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Abstract. We prove that the geodesic X-ray transform is injective on scalar

functions and (solenoidally) on one-forms on simple Riemannian manifolds

(M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of
simplicity that is compatible with rough geometry. This C1,1-regularity is

optimal on the Hölder scale. The bulk of the article is devoted to setting up a

calculus of differential and curvature operators on the unit sphere bundle atop
this non-smooth structure.

1. Introduction

How regular does a Riemannian metric have to be for the geodesic X-ray trans-
form to be injective? It is well known (see e.g. [Muk77, Muk81, Rom86, AR97])
that on a smooth simple Riemannian manifold this injectivity property holds. If the
regularity is too low, the question itself falls apart: If the Riemannian metric is C1,α

for α < 1, then the geodesic equation can fail to have unique solutions [Har50, SS18].
Therefore it is indeed optimal on the Hölder scale when we prove that on a C1,1-
smooth simple Riemannian manifold the geodesic X-ray transform is injective on
scalars and one-forms, the latter one up to natural gauge.

Date: December 13, 2021.

2010 Mathematics Subject Classification. 44A12, 53C22,53C65, 58J32.
Key words and phrases. non-smooth geometry, X-ray tomography, integral geometry, inverse

problems.

1

ar
X

iv
:2

11
2.

05
52

3v
1 

 [
m

at
h.

D
G

] 
 1

0 
D

ec
 2

02
1



2 PESTOV IDENTITIES AND X-RAY TOMOGRAPHY IN LOW REGULARITY

The geodesic X-ray transform is ubiquitous in the theory of geometric inverse
problems. It appears either directly or through linearization in many imaging prob-
lems of anisotropic and inhomogeneous media. Most inverse problems have been
studied in smooth geometry but the nature is not smooth. The irregularities of
the structure of the Earth range from individual rocks (zero-dimensional, small) to
interfaces like the core–mantle boundary (two-dimensional, global scale). Irregular-
ity across various scales and dimensions are most conveniently captured in a single
geometric structure of minimal regularity assumptions. Specific kinds of irregular-
ities can well be analyzed further, but we restrict our attention to a uniform and
global but low regularity.

We prove this injectivity result by using a Pestov identity, an approach that can
well be called classical (cf. [Muk77, Muk81, Rom86, AR97, PSU14b, IM19, Uhl14,
PSU21]). What requires care is keeping track of regularity. The manifold does
not have natural structure beyond C1,1, so regularity beyond is both useless and
inaccessible. The natural differential operators on the manifold and its unit sphere
bundle are not smooth, and only a couple of derivatives of any kind can be taken at
all. The various commutators that appear in the calculations have to be interpreted
in a suitable way, so that [A,B] exists reasonably even when the products AB
and BA do not. We employ two methods around these obstacles: approximation
by smooth structures and careful analysis in the non-smooth geometry.

We define what it means for a Riemannian manifold (M, g) where g ∈ C1,1 to
be simple in definition 5. Throughout the article our manifolds are assumed to be
connected and to have dimension n ≥ 2.

Theorem 1. Let (M, g) be a simple C1,1 manifold in the sense of definition 5.

(1) If f is a Lipschitz function on M that integrates to zero over all maximal
geodesics of M , then f = 0.

(2) Let h be a Lipschitz 1-form on M that vanishes on the boundary ∂M .
Then h integrates to zero over all maximal geodesics of M if and only
if there is a scalar function p ∈ C1,1(M) vanishing on the boundary ∂M so
that h = dp.

We have to redefine simplicity to be tractable in our rough setup, and we regard
this new definition as one of our main results. To verify that our redefinition is a
valid one, we prove that it agrees with the classical definition when the metric is
smooth:

Theorem 2. In smooth geometry definitions 4 and 5 are equivalent in the following
sense:

(1) If M is a simple C∞ Riemannian manifold (see definition 4), then it is
diffeomorphic to a closed ball in Rn and it is a simple C1,1 Riemannian
manifold (see definition 5).

(2) If M is a simple C1,1 Riemannian manifold (see definition 5) and its metric
tensor is C∞-smooth, then M is a smooth simple Riemannian manifold (see
definition 4).

Remark 3. The assumption h|∂M = 0 in claim 2 of theorem 1 is probably not
necessary. Not assuming this is fine in smooth geometry but leads to technical
difficulties in our rough setup. This added assumption is the only way in which our
results fail to correspond to the classical smooth results.
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1.1. Related results. Geodesic X-ray transforms have been studied a lot on smooth
manifolds equipped with C∞-smooth Riemannian metrics. Injectivity of the trans-
form is reasonably well understood both on manifolds with a boundary and on
closed manifolds. On manifolds with boundary one integrates over maximal geo-
desics between two boundary points, whereas on closed manifolds one integrates
over periodic geodesics.

After Mukhometov’s introduction of the Pestov identity for scalar tomogra-
phy [Muk75, Muk77, Muk81], the method has been applied to 1-forms and higher
order tensor fields [AR97, PS88, PSU13, PSU15] on many simple manifolds. When
one passes from simple manifolds with boundary to closed Anosov manifolds, the
Pestov identity remains the same but the other tools around it change some-
what [CS98, DS03, PSU14a, PSU15, US00]. Cartan–Hadamard manifolds are a
non-compact analogue of simple manifolds, and the familiar Pestov identity works
well [Leh16, LRS04]. Other variations of the problem change the Pestov iden-
tity, but a variant remains true and useful: In the presence of reflecting rays a
boundary term on the reflector is added [IS16, IP18], an attenuation or a Higgs
field [SU11, PSU12, GPSU16] and magnetic flows [DPSU07, Ain13, MP11] add a
term to the geodesic vector field, nonabelian versions of the problem remove the
concept of a line integral entirely [FU01, PS20], and on Finsler surfaces a number
of new terms are needed to account for non-Riemannian geometry [AD18]. On
pseudo-Riemannian manifolds a Pestov identity useful for the light ray transform
only seems to exist in product geometry of at least 2 + 2 dimensions [Ilm16].

Pestov identities are not the only tool in the box for studying ray transforms on
manifolds. For the variety of other methods we refer the reader to the review [IM19].

Inverse problems in integral geometry have been mostly studied on manifolds
whose Riemannian metric is smooth or otherwise substantially above our C1,1 in
regularity. Injectivity of the scalar X-ray transform is known on spherically sym-
metric manifolds of regularity C1,1 satisfying the so-called Herglotz condition when
the conformal factor of the metric is in C1,1 [dHIK17].

Some geometric inverse problems outside integral geometry have been solved
in low regularity. A manifold with a metric tensor in a suitable Zygmund class is
determined by its boundary spectral data [AKK+04], interior spectral data [BKL17]
or by its boundary distance function [KKL07].

1.2. Preliminaries. In this subsection we will set up enough language to be able to
state our definitions and give our proofs on a higher level. For a similar framework
in the traditional smooth setting, see e.g. [PSU15]. We will cover the foundations in
more detail in section 4 before embarking on the detailed proofs of our key lemmas.

The Riemannian manifold (M, g), where g is C1,1 regular, comes equipped with
the unit sphere bundle π : SM → M . The geodesic flow is a dynamical system
on SM and its generator X is called the geodesic vector field. Properties and
coordinate representations of X will be given later.

We will make frequent use of the bundle N over SM defined next. If π∗TM
is the pullback of TM over SM , then N is the subbundle of π∗TM with fibers
N(x,v) = {v}⊥ ⊆ TxM . It is well known (see [Pat99]) that the tangent bundle TSM
of SM has an orthogonal splitting

TSM = RX ⊕H⊕ V (1)
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with respect to the so-called Sasaki metric, where H and V are called horizon-
tal and vertical subbundles respectively. Roughly speaking, H(x,v) corresponds to
derivatives on SM in the base without components in the direction of v and V(x,v)
corresponds to derivatives on a fiber SxM . It is natural to identify H(x,v) = N(x,v)

and V(x,v) = N(x,v).
Given z ∈ SM , let γz be the unique geodesic corresponding to the initial con-

dition z. We define the geodesic flow to be the collection of (partially defined)
maps φt : SM → SM , φt(z) = (γz(t), γ̇z(t)), where t goes through the values for
which the right side is defined on SM . For any z ∈ SM the geodesic γz is defined on
a maximal interval [τ−(z), τ+(z)]. The travel time function τ : SM → R describes
the first time a geodesic exists the manifold and it is defined by τ(z) = τ+(z)
for z ∈ SM . Clearly γz(τ(z)) ∈ ∂M for any z ∈ SM .

A function f on M can identified with the function π∗f on SM . If h is a
1-form on M , then it can be considered as a function h̃ : SM → R through the
identification h̃(x, v) = hx(v) for (x, v) ∈ SM . Since hx : TxM → R is linear, h̃
uniquely corresponds to h. The integral function uf : SM → R of f ∈ Lip(SM) is
defined by

uf (x, v) :=

∫ τ(x,v)

0

f(φt(x, v)) dt (2)

for all (x, v) ∈ SM .
The lift of a unit speed curve γ : I → M is γ̃ : I → SM given by γ̃(t) =

(γ(t), γ̇(t)). The curve γ is a geodesic if and only if the lift satisfies ˙̃γ(t) = X(γ̃(t)).
The geodesic vector field X acts naturally on scalar fields by differentiation, and
on sections V of N it acts by by

XV (z) = DtV (φt(z))|t=0, (3)

where Dt is the covariant derivative along the curve t 7→ γz(t). This operator maps
indeed sections of N to sections of N .

According to (1) the gradient of a C1 function u on SM we can be written as

∇SMu = (Xu)X +
h

∇u+
v

∇u. (4)

This gives rise to two new differential operators
v

∇ and
h

∇, called, respectively, the

vertical and the horizontal gradient. Both
v

∇u and
h

∇u are naturally interpreted as
sections of N ; see [PSU21] for details. There are natural L2 spaces for functions
on the sphere bundle as well as for the sections of the bundle N . These will be
denoted L2(SM) and L2(N) and we will often label the corresponding inner prod-

ucts explicitly. Formal adjoints of
v

∇ and
h

∇ with respect to appropriate L2 inner

products are the vertical and horizontal divergences −
v

div and −
h

div respectively.
The mapping properties of the operators in C1,1 regular metric setting are

X : C1(SM)→ C(SM) (5)

X : C1(N)→ C(N), (6)

v

∇,
h

∇ : C1(SM)→ C(N), and (7)

v

div,
h

div : C1(N)→ C(SM). (8)
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These mapping properties are easily verified by inspecting the explicit formulas in
local coordinates; see section 4.

We will deal with Sobolev spaces H1
(0)(SM) and H1

(0)(N) defined as completions

of C1
(0) regular functions or sections in the relevant norms (see section 4), where the

optional subscript 0 indicates zero boundary values. As the last function space we
introduce a Sobolev space H1(N,X), which only gives control over the operator X
operating on sections of N . From definitions of various Sobolev norms it will be
clear that all differential operators are bounded H1 → L2 and thus extend to
operators between Sobolev spaces.

Finally, there is a special quadratic form Q appearing in the Pestov identity. To
define it, we use the Riemannian curvature tensor R : L∞(N)→ L∞(N) acting on
sections of N defined by

R(x, v)V (x, v) = R(V (x, v), v)v. (9)

In order to verify the mapping property of R, observe that the second partial
derivatives of g ∈ C1,1 = W 2,∞ are in L∞. We define Q by letting

Q(W ) = ‖XW‖2L2(N) − (RW,W )L2(N) . (10)

for all W ∈ H1(N).
To conclude the preliminaries we recall in definition 4 the traditional definition of

a simple Riemannian manifold (cf. [PSU15]). In what follows a manifold satifying
conditions A1 and A2 is called simple C∞ manifold. In definition 5 we redefine the
notion of simplicity on manifolds equipped with non-smooth Riemannian metrics.

Definition 4 (Simple C∞ manifold). Let (M, g) be a compact smooth Riemann-
ian manifold with a smooth boundary. The manifold (M, g) is called simple C∞

Riemannian manifold, if the following hold:

A1: The boundary ∂M is strictly convex in the sense of the second fundamental
form.

A2: Any two points on M can be joined by a unique geodesic in the interior
of M , and its length depends smoothly on its end points.

Definition 5 (Simple C1,1 manifold). Let M ⊆ Rn be the closed unit ball and g
a C1,1 regular Riemannian metric on M . We say that (M, g) is a simple C1,1

Riemannian manifold if the following hold:

B1: There is ε > 0 so that Q(W ) ≥ ε ‖W‖2L2(N) for all W ∈ H1(N).

B2: Any two points of M can be joined by a unique geodesic in the interior
of M , whose length depends continuously on its end points.

B3: The function τ2 is Lipschitz on SM .

Remark 6. In definition 5 the assumption that M is the closed unit ball is not
restrictive — any simple C∞ Riemannian manifold is diffeomorphic to a closed
ball in a Euclidean space. In the absence of conjugate points the exponential
map expx, related to an interior point x ∈ int(M), maps its maximal domain Dx

diffeomorphically to M and Dx is itself diffeomorphic to the closed unit ball in Rn
(see [PSU21]). We use global coordinates on a simple C1,1 Riemannian manifold
and we have decided to include their existence in the definition.

Remark 7. If one is to define a rough simple manifold as the limit of smooth simple
manifolds, the simplicity needs to be quantified. As the example of a hemisphere
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as the limit of expanding polar caps shows, the smooth limit of smooth simple
manifolds can be a smooth but non-simple manifold. The limit procedure can
introduce conjugate points and failure of strict convexity on the boundary. An
example of quantified simplicity can be found in [dHILS21], but we do not take this
limit route in our definition here.

1.3. Acknowledgements. Both authors were supported by the Academy of Fin-
land (JI by grants 332890 and 351665, AK by 336254). We thank Matti Lassas for
discussions.

2. Proof of theorem 1

This section contains the proof of theorem 1. The proofs of the necessary lem-
mas are postponed to section 5. More detailed definitions of function spaces and
operators can be found from section 4.

We will freely identify a scalar function f and a one-form h on M with scalar
functions on SM as described above. Interpreting f and h as functions on SM we
can apply formula (2) to both.

Lemma 8 (Regularity of integral functions). Let (M, g) be a simple C1,1 manifold.

(1) Let f be a Lipshcitz function on M that integrates to zero over all maximal
geodesics of M and let uf be the integral function of f defined by (2).

Then uf ∈ Lip0(SM), Xuf ∈ H1(SM) and
v

∇uf ∈ H1(N,X).

(2) Let h be a Lipschitz 1-form on M that integrates to zero over all maxi-
mal geodesics of M and vanishes on the boundary ∂M . If uh is the inte-
gral function of h defined by (2), then uh ∈ Lip0(SM), Xuh ∈ H1(SM)

and
v

∇uh ∈ H1(N,X).

Lemma 9 (Pestov identity). Let (M, g) be a simple C1,1 manifold and let u ∈
Lip0(SM) be such that Xu ∈ H1(SM) and

v

∇u ∈ H1(N,X). Then∥∥∥∥ v

∇Xu
∥∥∥∥2
L2(N)

= Q

(
v

∇u
)

+ (n− 1) ‖Xu‖2L2(SM) . (11)

Lemma 8 provides enough regularity to apply the Pestov identity (11) to the
integral functions uf and uh because we will see in remark 15 that Lip(SM) ⊆
H1(SM) even if the metric tensor in only in C1,1. The following lemma shows that
certain norms of the integral function uh of a 1-form cancel in the identity.

Lemma 10. Let (M, g) be a simple C1,1 manifold and let h be a Lipschitz 1-form
on M . Then ∥∥∥∥ v

∇h
∥∥∥∥2
L2(N)

= (n− 1) ‖h‖2L2(SM) . (12)

We are ready to prove theorem 1.

Proof of theorem 1. (1) The integral function uf of f ∈ Lip(M) satisfies uf ∈
H1

0 (SM), Xuf ∈ H1(SM) and
v

∇uf ∈ H1(N,X) by lemma 8. Thus we can
apply the Pestov identity of lemma 9 to uf . By the fundamental theorem of cal-

culus Xuf = −f and thus
v

∇Xuf = 0, since f does not depend on the direc-
tion v ∈ SxM . By C1,1 simplicity (definition 5) of (M, g), the quadratic form Q is
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non-negative. Thus the Pestov identity reduces to

0 ≥ (n− 1)
∥∥Xuf∥∥2

L2(SM)
. (13)

Hence f = −Xuf = 0 in L2(SM) as claimed.
(2) If h = dp for some scalar function p ∈ C1,1(M) with p|∂M = 0, then by the

fundamental theorem of calculus h integrates to zero over all maximal geodesics
of M .

Let h be a Lipschitz 1-form on M that integrates to zero over all maximal
geodesic of M and vanishes on the boundary ∂M . We will show that h = dp for
some function p ∈ C1,1(M) vanishing on ∂M . Lemma 8 allows us to apply the
Pestov identity to the integral function uh of h. Due to lemma 10, the identity
reduces to

Q

(
v

∇uh
)

= 0. (14)

Since the manifold is simple C1,1, this can only happen if
v

∇uh = 0. The func-
tion uh is Lipschitz and independent of the direction v ∈ SxM on each fiber and
therefore there is a Lipschitz scalar function p on M so that uh = −π∗p on SM .
Additionally, p|∂M = uh|∂(SM) = 0, since h integrates to zero over all maximal

geodesics of M . Since Xuh = −h, we have shown that dp = h in the weak sense.
Because h is Lipschitz-continuous by assumption, we have that dp is Lipschitz and
thus p ∈ C1,1 and the proof is complete. �

3. Proof of theorem 2

In this section we prove that in the smooth setting definition 5 of C1,1 simplicity
is equivalent to definition 4 of C∞ simplicity. Proofs of lemmas 11 and 12 are given
in section 6. Theorem 2 readily follows from lemmas 11 and 12.

Lemma 11. Let (M, g) be a simple C1,1 manifold with C∞-smooth Riemannian
metric g. Then there are no conjugate points in M , not even on the boundary.

Lemma 12. Let M be a compact Riemannian manifold with smooth boundary
and a C∞-smooth Riemannian metric g. Suppose that (M, g) is non-trapping.
Then ∂M is strictly convex in the sense of the second fundamental form if and only
if τ2 ∈ Lip(SM).

Proof of theorem 2. By remark 6 each simple C∞ Riemannian manifold is diffeo-
morphic to the closed unit ball B in Rn. Thus we may assume that M = B and
let g be a C∞-smooth Riemannian metric on M . It suffices to show that (M, g)
satisfies conditions A1–A2 in definition 4 if and only if it satisfies conditions B1–B3
in definition 5. We have illustrated these implications in figure 1.

By lemma 12 conditions A1 and B3 are equivalent. By lemma 11 the condi-
tion B1 implies that there are no conjugate points on M . Thus we can promote
the continuous dependence in B2 to smooth dependence A2. Therefore simple C1,1

manifolds satisfy both conditions A1 and A2 of C∞ simplicity. Conversely, sim-
ple C∞ manifolds satisfy B1 (see [PSU15, Lemma 11.2]) and clearly B2 is strictly
weaker that A2. �
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A1

A2
B1

B2

B3

[PSU15]

Lemma 11

Lemma 12

Figure 1. Illustration of the proof of theorem 2. The arrows represent
implications except the one double headed arrow, which represents equiva-
lence. The green (solid) arrows connect one condition to another. The red
(dashed) and the blue (dotted) arrows indicate that one condition follows
from the two conditions circled with the same color (style).

4. Bundles, function spaces and operators

This section complements the preliminaries in subsection 1.2. The main focus is
on a detailed description of structures, functions spaces and operators build on a
compact Riemannian manifold (M, g) with a C1,1 regular Riemannian metric.

4.1. Function spaces on smooth manifolds. Let M be a compact smooth
manifold with a smooth boundary. The space of smooth functions on M is de-
noted C∞(M) and the space of differentiable functions with Lipschitz derivatives
is denoted C1,1(M). We let C1,1(T 2M) denote the space of 2-tensor fields on M ,
whose component functions are in C1,1(M).

If h is a smooth Riemannian metric on M , then L2
h(M) and L∞h (M) will respec-

tively denote spaces of square integrable and essentially bounded functions on M ,
where the Riemannian volume form of h is used as the measure. Similarly, W 1,p

h (M)

and W 2,p
h (M) will respectively denote Sobolev spaces with p-integrable covariant

derivatives of the first order and of the second order. Norms of the covariant deriva-
tives on the tangent spaces are always defined by the metric h.

4.2. Structures in low regularity. Let (M, g) be a compact Riemannian man-
ifold with a smooth boundary. We assume that g ∈ C1,1(T 2M). The unit sphere
bundle SM = {v ∈ TM : |v| = 1} is a submanifold of TM , but not in general a
smooth one. Despite the non-smoothness of SM ⊆ TM as a submanifold, it can
be equipped with an induced smooth structure: SM is naturally homeomorphic to
the quotient space (TM \ 0)/ ∼, where v ∼ λv for all λ > 0 and v ∈ TxM . Metric
structures like the Sasaki metric are still non-smooth, so this smooth structure is
of little use. We will only see SM as a submanifold of TM .

For k ∈ {0, 1} a function u : SM → R is said to be in Ck(SM) if u is k times
continuously differentiable — for k ≥ 2 this concept is undefined in our setting.
As a C1 submanifold of TM the sphere bundle has enough regularity to define
both C(SM) and C1(SM). The subset Ck0 (SM) of Ck(SM) consists of functions
vanishing on

∂(SM) = { (x, v) ∈ SM : x ∈ ∂M }. (15)

The set of Lipschitz functions on SM is denoted by Lip(SM). We denote the
inward unit normal vector field to the boundary ∂M by ν. The boundary ∂(SM)
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is divided into parts pointing inwards and outwards, respectively denoted by

∂in(SM) := { (x, v) ∈ ∂(SM) : 〈v, ν(x)〉 ≥ 0 } (16)

and

∂out(SM) := { (x, v) ∈ ∂(SM) : 〈v, ν(x)〉 ≤ 0 }. (17)

Their intersection consists of tangential directions

∂0(SM) := ∂in(SM) ∩ ∂out(SM). (18)

Many differential operators considered in this article operate on sections of the
bundle N . To describe Ck spaces of sections of N , recall that N is the subbundle
of π∗TM with fibersN(x,v) = {v}⊥ ⊆ TxM . A section V of the bundleN is a section
of the bundle π∗TM with the property that 〈V (x, v), v〉g(x) = 0 for all (x, v) ∈ SM .

We say that such a section is in Ck(N) for k ∈ {0, 1} if the corresponding section
of π∗TM is k times continuously differentiable. Differentiability of a section W
of π∗TM is well defined since W is a certain function between two differentiable
manifolds SM and TM . The subspace Ck0 (N) ⊆ Ck(N) consists of sections V of N
that vanish on ∂(SM).

Let (x, v) be a local coordinate system on TM and let ∂xj and ∂vk be correspond-
ing coordinate vector fields. We introduce new vector fields δxj = ∂xj − Γljkv

k∂vl

on TM , where Γljk are the Christoffel symbols of the metric g.

4.3. Differential operators. Next we define differential operators on SM and N .
The basic coordinate derivatives of a function u ∈ C1(SM) are defined by

δju := δxj (u ◦ r)|SM and ∂ku := ∂vk(u ◦ r)|SM , (19)

where r : TM \ 0 → SM is the radial function r(x, v) = (x, v |v|−1g(x)). We de-

note δj := gjkδk and ∂j := gjk∂k. We use the basic derivatives to define operators
in local coordinates.

The geodesic vector field X is a differential operator that acts both on functions
on SM and on sections of the bundle N . The actions on a scalar function u and
on a section V are defined by

Xu = vjδju and XV = (XV j)∂xj + Γljkv
jV k∂xl . (20)

Vertical and horizontal gradients are differential operators defined respectively by

v

∇u = (∂ju)∂xj and
h

∇u = (δju− (Xu)vj)∂xj . (21)

Coordinate formulas indicate that
v

∇ is the gradient in v and
h

∇ is the gradient in x

with the direction of v being projected out. The adjoint operators of
v

∇ and
h

∇ are
the vertical and the horizontal divergences

v

divV = ∂jV
j and

h

divV = (δj + Γiji)V
j . (22)

The Riemannian curvature tensor R of the metric g has an action on sections
of N defined by

RV = RlijkV
ivjvk∂xl . (23)
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Functions
on SM

Sections
of N

v

∇,
h

∇

v

div,
h

div

XX

R

Figure 2. Interplay of the operators defined in subsection 4.3. The gradi-
ents map functions on SM to sections of N . The divergences map sections
of N back to function on SM . The geodesic vector field maps functions
to functions and sections to sections. The curvature operator acts only on
sections and produces sections.

4.4. Integration and Sobolev spaces. A simple C1,1 manifold M is orientable,
so the Riemannian volume form on it can be defined in local coordinates as

dVg(x) := |det(g(x))|1/2 dx1 ∧ · · · ∧ dxn. (24)

For any x ∈ M the pair (SxM, g(x)) is a Riemannian manifold. Let dSx be the
associated Riemannian volume form on SxM . We use dVg and dSx to define the
volume form dΣg on SM , given in local coordinates by

dΣg(x, v) = dSx(v) ∧ dVg(x). (25)

The form dΣg is natural as it coincides with the Riemannian volume form of the
Sasaki metric on SM . Since dVg has as much regularity as g, so does dΣg.

The L2-norm of a scalar function u on SM is denoted by ‖u‖L2(SM) and the L2-

norm of a section V of N is denoted by ‖V ‖L2(N). The L2-norms are induced by

the inner products

(u,w)L2(SM) :=

∫
SM

uw dΣg (26)

and

(V,W )L2(N) :=

∫
SM

gijV
iW j dΣg. (27)

We define the ‖·‖H1(SM)-norm of a function u ∈ C1(SM) by

‖u‖2H1(SM) = ‖u‖2L2(SM) + ‖Xu‖2L2(SM) +

∥∥∥∥ v

∇u
∥∥∥∥2
L2(N)

+

∥∥∥∥ h

∇u
∥∥∥∥2
L2(N)

. (28)

The Sobolev space H1(SM) is defined to be the completion of the subset of C1(SM)
that consists of functions with finite H1(SM)-norm. We denote by H1

0 (SM) the
closure of C1

0 (SM) in H1(SM).
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Sobolev spaces for sections of N are defined in an analogous fashion. For a
section V ∈ C1(N) we define the two Sobolev norms

‖V ‖2H1(N) = ‖V ‖2L2(N) + ‖XV ‖2L2(N) +

∥∥∥∥ v

divV

∥∥∥∥2
L2(SM)

+

∥∥∥∥ h

divV

∥∥∥∥2
L2(SM)

(29)

and
‖V ‖2H1(N,X) = ‖V ‖2L2(N) + ‖XV ‖2L2(N) . (30)

The corresponding Sobolev spaces (the completions of C1(N) under these norms)
are denoted by H1(N) and H1(N,X), and the Sobolev spaces of sections vanishing
on the boundary ∂(SM) are denoted by H1

0 (N) and H1
0 (N,X).

Remark 13. Contrary to what one might expect, the norm on H1(N) defined
above does not contain derivatives in all possible directions, as it only includes
divergences in the vertical and horizontal directions. We will use these norms only
to estimate from above, so this omission of derivatives makes no difference.

In the case where g is a C∞-smooth Riemannian metric, we introduce one more
Sobolev space, K2(SM). The defining norm on the dense subspace C2(N) is

‖u‖2K2(SM) = ‖u‖2H1(SM) + ‖Xu‖2H1(SM) +

∥∥∥∥ v

∇u
∥∥∥∥2
H1(N,X)

. (31)

Remark 14. It is important to realize that we cannot define Sobolev spaces using
smooth test functions as in the smooth case. The reason is two-fold. First, the
natural structure of SM as an submanifold TM is not regular enough to define
the function class C∞(SM). Second, the differential operators themselves are not
smooth. Applying any of the differential operators immediately drops regularity to
that of the coefficients, and they involve the metric tensor.

4.5. Differential operators on Sobolev spaces. It is clear from the definitions
that all of our differential operators are bounded H1 → L2. Thus all classically
defined operators extend to operators between Sobolev spaces. We therefore have
the continuous operators

X : H1(SM)→ L2(SM), (32)

X : H1(N)→ L2(N), (33)

v

∇,
h

∇ : H1(SM)→ L2(N), and (34)

v

div,
h

div : H1(N)→ L2(SM). (35)

Basic integration by parts holds for the extended operators: If u,w ∈ H1(SM)
and V,W ∈ H1(N) and w and W vanish on the boundary, then

(Xu,w)L2(SM) = − (u,Xw)L2(SM) , (36)

(XV,W )L2(N) = − (V,XW )L2(N) , (37)(
v

∇u,W
)
L2(N)

= −
(
u,

v

divW

)
L2(SM)

, and (38)(
h

∇u,W
)
L2(N)

= −
(
u,

h

divW

)
L2(SM)

. (39)

We can use the space C1
0 (SM) as test functions and C1

0 (N) as test sections.
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4.6. Switching between different unit sphere bundles. Suppose we have two
Riemannian metrics g, h ∈ C1,1(T 2M) on the manifold M . Let SgM and ShM
denote the corresponding unit sphere bundles. There is a natural radial C1,1-
diffeomorphism

s : SgM → ShM, s(x, v) = (x, v |v|−1h ). (40)

In section 5 we will have three Riemannian metrics g ∈ C1,1(T 2M) and
α
g, h ∈

C∞(T 2M) with certain roles. In this case we will denote the corresponding ra-
dial C1,1-diffeomorphisms by

α
s : SαgM → ShM,

α
r : SgM → SαgM and s : SgM → ShM. (41)

In section 5 we frequently use the convention that the bundles related to
α
g are

denoted
α

SM := SαgM and
α

N := Nα
g, the operators related to

α
g are decorated with α

on top or as a subscript, the bundles and the operators related to h are decorated
with subscripts h, and the bundles and the operators related to the metric g are
written without decorations.

Remark 15. We can switch between sphere bundles and corresponding Sobolev
spaces using pullbacks along radial functions. If u is a scalar function on SM ,
then s∗u is a scalar function on ShM . To see that pullback behaves well on the
Sobolev scale, note that the H1(SM)-norm controls all possible derivatives on SM
since TSM = RX ⊕ V ⊕H. Thus the H1(SM)-norm is equivalent to

‖u‖ = ‖u‖L2(SM) + ‖dSMu‖L2(T∗SM) (42)

with the norm of the differential interpreted with respect to any Riemannian metric
on SM . With the norm (42) we see that regularity on Sobolev scale is preserved,
since by standard properties of the pullback we have s∗(dSMu) = dShM (u ◦ s).

Remark 15 allows us to prove continuous Sobolev embeddings between Sobolev
spaces of low regularity metrics. We present one example that will be useful to us
later. Let g ∈ C1,1(T 2M) and h ∈ C∞(T 2M) be two Riemannian metrics on M .
If u ∈ Lip(SM), then s∗u ∈ Lip(ShM). Since h is C∞-smooth, we have s∗u ∈
H1(ShM). Then since ‖u‖H1(SM) . ‖s∗u‖H1(ShM) by remark 15, we see that u ∈
H1(SM). We have shown that the inclusion Lip(SM) ⊆ H1(SM) holds even when
the metric tensor is only C1,1.

5. Lemmas in low regularity

5.1. The Pestov identity. In this subsection (M, g) is a simple C1,1 Riemannian

manifold. We prove a variant of the commutator formula [X,
v

∇] = −
h

∇ and the
Pestov identity on (M, g). First, we show that both results are valid for Sobolev
functions on a manifold equipped with a C∞-smooth Riemannian metric. Then we
show that only C1,1 regularity of the Riemannian metric is needed. The main focus
of the subsection is on proving the Pestov identity of lemma 9.

Lemma 16. Let (M,h) be a compact smooth manifold with a smooth boundary,

where h is a C∞-smooth Riemannian metric. The commutator formula [X,
v

∇] =

−
h

∇ holds in the H1 sense on (M,h): For u ∈ H1
0 (ShM) and V ∈ C1(Nh), we have(

h

∇hu, V
)
L2(Nh)

=

(
v

∇hu,XhV

)
L2(Nh)

−
(
Xhu,

v

divhV

)
L2(ShM)

. (43)
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Proof. Let u ∈ H1
0 (ShM) and V ∈ C∞(Nh). Since V is smooth, by [PSU15,

Lemma 2.1.] we have

Xh

v

divhV −
v

divhXhV = −
h

divhV. (44)

Thus(
h

∇hu, V
)
L2(Nh)

= −
(
u,

v

divhXhV

)
L2(ShM)

+

(
u,X

v

divhV

)
L2(ShM)

=

(
v

∇hu,XhV

)
L2(Nh)

−
(
Xhu,

v

divhV

)
L2(ShM)

,

(45)

where the last equality holds since u ∈ H1
0 (ShM), and since XhV ∈ C∞(Nh)

and
v

divhV ∈ C∞(ShM). The same identity holds for V ∈ C1(Nh) by approxima-
tion, since only first order derivatives appear in the statement. �

Lemma 17. Let (M,h) be a compact smooth manifold with a smooth boundary,
where h is a C∞-smooth Riemannian metric. Suppose that u ∈ K2(ShM) vanishes
on the boundary ∂(ShM). Then∥∥∥∥ v

∇hXhu

∥∥∥∥2
L2(Nh)

= Qh

(
v

∇hu
)

+ (n− 1) ‖Xhu‖2L2(ShM) , (46)

where Qh is the quadratic form defined for W ∈ H1(Nh) by

Qh(W ) = ‖XhW‖2L2(Nh)
− (RhW,W )L2(Nh)

. (47)

Proof. Since u ∈ K2(ShM) and u vanishes on the boundary ∂(ShM), there is a

sequence
(β
u
)
β∈N of smooth functions on ShM vanishing on ∂(ShM) so that

β

u→ u

in K2(ShM). We see that∥∥∥∥ v

∇hXh
β

u−
v

∇hXhu

∥∥∥∥2
L2(Nh)

≤
∥∥∥Xh

β

u−Xhu
∥∥∥2
H1(ShM)

≤
∥∥∥βu− u∥∥∥2

K2(ShM)
(48)

and ∥∥∥Xh
β

u−Xhu
∥∥∥2
L2(Nh)

≤
∥∥∥βu− u∥∥∥2

H1(ShM)
≤
∥∥∥βu− u∥∥∥2

K2(ShM)
. (49)

Therefore
v

∇hXh
β

u →
v

∇hXhu in L2(Nh) and Xh
β

u → Xhu in L2(ShM) as β → ∞.
Additionally, since the curvature operator R of the metric h continuously maps
L∞(Nh)→ L∞(Nh), we have∥∥∥∥ v

∇h
β

u−
v

∇hu
∥∥∥∥2
L2(Nh)

≤
∥∥∥βu− u∥∥∥2

H1(ShM)
≤
∥∥∥βu− u∥∥∥2

K2(ShM)
(50)

and ∥∥∥∥Rh v

∇h
β

u−Rh
v

∇hu
∥∥∥∥2
L2(Nh)

.
∥∥∥βu− u∥∥∥2

H1(ShM)
≤
∥∥∥βu− u∥∥∥2

K2(ShM)
. (51)

Thus Qh

( v

∇h
β

u
)
→ Qh

( v

∇hu
)

as β → ∞. By the Pestov identity for smooth

functions and metrics (see [PSU15, Remark 2.3.]) we have∥∥∥∥ v

∇hXh
β

u

∥∥∥∥2
L2(Nh)

= Qh

(
v

∇h
β

u

)
+ (n− 1)

∥∥∥Xh
β

u
∥∥∥2
L2(ShM)

. (52)
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We now let β →∞ in (52). By our estimates (48), (49), (50), and (51) we end up
with the claimed identity (46). �

The rest of this section focuses on showing that we can replace the C∞-smooth
Riemannian metric h in lemmas 16 and 17 by a C1,1 regular Riemannian metric.
Let (M, g) be a C1,1 simple Riemannian manifold. Next, we construct approxima-
tions of g by C∞-smooth Riemannian metrics

α
g.

Let (x1, . . . , xn) be the usual Cartesian coordinates on the Euclidean closed
ball M ⊂ Rn and extend all components gij ∈ C1,1(M) of g to functions gij ∈
C1,1(Rn). Such extensions exist since C1,1 = W 2,∞ and the boundary of M is
smooth (see [Ste70, Chapter 6, Theorem 5]). Let us then choose a non-negative
compactly supported smooth function ϕ : Rn → R with unit integral and define a
sequence of standard mollifiers

α
ϕ(x) = αnϕ(αx) for α ∈ N. Then we define

α
gij := (

α
ϕ ∗ gij)|M ∈ C∞(M). (53)

Lemma 18. Let (M, g) be a simple C1,1 manifold. Let h be a smooth reference
metric on M . There exists a sequence (

α
g)α∈N of C∞-smooth metrics on M such

that

(1)
α
gij → gij in W 2,2

h (M) and in W 1,∞
h (M),

(2)
α
gij → gij in W 2,1

h (M) and in L∞h (M),

(3)
α

Γijk → Γijk in W 1,1
h (M) and in L∞h (M),

(4)
α

Rijkl → Rijkl in L1
h(M).

Proof. For each α ∈ N let
α
g :=

α
gijdx

i ⊗ dxj ∈ C∞(T 2M), where
α
gij are as in (53).

We will show that a subsequence of the sequence (
α
g)α∈N consists of smooth Rie-

mannian metrics and satisfies conditions (1)–(4).
We see that for large α each

α
g is a C∞-smooth Riemannian metric. Smoothness

follows standard properties of the mollifiers
α
ϕ. Each

α
g is symmetric by construction.

For large α each
α
g is positive definite since this is an open condition and pointwise

convergence
α
gij → gij follows from continuity and item (1).

(1) Because gij is compactly supported and in both spacesW 2,2(Rn) andW 2,∞(Rn),

the convolution converges
α
ϕ ∗ gij → gij in both spaces W 2,2(Rn) and W 1,∞(Rn).

This implies converges in the corresponding function spaces over the subdomain
M ⊂ Rn.

(2) Let us denote the adjugate of a matrix A by adj(A); we interpret rank two
tensor fields as matrix-valued functions on M ⊂ Rn. By item (1) we have

det(
α
g)→ det(g) and adj(

α
g)ij → adj(g)ij (54)

in L∞h (M). Thus for sufficiently large α the matrices
α
g are uniformly invertible in

the sense that ∥∥det(
α
g)−1

∥∥
L∞h (M)

≤ C. (55)

Since
α
gij(x) = det(

α
g(x))−1 adj(

α
g(x))ij , (56)

we have that
α
gij → gij in L∞h (M). Derivatives of the inverse satisfy ∂k

α
gij =

−α
gil(∂k

α
glm)

α
gmj , which implies convergence of the derivatives in L2

h(M).
(3) This follows from

α

Γijk =
1

2
α
gij
(
∂j

α
gkl + ∂k

α
gjl − ∂l

α
gjk
)

(57)
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and items (1) and (2).
(4) This follows from

α

R l
ijk = ∂i

α

Γljk − ∂j
α

Γmjk +
α

Γmjk
α

Γl im −
α

Γmik
α

Γljm (58)

and item (3). �

Next we prove the Pestov identity for C1,1 regular metrics. In the context of
lemma 9 the manifold (M, g) is simple C1,1, the Riemannian metric g is C1,1 regular,

the function u is in H1(SM) and satisfies Xu ∈ H1(SM) and
v

∇u ∈ H1(N,X).

Proof of lemma 9. Choose a smooth reference Riemannian metric h on M and
let (

α
g)α∈N be a sequence of smooth metrics approximating g as in lemma 18. For

each α ∈ N denote
α
u := u ◦ αr. Then by remark 15 we have

α
u ∈ H1

0 (
α

SM),
α

X
α
u ∈

H1(
α

SM) and
v

∇α
α
u ∈ H1(

α

N,
α

X), which implies that
α
u ∈ K2(

α

SM) and
α
u|
∂(
α
SM)

= 0.

For each α an application of lemma 17 gives∥∥∥∥ v

∇α
α

X
α
u

∥∥∥∥2
L2(

α
N)

= Qα

(
v

∇α
α
u

)
+ (n− 1)

∥∥∥ α

X
α
u
∥∥∥2
L2(

α
SM)

. (59)

We will show that

lim
α→∞

∥∥∥∥ v

∇α
α

X
α
u

∥∥∥∥2
L2(

α
N)

=

∥∥∥∥ v

∇Xu
∥∥∥∥2
L2(N)

. (60)

Similar arguments can be used to deduce that

lim
α→∞

Qα

(
v

∇α
α
u

)
= Q

(
v

∇u
)

(61)

and

lim
α→∞

∥∥∥ α

X
α
u
∥∥∥2
L2(

α
SM)

= ‖Xu‖2L2(SM) . (62)

Then letting α→∞ in equation (59) proves the claim of the theorem. Since the ar-
guments showing equations (61) and (62) are analogous to what is presented below,
we omit them. (The fact that components of the curvature tensor only converge
in L1 and not in L∞ is where the assumption u ∈ Lip(SM) is useful.) Coordinate
formulas required to show equations (61) and (62) are given in appendix A.

For any L2 convergence to make sense, we fix ShM to be our common reference

bundle for objects to be integrated on. First we study how the L2(
α

N) norm on
the left-hand side of (60) transforms under

α
s. Let ũ :=

α
u ◦ αs−1 and fix ẑ ∈ ShM

and z ∈
α

SM such that
α
s(z) = ẑ. By basic properties of pushforwards we have((

(
α
s∗

α

X)ũ
)
◦ αs
)

(z) = (
α
s∗

α

X)ẑũ =
α

Xz(ũ ◦
α
s) =

α

Xz
α
u. (63)

Thus

(
α
s∗

α

∂j)ẑ

(
(
α
s∗

α

X)ũ
)

=
α

∂jz

(
(
α
s∗

α

X)ũ ◦ αs
)

=
α

∂jz

(
α

X
α
u
)
. (64)



16 PESTOV IDENTITIES AND X-RAY TOMOGRAPHY IN LOW REGULARITY

Since π(z) = π(ẑ) ∈M we get∥∥∥∥ v

∇α
α

X
α
u

∥∥∥∥2
L2(

α
N)

=

∫
z∈

α
SM

α
gij(π(z))

(
α

∂iz(
α

X
α
u)
)(

α

∂jz(
α

X
α
u)
)

d
α

Σ(z)

=

∫
ẑ∈ShM

α
gij(π(ẑ))

(
α

∂iα
s−1(ẑ)

(
α

X
α
u)
)

×
(
α

∂jα
s−1(ẑ)

(
α

X
α
u)
) ∣∣det

(
d
α
s−1ẑ
)∣∣ dΣh(ẑ)

=

∫
ẑ∈ShM

α
gij(π(ẑ))

(
(
α
s∗

α

∂i)ẑ

(
(
α
s∗

α

X)ũ
))

×
(

(
α
s∗

α

∂j)ẑ

(
(
α
s∗

α

X)ũ
)) ∣∣det

(
d
α
s−1ẑ
)∣∣ dΣh(ẑ).

(65)

An analogous formula holds for the right-hand side of equation (60). Note that ũ =
u ◦ s−1. Thus we see that to prove equation (60) we need to prove the following
two items.

(i) (
α
s∗

α

∂j)
(

(
α
s∗

α

X)ũ
)
→ (s∗∂

j) ((s∗X)ũ) in L∞(ShM).

(ii) det
(
d
α
s−1
)
→ det

(
ds−1

)
in L∞(ShM).

The push-forward
α
s∗ has a useful block matrix representation in the coordinates

of the unit sphere bundles. Let (x,
α
w) ∈

α

SM and (x, v) ∈ ShM correspond to
each other through

α
s(x,

α
w) = (x, v). To (x,

α
w) and (x, v) we associate the coor-

dinate vector fields ∂x1 , . . . , ∂xn , ∂αw1 , . . . , ∂αwn and ∂x1 , . . . , ∂xn , ∂v1 , . . . , ∂vn respec-
tively. The matrix representation of

α
s∗ in a block form with respect to the bases

∂x1 , . . . , ∂xn , ∂αw1 , . . . , ∂αwn and ∂x1 , . . . , ∂xn , ∂v1 , . . . , ∂vn is

α
s∗ =

(
I 0
∂xv ∂αwv

)
. (66)

To find coordinate expressions for
α
s∗

α

∂j and
α
s∗

α

X, the vector fields
α

∂j and
α

X need to
be expressed in the basis ∂x1 , . . . , ∂xn , ∂αw1 , . . . , ∂αwn . As long as everything is only

evaluated on
α

SM , we have
α

X
α
u =

α
wj

α

δj û for any û : TM \ 0→ R such that û|α
SM

=
α
u. Therefore, in local coordinates and as long as we are careful to only evaluate

only
α

SM , we have
α

X =
α
wj∂xj −

α

Γkjl
α
wj

α
wl∂αwk . (67)

Similarly we get
α

∂j =
α
gjl∂αwl .

Coordinate formulas for the push-forwards vector fields can be found by multi-
plying with

α
s∗. This time only evaluating on ShM , we have

α
s∗

α

X =
α
wj∂xj +

(
α
wk∂xkv

j −
α

Γklm
α
wl

α
wm(∂αwkv

j)
)
∂vj (68)

and
α
s∗

α

∂j =
α
gjl(∂αwlv

k)∂vk . (69)

From these expressions it is clear that convergence in item (i) comes down to three
matters. In the base there are derivatives of components of

α
g up to the second order

and derivatives of components of
α
g−1 up to the first order. Again, components of

the metric
α
g appear in the coefficients

α
wj . The behaviour on the limit of all of these

matters is controlled by lemma 18. We have concluded item (i).
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To prove item (ii), we write the matrix d
α
s−1 in the block form

d
α
s−1 =

(
I 0
∂x

α
w ∂v

α
w

)
. (70)

Clearly det
(
d
α
s−1
)

= det (∂v
α
w). Therefore the behaviour as α → ∞ depends on

sums and products of derivatives ∂vk(v |v|−1α ), which comes down to the metric
α
g.

By lemma 18 we have det
(
d
α
s−1
)
→ det

(
ds−1

)
in L∞(ShM).

We have shown both items (i) and (ii) and thus we have proved equation (60).
This finishes the proof of the theorem. �

Lemma 19. Let (M, g) be a simple C1,1 manifold. The commutator formula

[X,
v

∇] = −
h

∇ holds on (M, g) in the H1 sense: For all u ∈ H1
0 (SM) and V ∈ C1(N)

we have (
h

∇u, V
)
L2(N)

=

(
v

∇u,XV
)
L2(N)

−
(
Xu,

v

divV

)
L2(SM)

. (71)

Proof. Let h be a smooth reference metric on M and choose a sequence (
α
g)α∈N of

smooth metrics approximating g as in lemma 18. For each α ∈ N denote
α
u := u ◦ αr

and
α

V := V ◦ αr. Then by remark 15 we have
α
u ∈ H1

0 (
α

SM) and
α

V ∈ C1(
α

N). We

apply lemma 16 to
α
u and

α

V to get(
h

∇α
α
u,

α

V

)
L2(

α
N)

=

(
v

∇α
α
u,

α

X
α

V

)
L2(

α
N)

−
(

α

X
α
u,

v

divα
α

V

)
L2(

α
SM)

. (72)

Letting α → ∞ in equation (72) proves the claimed identity (71), after we have
shown that

lim
α→∞

(
h

∇α
α
u,

α

V

)
L2(

α
N)

=

(
h

∇u, V
)
L2(N)

, (73)

lim
α→∞

(
v

∇α
α
u,

α

X
α

V

)
L2(

α
N)

=

(
v

∇u,XV
)
L2(N)

(74)

and

lim
α→∞

(
α

X
α
u,

v

divα
α

V

)
L2(

α
SM)

=

(
Xu,

v

divV

)
L2(SM)

. (75)

All formulas (73), (74) and (75) can be shown by arguments completely analogous
to those used in proving the formula (60) in the proof of lemma 9. Thus we omit
the details. Coordinate formulas needed to complete the proofs of the formulas are
given in appendix A. �

5.2. Regularity of the integral function. Let (M, g) be a simple C1,1 manifold.
In this section we will prove lemma 8 concerning regularity properties of the integral
functions of Lipschitz functions and one-forms. We prove a Lipschitz property for
the geodesic flow in lemma 20. The Lipschitz property lets us prove that the integral
functions are Lipschitz in lemma 21. To prove H1(N,X) regularity for the vertical
gradients of the integral functions in lemma 22, we use the commutator formula
from lemma 19.

On a compact manifold M and its unit sphere bundle SM all reasonable notions
of distance are bi-Lipschitz equivalent. Since in this section M will be the Euclidean
closed ball, we choose Euclidean distances.
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Lemma 20. Let (M, g) be a simple C1,1 manifold. For z ∈ SM let [τ−(z), τ+(z)]
be the maximal interval of existence of the geodesic γz. The geodesic flow φt is
Lipschitz continuous in z ∈ SM : There is a uniform L > 0 so that for all z, ẑ ∈ SM
and t ∈ [τ−(z), τ+(z)] ∩ [τ−(ẑ), τ+(ẑ)] we have

dSM (φt(z), φt(ẑ)) ≤ LdSM (z, ẑ). (76)

Proof. Let z, ẑ ∈ SM . Note that both lifted geodesics t 7→ φt(z) and t 7→ φt(ẑ)

satisfy the equation X(ψ(t)) = ψ̇(t) on the interval [τ−(z), τ+(z)] ∩ [τ−(ẑ), τ+(ẑ)].
Since the distance dSM can be taken to be Euclidean and the Christoffel symbols of
the metric g ∈ C1,1(T 2M) are Lipschitz continuous, we get by Grönwall’s inequality
that

dSM (φt(z), φt(ẑ)) ≤ eK|t−0|dSM (φ0(z), φ0(ẑ)) = eK|t|dSM (z, ẑ), (77)

for some K > 0 independent of t, z and ẑ. Since M is simple C1,1, the function τ is
uniformly bounded on SM . Thus we find a constant L > 0 independent of z and ẑ
such that eK|t| ≤ L uniformly for t ∈ [τ−(z), τ+(z)] ∩ [τ−(ẑ), τ+(ẑ)], which finishes
the proof. �

Lemma 21. Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip0(SM) and let uf

be the integral function of f defined by (2). Then uf ∈ Lip(SM).

Proof. Let z, ẑ ∈ SM be so that τ(ẑ) ≤ τ(z). Then by a simple calculation∣∣uf (z)− uf (ẑ)
∣∣ ≤ (τ(z)− τ(ẑ)) sup

t∈[τ(ẑ),τ(z)]
|f(φt(z))|

+

∫ τ(ẑ)

0

|f(φt(z))− f(φt(w))| dt.

(78)

We will show that both summands on the right-hand side of equation (78) are
bounded by CdSM (z, ẑ) for some constant C > 0 independent of z and ẑ.

First, we treat the second term on the right-hand side of (78). Since by lemma 20
the geodesic flow φt and f both are Lipschitz, there is a constant K > 0 independent
of t, z and ẑ so that

|f(φt(z))− f(φt(ẑ))| ≤ KdSM (z, ẑ). (79)

Since the manifold M is simple C1,1, there is a constant L > 0 independent of ẑ so
that τ(ẑ) ≤ L. It follows that∫ τ(ẑ)

0

|f(φt(z))− f(φt(ẑ))| dt ≤ KLdSM (z, ẑ), (80)

which proves the desired bound for the second term.
Then we turn to the first term on the right-hand side of (78). Since f is Lipshcitz

and vanishes on the boundary ∂(SM), for all t ∈ [τ(ẑ), τ(z)] we have

|f(φt(z))| =
∣∣f(φt(z))− f(φτ(z)(z))

∣∣
≤ Lip(f)dSM (φt(z), φτ(z)(z))

≤ Lip(f)(τ(z)− t)
≤ Lip(f)(τ(z)− τ(ẑ))

≤ Lip(f)(τ(z) + τ(ẑ)).

(81)
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The function τ2 is Lipschitz since the manifold is simple C1,1, and so

(τ(z)− τ(ẑ)) sup
t∈[τ(ẑ),τ(z)]

|f(φt(z))| ≤ Lip(f)(τ2(z)− τ2(ẑ))

≤ Lip(f) Lip(τ2)dSM (z, ẑ),
(82)

as desired.
Combining estimates (78), (80) and (82) yields a Lipschitz estimate for the in-

tegral function uf . �

Lemma 22. Let (M, g) be a simple C1,1 manifold. Assume that f ∈ Lip0(SM) in-

tegrates to zero over all maximal geodesics in M . Then
v

∇uf ∈ H1(N,X), where uf

is the integral function of f defined by equation (2).

Proof. The integral function uf is in Lip(SM) by lemma 21 and uf |∂(SM) = 0
since f integrates to zero over all maximal geodesics of M . Thus by remark 15 we
have uf ∈ H1

0 (SM). Then an application of lemma 19 gives(
v

∇uf , XV
)
L2(N)

=

(
h

∇uf , V
)
L2(N)

−
(
Xuf ,

v

divV

)
L2(SM)

(83)

for any V ∈ C1(N). Here Xuf ∈ H1(SM), since Xuf = −f ∈ Lip(SM). Thus for
any V ∈ C1

0 (N) we can integrate by parts in (83) to get(
v

∇uf , XV
)
L2(N)

=

(
(
h

∇−
v

∇X)uf , V

)
L2(N)

. (84)

Therefore X
v

∇uf = (
v

∇X−
h

∇)uf ∈ L2(N), which shows that
v

∇uf ∈ H1(N,X). �

Lemma 23. Let (M, g) be a simple C1,1 manifold. Then for any x ∈ ∂M and v ∈
Sx(∂M), there is a sequence of vectors vk ∈ SxM so that τ(x, vk) > 0, vk → v
and τ(x, vk)→ 0 as k →∞.

Proof. Let x ∈ ∂M and v ∈ Sx(∂M). Choose a C1 boundary curve σ defined on
an interval I so that σ(0) = x and σ̇(0) = v. Choose a sequence (xk) of boundary
points on σ(I) so that xk → x. For each k let vk ∈ SxM be the initial velocity of
the unique geodesic γxxk joining x to xk in the interior of M — the geodesic γxxk
exists by simplicity. Then τ(x, vk) > 0 for each k. Since the lengths of the geodesics
depend continuously on their end points, we get τ(x, vk) = l(γxxk)→ 0 and vk → v
as k →∞. �

Lemma 24. Let (M, g) be a simple C1,1 manifold. Suppose that f ∈ Lip(M)
integrates to zero over all maximal geodesics of M . Then f vanishes on the bound-
ary ∂M .

Proof. Let x ∈ ∂M be a boundary point. Suppose that v ∈ Sx(∂M). By lemma 23
there is a sequence of tangent vectors vk ∈ SxM so that τ(x, vk) > 0, τ(x, vk)→ 0
and vk → v when k → ∞. Since integrals of f over all maximal geodesics vanish,
the integral function uf of f vanishes on the boundary ∂(SM). As the lengths of
the geodesics approach zero we get

f(x) = lim
k→∞

1

τ(x, vk)

∫ τ(x,vk)

0

f(γx,vk(t)) dt = lim
k→∞

1

τ(x, vk)
uf (x, vk) = 0 (85)

as claimed. �
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If f ∈ Lip(SM), then the proof above only gives f |∂0(SM) = 0, not f |∂(SM) = 0.
This is why an additional assumption is needed for one-forms in low regularity; cf.
remark 3.

Proof of lemma 8. (1) Let f be a Lipschitz function on M that integrates to zero
over all maximal geodesics of M . Define the integral function uf of f as in (2).
We have f ∈ Lip0(M) by lemma 24. Thus uf ∈ Lip0(SM) by lemma 21. We

have
v

∇uf ∈ H1(N,X) by lemma 22 and Xuf = −π∗f ∈ Lip(SM) ⊆ H1(SM) by
the fundamental theorem of calculus.

(2) Let h be a Lipschitz 1-form on M that integrates to zero over all maximal
geodesics of M and vanishes on the boundary ∂M . Let uh be the integral function
of h defined by (2). Then uh ∈ Lip0(SM) by lemma 21. We see that Xuf ∈
H1(SM) and

v

∇uh ∈ H1(N,X) as in item (1). �

5.3. The integral function in the Pestov identity. This subsection concludes
the proofs of the lemmas required to prove theorem 1. We verify that the integral
function of a Lipschitz 1-form h onM behaves in the same way in the Pestov identity
as it does in the smooth case. Recall that (M, g) is a simple C1,1 Riemannian
manifold and particularly g is a C1,1 regular Riemannian metric on M .

Proof of lemma 10. Let h be a Lipschitz 1-form on M and denote by h̃ the associ-
ated function on SM . We will show that∥∥∥∥ v

∇h̃
∥∥∥∥2
L2(N)

= (n− 1)
∥∥∥h̃∥∥∥2

L2(SM)
. (86)

The Lipschitz assumption guarantees that the left-hand side of (86) is well defined.
Let ω stand for the (n−1)-dimensional measure of the unit sphere in Rn. By [Ilm16,
Lemma 4] we have ∫

SxM

∣∣∣h̃(x, v)
∣∣∣2 dSx = |h(x)|2 ω

n
(87)

and ∫
SxM

∣∣∣∣ v∇h̃(x, v)

∣∣∣∣2 dSx = |h(x)|2 ω(n− 1)

n
(88)

on every fiber SxM of the unit sphere bundle. We may integrate over x just as
in [Ilm16, Lemma 4] despite having less regularity, and we find∥∥∥∥ v

∇h̃
∥∥∥∥2
L2(N)

= (n− 1)

∫
M

|h(x)|2 ω
n

dVg = (n− 1)
∥∥∥h̃∥∥∥2

L2(SM)
(89)

as claimed. �

6. Lemmas in smooth geometry

This final section contains the proofs of the lemmas used to verify that the
two definitions of simplicity (definitions 4 and 5) agree when the geometry is C∞-
smooth. We assume that M ⊆ Rn is the closed unit ball and we let g be a C∞-
smooth Riemannian metric on M .

We denote by Iγ the index form along a geodesic γ of M . Recall that if there are
interior conjugate points along γ, then Iγ is indefinite and if the end points of γ are
conjugate to each other along γ, then there is a normal vector field V 6≡ 0 along γ
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so that Iγ(V ) = 0. If V is a normal vector field along γ vanishing at the end points
of γ, we abreviate Iγ(V ) := Iγ(V, V ).

Proof of lemma 11. Let (M, g) be a simple C1,1 manifold and assume that the
Riemannian metric g is C∞-smooth. Let γ0 : I → M be a maximal geodesic in M
and let V 6≡ 0 be a normal vector field along γ0 vanishing at the end points of γ0. We
will show that Iγ0(V ) > 0, proving that there cannot be conjugate points along γ
even at its end points.

Let (γ0(0), γ̇0(0)) =: z0 ∈ ∂in(SM) be the initial data of a geodesic γ0 and let γ̃0
be the lift to the sphere bundle. The pullback bundle γ̃∗0N consists precisely of
all normal vector fields along γ0. Particularly, V is a section of γ̃∗0N , so there is a

smooth section Ṽ on N supported in a neighbourhood of γ̃(I) so that Ṽ |γ̃0 = V .
Choose for each k ∈ N a smooth function ak : ∂in(SM)→ R so that a2k → δz0 in

the weak sense and
∫
∂in(SM)

a2kdµ = 1, where dµ(x, v) = 〈ν(x), v〉dΣg(x, v). Since

we are working locally around z0, it is enough to find such a sequence of functions
in Euclidean space and we see that a sequence of square roots of positive standard
mollifiers we suffice.

For each k ∈ N letWk ∈ C∞(N) be a section such thatWk(φt(z)) = ak(z)Ṽ (φt(z))
for all z ∈ ∂in(SM) and t ∈ [0, τ(z)]. By Santaló’s formula (see [Sha99, Lemma
3.3.2]) it follows that as k →∞ we have

Q(Wk) =

∫
z∈∂in(SM)

Iγz (Wk|γ̃z ) dµ(z)

=

∫
z∈∂in(SM)

a2k(z)Iγz (Ṽ |γ̃z ) dµ(z)

→
∫
z∈∂in(SM)

δz0(z)Iγz (Ṽ |γ̃z ) dµ(z)

= Iγ0(Ṽ |γ̃0) = Iγ0(V ).

(90)

Here we have written the distribution δz0 as a function on SM to simplify notation.
Similarly as k →∞ we get

‖Wk‖2L2(N) =

∫
z∈∂in(SM)

∫ τ(z)

0

|Wk|γ̃z |
2

dtdµ(z)

=

∫
z∈∂in(SM)

a2k(z)

(∫ τ(z)

0

∣∣∣Ṽ |γ̃z ∣∣∣2 dt

)
dµ(z)

→
∫
z∈∂in(SM)

δz0(z)

(∫ τ(z)

0

∣∣∣Ṽ |γ̃z ∣∣∣2 dt

)
dµ(z)

=

∫ τ(z0)

0

∣∣∣Ṽ |γ̃0 ∣∣∣2 dt =

∫ τ(z0)

0

|V |2 dt.

(91)

By C1,1 simplicity of (M, g) there is ε > 0 so that Q(Wk) ≥ ε ‖Wk‖2L2(N) for all k.

We conclude that

Iγ0(V ) ≥ ε
∫ τ(z0)

0

|V |2 dt > 0, (92)

which proves that there cannot be conjugate points along γ0 even at its end points.
�
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Proof of lemma 12. Let (M, g) be a compact smooth Riemannian manifold with a
smooth boundary. We assume that the Riemannian metric g is C∞-smooth.

First, we will prove that strict convexity implies Lipschitz continuity of τ2. As
the boundary is strictly convex, all geodesics starting in the interior int(SM) meet
the boundary transversally. The implicit function theorem implies that τ is smooth
in int(SM). As τ : SM → R is continuous on all of SM , it suffices to show that
the gradient of τ2 (in Sasaki or any other Riemannian metric on SM) is uniformly
bounded in the interior.

Let z ∈ SM be an interior point and let s 7→ zs be a smooth curve of interior
points, where s ∈ (−ε, ε) and z0 = z. Choose s 7→ zs to have unit speed with
respect to the Sasaki metric related to the C∞-smooth metric g. The implicit
function theorem gives an explicit formula for the differential dτ of τ . Applying
the implicit function theorem to ρ(γzs(t)) yields

d

ds
τ(zs) = −

〈
d
dsγzs(t), ν(γzs(t))

〉
〈γ̇zs(t), ν(γzs(t))〉

∣∣∣∣
t=τ(zs)

, (93)

where ρ is a boundary defining function. To prove that d(τ2) = 2τdτ is uniformly
bounded in the interior, we will show that

τ(zs)
d

ds
τ(zs) (94)

is bounded by some absolute constant near s = 0. Boundedness of (94) will follow
after we have shown that

τ(z) . |〈γ̇z(τ(z)), ν(γz(τ(z)))〉| (95)

for all z ∈ int(SM), since by growth estimates for Jacobi fields and |ż0| = 1 we
have ∣∣∣∣〈 d

ds
γzs(τ(zs)), ν(γzs(τ(zs)))

〉∣∣∣∣ ≤ C, (96)

where C is a constant depending only on curvature bounds and diameter. Since
the right-hand side of (95) is constant along the geodesic γz, it is enough to prove
boundedness for z ∈ ∂in(SM).

Outside any neighbourhood of the compact set ∂0(SM), the right-hand side
of (95) is uniformly bounded from below by a positive constant and τ(z) is also
uniformly bounded from above. Thus if we can prove that there is a neighbourhood
of the set ∂0(SM) where (95) holds, it will hold everywhere on ∂(SM).

Take any x ∈ ∂M and an inward pointing vector v ∈ SxM . Let

x̂ := γx,v(τ(x, v)) and v̂ := −γ̇x,v(τ(x, v)). (97)

Let ν be the inward unit normal vector at the boundary. Denote by v̂⊥ν and v̂‖ the
components of v̂ normal and parallel to ∂M , respectively. It follows from [Ilm14,
Lemma 12] that as v̂⊥ → 0, we have

τ(x̂, v̂) = 2v⊥S(v̂‖, v̂‖)−1 +O((v̂⊥)2), (98)

where S is the second fundamental form of ∂M and the error term is locally uni-
form. As the boundary is strictly convex, the second fundamental form is bounded
uniformly from below by c > 0. Thus as v̂⊥ → 0 we get

τ(x̂, v̂) ≤ 3c−1v̂⊥ = 3c−1 〈ν(x̂), v̂〉 . (99)
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Therefore, since τ(x, v) = τ(x̂, v̂), as v⊥ → 0 we get

τ(x, v) = τ(x̂, v̂) . |〈ν(x̂), v̂〉| = |〈ν(γx,v(τ(x, v))), γ̇x,v(τ(x, v))〉| . (100)

This shows that (95) holds in a neighbourhood of the tangential point (x, v‖). Thus
estimate (95) holds in a neighbourhood of ∂0(SM).

Next we turn to the opposite statement. Take any v ∈ Sx(∂M) so that Sx(v, v) ≤
0. We will show that τ2 will fail to be Lipschitz. We use boundary normal coordi-
nates near the base point x ∈ ∂M . We construct a family (γh)h∈[0,1] of geodesics
as follows. Parallel translate the vector v for time h along the geodesic starting
normally inwards from x. Call this vector vh ∈ TxhM . Let γh be the geodesic with
the initial data γ̇h(0) = vh. The geodesic γ0 (with initial direction v0 = v at x0 = x)
starts at the boundary and may, depending on the convexity of the boundary, be
only defined at t = 0.

As in [Ilm14, Eq. (2)] we extend the second fundamental form in the boundary
normal coordinates near x. Denote Sh(t) := Sγh(t)(γ̇h(t), γ̇h(t)). Since Sx(v, v) ≤ 0
we have

Sh(t) = S0(0) +O(h) +O(|t|) ≤ C(h+ |t|), (101)

for some C > 0 when h and |t| are small. If zh(t) is the distance from γh(t) to the
boundary, we have zh(0) = h and żh(0) = 0. By writing the geodesic equation in
boundary normal coordinates (as in [Ilm14, Eq. (8)]) we find that

z̈h(t) = −Sh(t) ≥ −C(h+ |t|). (102)

The total length τh of the geodesic γh can be divided into forward and backward
parts, denoted respectively by τ+h and τ−h . We want to find estimates for τ+h and τ−h
from below.

Let us first consider the case of positive time, t > 0. Integrating the esti-
mate (102) leads to

zh(t) = h+

∫ t

0

∫ s

0

z̈h(r)drds ≥ h− C

2
ht2 − C

6
t3 =: ẑh(t) (103)

for all t > 0. If we choose A := min
(√

2
3C ,

3

√
2
C

)
and τ̂+h := Ah1/3 , then for

all t ∈ [0, τ̂+h ] we have

ẑh(t) ≥ h
[
1− 1

2
Ch2/3A2 − 1

6
CA3

]
≥ h

3
. (104)

Therefore zh(t) ≥ ẑh(t) > 0 for t ∈ [0, τ̂+h ]. This shows that τ+h ≥ τ̂
+
h .

The case of negative time can be reduced to previous case by substituting t =
−s, s > 0 and similarly we get τ−h ≥ Ah1/3. If τ2 were to be Lipschitz continuous,
then there would exist B > 0 so that τ2h ≤ Bh. As 0 < h� 1, this would give us

Bh ≥ τ2h = (τ+h + τ−h )2 ≥ 4A2h2/3, (105)

which is impossible for small h. �

Appendix A. Coordinate formulas and norms

We have collected here the remaining formulas from proofs of lemmas 9 and 19.
In the context of the proof of lemma 9 following formulas hold. The Qα-term in



24 PESTOV IDENTITIES AND X-RAY TOMOGRAPHY IN LOW REGULARITY

identity (59) is

Qα

(
v

∇α
α
u

)
=

∥∥∥∥ α

X
v

∇α
α
u

∥∥∥∥
L2(

α
N)

−
(

α

R
v

∇α
α
u,

v

∇α
α
u

)
L2(

α
N)

. (106)

For L2 quantities in identity (59) we have∥∥∥∥ α

X
v

∇α
α
u

∥∥∥∥2
L2(

α
N)

=

∫
ShM

α
gij

(
α
wk
(
α
s∗

α

δk

)(
(
α
s∗

α

∂i)ũ
)

+
α

Γilk
α
wl(

α
s∗

α

∂k)ũ
)

×
(
α
wk
(
α
s∗

α

δk

)(
(
α
s∗

α

∂j)ũ
)

+
α

Γjlk
α
wl(

α
s∗

α

∂k)ũ
)

×
∣∣det

(
d
α
s−1
)∣∣ dΣh

(107)

and ∥∥∥ α

X
α
u
∥∥∥2
L2(

α
SM)

=

∫
ShM

∣∣∣(αs∗ αX) ũ∣∣∣2 ∣∣det
(
d
α
s−1
)∣∣ dΣh (108)

and (
α

R
v

∇α
α
u,

v

∇α
α
u

)
L2(

α
N)

=

∫
ShM

α
gij

(
α

Rijkl

(
(
α
s∗

α

∂j)ũ
)

α
wk

α
wl
)

×
(

(
α
s∗

α

∂j)ũ
) ∣∣det

(
d
α
s−1
)∣∣ dΣh.

(109)

For the vector fields
α
s∗

α

δk,
α
s∗

α

X and
α
s∗

α

∂j appearing in formulas (107), (108) and (109)
we have coordinate formulas

α
s∗

α

δk = ∂xk + (∂xkv
j)∂vj −

α

Γikj
α
wj(∂αwiv

l)∂vl , (110)

α
s∗

α

X =
α
wj∂xj +

(
α
wk∂xkv

j −
α

Γklm
α
wl

α
wm(∂αwkv

j)
)
∂vj and (111)

α
s∗

α

∂j =
α
gjl(∂αwlv

k)∂vk . (112)

In the context of the proof of lemma 19 the following formulas hold. For the L2

inner products in equation (72) we have(
h

∇α
α
u,

α

V

)
L2(

α
N)

=

∫
ShM

α
gij

(
(
α
s∗

α

δi)ũ+
α
wi(

α
s∗

α

X)ũ
)
Ṽ j
∣∣det

(
d
α
s−1
)∣∣ dΣh (113)

and (
h

∇α
α
u,

α

V

)
L2(

α
N)

=

∫
ShM

α
gij

(
(
α
s∗

α

∂i)ũ
)(

(
α
s∗

α

X)Ṽ j +
α

Γjlk
α
wlṼ k

)
×
∣∣det

(
d
α
s−1
)∣∣ dΣh

(114)

and(
α

X
α
u,

v

divα
α

V

)
L2(

α
SM)

=

∫
ShM

(
(
α
s∗

α

X)ũ
)(

(
α
s∗

α

∂j)Ṽ
j
) ∣∣det

(
d
α
s−1
)∣∣ dΣh. (115)

New vector fields
α
s∗

α

∂j and
α
s∗

α

δk appear in equations (113), (114) and (115). For
them we have the coordinate formulas

α
s∗

α

∂j = (∂αwjv
k)∂vk , (116)

and
α
s∗

α

δk =
α
gkl∂xl + (

α
gkl(∂xlv

j))∂vj −
α
gkl

α

Γilm
α
wm(∂αwiv

j)∂vj . (117)
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