from geodesics being great circles, i.e., intersections of the sphere and a plane

through the origin. The claim of the lemma is, however, true for hemispheres of

higher dimension.

Lemma 18. Let g be a simple Riemannian metric on D
n. Let v1, v2 ∈ ∂inSD

n.

The following two statements are equivalent:

(1) We have V (v1) = V (v2), where

V (vi) := {w ∈ BS
n−1 : there is T > 0 for which Nin(vi)BTw}. (8)

(2) Either v1 = v2 or v2 = −φτexit(v1)(v1).

Proof. Clearly (2) implies (1), and it suffices to prove the implication from (1) to (2).
Suppose, towards contradiction, that condition (2) is not true, so that the traces of
geodesics γv1 and γv2 are not the same. Since g is simple, these geodesics cannot
have the same endpoints. Whence, by Lemma 16, there exists v3 ∈ ∂inSD

n such
that γv3 intersects γv1 but does not intersect γv2 . This contradicts condition (1). �

The broken scattering relations a priori record the information whether two
geodesics, starting at the boundary, intersect. Next we show that in the case of
simple metrics, more geometric information can be easily extracted from the broken
scattering relations.

For us the scattering relation is the map ∂inSD
n ∋ η 7→ −φτexit(η)(η) ∈ ∂inSD

n. The
negative sign makes the relation map inward pointing vectors to inward pointing
vectors. In the subsequent lemma, we show that the broken scattering relations
determine the exit time function and the scattering relation on ∂inSD

n.

Lemma 19. Let g be a simple Riemannian metric of Dn. The broken scattering

relations determine the scattering relation and exit time function on ∂inSD
n.

Proof. First we observe that the broken scattering relations determine the exit time
function via the equation

τexit(v) =
1

2
sup{T > 0 : (Ninv)BT (Ninv)}, for any v ∈ ∂inSD

n
.

Then we use these relations to find the set V (v), as in equation (8), for every
v ∈ ∂inSD

n. Let v1, v2 ∈ ∂inSD
n. Then by Lemma 18 we have V (v1) = V (v2) if

and only if v2 = v1 or v2 = −φτexit(v1)(v1). Thus, the broken scattering relations
determine the scattering relation. �

Remark 20. After we have recovered the scattering relation and the exit time

function on ∂inSD
n, together known as the lens relation, we could reduce the proof

of Theorem 15 to the classical boundary rigidity problem, which has been solved

on simple 2-manifolds [16] and for generic simple metrics in dimensions three and

higher [17]. As the broken scattering relations carry more information than the lens

relation, we can provide an easier proof for Theorem 15 via Proposition 14.
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Lemma 21. Let g be a simple Riemannian metric on D
n. Let v1, v2 ∈ BS

n−1.

Suppose that there exist a number T > 0 such that v1BT v2. Then the broken scat-

tering relations determine the travel times t1, t2 > 0 that satisfy the equations

T = t1 + t2, and γN−1

in
(v1)

(t1) = γN−1

in
(v2)

(t2).

Proof. Since g is simple, each pair of distinct geodesics can intersect at most once,
and for any two distinct v, w ∈ BD

n the sets

T (v, w) := {T > 0; vBTw}

are either empty or singleton sets. Thus the function T : BS
n−1×BS

n−1 → R∪{∞}
defined by

T (v, w) =







T (v, w), v 6= w, T (v, w) 6= ∅
∞, v 6= w, T (v, w) = ∅
τexit(N

−1
in (v)), v = w,

can be found by using the broken scattering relations. In particular T = T (v1, v2).

As the broken scattering relations determine the scattering relation, we know the di-
rections ηi = Nin(−φτexit(N−1

in
vi)

(N−1
in vi)) ∈ BS

n−1. Thus, there are some numbers

t1, t2, s1, s2 ≥ 0 that satisfy the equations

γN−1

in
(v1)

(t1) = γN−1

in
(v2)

(t2) = γN−1

in
(η1)

(s1) = γN−1

in
(η2)

(s2),

t1 + t2 = T (v1, v2), t1 + s1 = T (v1, η1),

t2 + s2 = T (v2, η2), t1 + s2 = T (v1, η2).

Since the linear system has a unique solution we obtain

t1 =
1

2
(T (v1, v2)− T (v2, η2) + T (v1, η2)) and

t2 = T (v1, v2)− t1.

This completes the proof. �

We are ready to prove Proposition 14.

Proof of Proposition 14. First we assume that g is a simple metric on D
n. Recall

that ν is the inward pointing unit normal vector field on S
n−1 with respect to this

metric. We define the set

D := {(s0, z0) ∈ R× S
n−1 : s0 ∈ [0, τexit(ν(z0))]},

and the map

E : D → D
n, E(s0, z0) = expz0(s0ν(z0)). (9)

Let (z0, s0) ∈ D. We define the set V (ν(z0)) as in equation (8). Since for each
v ∈ V (ν(z0)) there exists a unique T > 0 that satisfies the relation Nin(ν(z0))BT v,
we can apply Lemma 21 to find two functions tz0 , sz0 : V (ν(z0)) → R that satisfy
the equation γν(z0)(sz0(v)) = γv(tz0(v)) for every v ∈ V (ν(z0)). Then we study the
subset

V (s0, z0) = {v ∈ V (ν(z0)) : sz0(v) = s0},
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and note that by simplicity this set is an embedded submanifold of BS
n−1, and

the restriction of the canonical projection π : BS
n−1 → S

n−1 on V (s0, z0) is a
diffeomorphism onto S

n−1. Moreover, we have

tz0(π|
−1
V (s0,z0)

(q)) = d(E(s0, z0), q) for every q ∈ S
n−1.

Since (s0, z0) ∈ D was arbitrary and the map E is onto, we have

{tz0 ◦ π|
−1
V (s0,z0)

: Sn−1 → R : (z0, s0) ∈ D} = R(Dn).

Let the metrics g1 and g2 be as in the assumption of this theorem. Since the first
fundamental forms of these metric agree on S

n−1, they have the same unit normal
vector fields on S

n−1. Since the broken scattering relations of these metrics also
coincide, all the objects constructed in this and the preceding proofs are the same
for both of these metrics. Therefore the travel time data of these metrics coincide.
The proof is complete. �

5. Diffeomorphism Invariant Data

If Φ: Dn → D
n is a diffeomorphism that does not need to be an identity on the

boundary S
n−1, and g1 is a simple metric on D

n, then the simple pullback metric
g2 := Φ∗g1 satisfies the equation

d2(p, q) = d1(Φ(p),Φ(q))

for all p, q ∈ D
n. However, the equation R1(D

n) = R2(D
n) does not need to be

true and in general the travel time data of Definition 1 is not fully diffeomorphism
invariant.

For instance, set z = (1, 0) and let Φ be a diffeomorphism of D2 for which Ψ(−z) 6=
−Ψ(z). Let g1 be the Euclidean metric and g2 = Ψ∗g1. There are many such q ∈ D

2

that the travel time function d1(q, ·)|S has its extreme values at ±z, but only one
p ∈ D

2 (namely, p = Φ−1(0)), for which ±z are both extreme points of d2(p, ·)|S.
Therefore R1(D

n) 6= R2(D
n).

If we set a diffeomorphism ψ : Sn−1 → S
n−1 to be the restriction of Φ−1 on S

n−1,
we obtain

R1(D
n) = {d2(q, ψ(·)) : S

n−1 → R| q ∈ D
n} =: R2,ψ(D

n)

and

D1(D
n) = {d2(q, ψ(·)) − d2(q, ψ(·)) : S

n−1 × S
n−1 → R| q ∈ D

n} =: D2,ψ(D
n).

These suggest the following diffeomorphism invariant definitions for the difference
of the travel time and of the travel time difference data.

Definition 22. Let g1 and g2 be two simple Riemannian metrics on D
n. We set

the distance of their travel time data to be the number

R(g1, g2) := inf
ψ
{d
C(Sn−1)
H (R1(D

n),R2,ψ(D
n))| ψ is a diffeomorphism of Sn−1}.

The distance of the travel time difference data of the metrics g1 and g2 is

D(g1, g2) := inf
ψ
{d
C(Sn−1)
H (D1(D

n),D2,ψ(D
n))| ψ is a diffeomorphism of Sn−1}.
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The last theorem of this paper is a diffeomorphism invariant version of Theorems 9
and 13.

Theorem 23 (Stability of the Diffeomorphism Invariant Data). Let n ≥ 2, and
let g1 and g2 be two simple Riemannian metrics of Dn. Then

dGH((D
n, g1), (D

n, g2)) ≤ R(g1, g2) and

dGH((D
n, g1), (D

n, g2)) ≤ D(g1, g2).
(10)

In particular, R(g1, g2) = 0 or D(g1, g2) = 0 if and only if the metrics g1 and g2
are isometric.

Proof. We only provide the proof for the travel time data since the proof for the
travel time difference data is analogous. For every ε > 0 there exists a diffeomor-
phism ψ : Sn−1 → S

n−1 satisfying the inequality

d
C(Sn−1)
H (R1(D

n),R2,ψ(D
n)) < R(g1, g2) + ε.

If we define a map Ψ: C(Sn−1) → C(Sn−1) by the formula Ψ(f) = f ◦ ψ, then
Proposition 6 yields that the maps

R1 : (D
n, d1) → (C(Sn−1), ‖ · ‖∞) and

Ψ ◦ R2 : (D
n, d2) → (C(Sn−1), ‖ · ‖∞)

are metric isometries whose image sets are R1(D
n) and R2,ψ(D

n), respectively.
Since ε > 0 can be chosen arbitrarily, the definition of Gromov–Hausdorff distance
gives the inequality (10).

If R(g1, g2) = 0, then by the inequality (10) the metric spaces (Dn, d1) and (Dn, d2)
are isometric. Whence, the last claim follows from the Myers–Steenrod theorem.

�
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