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Abstract. We prove that the geodesic X-ray transform is injec-
tive on L2 when the Riemannian metric is simple but the metric
tensor is only finitely differentiable. The number of derivatives
needed depends explicitly on dimension, and in dimension 2 we
assume g ∈ C10. Our proof is based on microlocal analysis of the
normal operator: we establish ellipticity and a smoothing prop-
erty in a suitable sense and then use a recent injectivity result on
Lipschitz functions. When the metric tensor is Ck, the Schwartz
kernel is not smooth but Ck−2 off the diagonal, which makes stan-
dard smooth microlocal analysis inapplicable.

1. Introduction

We show that on a simple Riemannian manifold (M, g) where g ∈ Ck

for a finite and explicit k the geodesic X-ray transform is injective
on L2 (Theorem 3). We do this using a typical two-step approach, first
showing that a function in the kernel of the transform is smoother than
assumed a priori and then showing that injectivity holds for smooth
functions. Both of the two steps of the proof have to be adapted to
low regularity. The “smooth” injectivity (on Lipschitz functions) was
established in [3], so it remains to prove that a function in the kernel
of the X-ray transform has to be Lipschitz.

E-mail addresses: joonas.ilmavirta@jyu.fi, antti.k.kykkanen@jyu.fi,

klam0008@uw.edu.
Date: September 25, 2023.

1

http://arxiv.org/abs/2309.12702v1


X-RAY TRANSFORM IN NON-SMOOTH GEOMETRY 2

This regularity result (Theorem 1) is based on microlocal analysis
of the normal operator. This normal operator is not a pseudodifferen-
tial operator in the usual sense because the “smooth” off-diagonal part
of the Schwartz kernel is only Ck−2. Also, when the metric tensor is
not infinitely differentiable, the Sobolev scale of Hs spaces only makes
sense for a bounded range of indices s in both the positive and the neg-
ative direction. These two issues mean that the concepts of ellipticity,
smoothing, and a parametrix need careful treatment.

1.1. Main results. We consider two operators: The X-ray transform I

and its normal operator N . These are defined separately, and we only
prove that N = I∗I when acting on L2 functions. Precise definitions
of the operators and spaces we employ are given in section 2 below.

We prove two main theorems. Theorem 1 concerns functions in the
kernel of the operator N and proves that they have, a priori, improved
regularity. Theorem 3 can be compared to a recent result in [3]. We
prove that the X-ray transform is injective on L2(M) while requiring
more metric regularity whereas [3, Theorem 1] proves that the X-ray
transform is injective only on Lipschitz functions.

Theorem 1. Let (M, g) be a simple manifold, n := dimM ≥ 2 and

g ∈ Ck(M) for some k ≥ 7 + n
2
. Then if f ∈ Hs

c (M) for some s >

−k+6+ n
2
and Nf = 0, we have f ∈ Hr

c (M) for all s < r < k−6− n
2
.

Theorem 1 can be applied to geodesic X-ray tomography in low met-
ric regularity assuming that the X-ray transform I acts on L2(M), since
then N = I∗I is in fact the normal operator for the X-ray transform I.

Proposition 2. Let (M, g) be a simple manifold with g ∈ Ck(M) for

some k ≥ 2. Then I∗I = N on L2(M).

Theorem 3. Let (M, g) be a simple manifold, n := dimM ≥ 2 and

g ∈ Ck(M) for some k ≥ 8+n. Then the X-ray transform I is injective

on L2(M).

The proofs of the theorems rely on microlocal tools. We study the
so-called normal operator N = I∗I related to the X-ray transform I.
We prove thatN is a non-smooth elliptic operator and construct a prin-
cipal parametrix with an error term smoothing of order τ ∈ (0, 1). The
construction and its implications use a non-smooth microlocal calculus
developed in [7] and, in particular, we use the non-smooth symbol and
operator classes, continuous Sobolev mapping properties and a commu-
tator theorem there introduced. The details are recalled in section 2.

1.2. Related results. The geodesic X-ray transform on a Riemannian
manifold has been studied in a variety of contexts and with a variety
of tools [11, 13, 5, 10]. The current article focus on the aspect of
not studying the X-ray transform directly but via the related normal
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operator. This approach has seen plenty of applications in C∞-smooth
metric regularity.

In [12] it was proved that the normal operator on a simple Riemann-
ian manifold is an elliptic pseudodifferential operator in the interior of
the manifold — a result that is essential in their proof that all two di-
mensional simple Riemannian manifolds are boundary rigid. The nor-
mal operator has also played a role in later developments in boundary
rigidity [14, 15]. Microlocal methods in relation to the normal oper-
ator are useful in geometries permitting conjugate points [16, 17, 2].
More recently, there has been interest in isomorphic mapping proper-
ties of the normal operator and its variants between suitably weighted
function spaces [8, 9].

Microlocal analysis of the normal operator in the X-ray tomography
is in non-smooth geometries virtually unexplored. However, injectivity
for the X-ray transform of Lipschitz scalar and C1,1 tensor fields on
simple C1,1 manifolds was proved in two recent articles [3, 4], and
injectivity is known for the scalar transform on spherically symmetric
C1,1 manifolds satisfying the Herglotz condition [1].

The current article uses non-smooth microlocal methods. As ref-
erences on pseudodifferential operators with symbols non-smooth in
both variables we mention [6, 7] and as references to paradifferential
methods we mention [19].

1.3. Acknowledgements. JI was supported by the Research Council
of Finland (grant 351665). AK was supported by the Research Council
of Finland (grant 351656) and by the Finnish Academy of Science and
Letters. KL was supported by NSF. We thank John M. Lee, Gabriel
P. Paternain, Mikko Salo, Hart F. Smith, and Gunther Uhlmann for
discussions.

2. Preliminaries

In this section we introduce the geometric set-up, the function spaces,
and the operators used throughout the article. We also recall the parts
of the non-smooth calculus and theorems from [7] that are required for
the proofs of our main results.

2.1. Simple manifolds. In this section we recall the geometric set-up
in which we study geodesic X-ray transforms. Since the Riemannian
metrics we consider are not C∞-smooth, we include the following defi-
nition for clarity.

Definition 4. Let k be an integer so that k ≥ 2. Let M be a compact
smooth manifold with a smooth boundary and equip M with a Ck

smooth Riemannian metric g. We say that (M, g) is simple if M is Ck-
diffeomorphic to the closed Euclidean unit ball in R

n and the following
hold:
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(1) The boundary ∂M is strictly convex in the sense of the second
fundamental form.

(2) The manifold is non-trapping, i.e., all geodesics hit the bound-
ary in a finite time.

(3) There are no conjugate points in M .

When the Riemannian metric g is C∞-smooth, definition 4 is equiv-
alent to any standard definition of a simple manifold.

Remark 5. Our analysis of the non-smooth operators is carried out
on the closed Euclidean unit ball, which allows us to use smooth global
coordinates on our manifold. This allows us to use smooth functions on
the manifold without having to worry about limitations on regularity
indices. However, we have to interpret our results in the original man-
ifold via a Ck-diffeomorphism which restrict the meaningful range of
any regularity indices (Hölder or Sobolev) to [−k, k] in the up coming
sections.

To prove Theorem 3 we will use [3, Theorem 1]. There the authors
use a slightly different notion is simplicity, but definition 4 is equivalent
to their definition for Riemannian metrics g ∈ Ck(M) when k ≥ 10
which holds in the case of Theorem 3. The proof of equivalence of
definitions in [3, Theorem 2] carries over to our simple Riemannian
metrics g ∈ Ck(M) for k ≥ 10 by the arguments given in [3] and since
we assume that M is Ck-diffeomorphic to the closed unit ball in R

n.
Since the conditions defining a simple manifold (M, g) with g ∈

Ck(M) are open, there is a small open extension M ⊆ U ⊆ R
n and an

extension g̃ of g so that (U, g̃) is a simple manifold with g̃ ∈ Ck(U). For
details on the existence of simple extension we refer the reader to [11,
Proposition 3.8.7].

2.2. Function spaces. Our definition of a simple manifold includes
global coordinates. Therefore no partitions of unity are needed and
the definitions of some operators and function spaces are somewhat
simplified.

Let (M, g) be a simple manifold where g ∈ Ck(M) for some k ≥ 2.
Since M is Ck-diffeomorphic to the closed Euclidean unit ball B ⊆ R

n

we takeM = B from now on and all computations are to be interpreted
via a Ck-diffeomorphism as explained in remark 5.

We use smooth global coordinates (x1, . . . , xn) in the definitions of
our functions spaces. We use the Riemannian volume for dVolg to
define L2(M) in the standard way i.e. L2(M) = L2(M, dVolg).

For s > 0 we denote by Hs
c (M) the space of compactly supported

functions in Hs(M). For s > 0 we let H−s(M) be the continuous
dual of Hs(M) and H−s

c (M) be the subspace of compactly supported
distributions.
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Similarly, we define the Zygmund space Cr
∗(M) to be the space of

continuous functions f on M whose zero extension to R
n is in Cr

∗(R
n)

and the norm of a such functions is its Cr
∗(R

n)-norm.

2.3. Geodesic X-ray transforms. Let (M, g) be a simple manifold
where g ∈ Ck(M) for some k ≥ 2. For a given unit vector v ∈
TxM there is a unique geodesic γx,v corresponding to the initial con-
ditions γx,v(0) = x and γ̇x,v(0) = v. Since the manifold is non-
trapping, the geodesic γx,v is defined on a maximal interval of existence
[−τ−(x, v), τ+(x, v)] where τ±(x, v) ≥ 0 and we abbreviate τ := τ+.

The X-ray transform If of a function f ∈ L2(M) is defined for all
inwards pointing unit vectors (x, v) ∈ ∂inSM by the formula

If(x, v) :=

∫ τ(x,v)

0

f(γx,v(t)) dt. (1)

The backprojection I∗h of a function h on L2(∂in(SM)) is defined for
all x ∈M by the formula

I∗h(x) :=

∫

SxM

h(φ−τ(x,−v)(x, v)) dSx(v). (2)

Finally, we define the operator N which we will call the normal
operator and which will be the main focus of our study. The normal
operator is defined on L2(M) by the formula

Nf(x) = 2

∫

SxM

∫ τ(x,v)

0

f(γx,v(t))) dt dSx(v). (3)

We will prove in proposition 2 that N agrees with the composition I∗I
on L2(M), justifying calling it the normal operator.

2.4. Non-smooth operators and symbols. In this section we recall
the basics of a non-smooth pseudodifferential calculus introduced in [7].
We rerecord the results that are relevant to the current work for the
convenience of the reader.

Let m ∈ R and r, L ∈ N be given. Multi-indices in N
n are denoted

by α and β. For all ρ, δ ∈ [0, 1] the symbol class Sm
ρδ(r, L) consists of

continuous functions p : Rn × R
n → R satisfying the estimates

∣

∣∂αξ p(x, ξ)
∣

∣ ≤ Cα(1 + |ξ|)m−ρ|α| (4)

and
∥

∥∂αξ p( · , ξ)
∥

∥

Cr
∗

≤ Cαr(1 + |ξ|)m+rδ−ρ|α| (5)

for all |α| ≤ L.
Given a symbol p ∈ Sm

ρδ(r, L) the corresponding operator Op(p) is
defined by its action

Op(p)f(x) =

∫

Rn

eix·ξp(x, ξ)f̂(ξ) dξ (6)
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on functions f in L2(Rn). The identity operator Id is the operator
corresponding to the constant symbol 1.

We end the preliminaries by isolating two useful results on the op-
erators of class Ψm(r, L). For the proofs of the lemmas we refer the
reader to [7].

Lemma 6 ([7] Theorem 2.1.). Let p ∈ Sm
ρδ(r, L) and consider the op-

erator P := Op(p). Suppose that ρ, δ ∈ [0, 1] and r, L > 0 satisfy

δ ≤ ρ, L >
n

2
, r >

1− ρ

1− δ

n

2
. (7)

Then the operator P : Hs+m(Rn) → Hs(Rn) is bounded when

(1− ρ)
n

2
− (1− δ)r < s < r. (8)

Lemma 7 ([7] Theorem 3.5.). Let p ∈ Sm1

ρ1δ1
(r, L) and q ∈ Sm2

δ2ρ2
(r, L+

n
2
+ 1) and suppose that δ1 < ρ2 and L > n

2
. Denote the corresponding

operators by P := Op(p) and Q := Op(q). Let τ ∈ (0, 1] be such that

0 < τ < r. Define

δ := max{δ1 + (ρ1 − δ2)τ, δ2} and ρ := min{ρ1, ρ2}. (9)

Assume that δ ≤ ρ and in the case ρ < 1 suppose in addition that

r > 1−ρ
1−δ

n
2
+ τ . Then the commutator

QP −Op(qp) : Hs+m1+m2−(ρ1−δ2)τ (Rn) → Hs(Rn) (10)

is bounded when

max{−m2, 0}+(1− ρ)
n

2
− (1− δ)(r− τ) < s < r−max{m2, 0}. (11)

3. Parametrix construction for the normal operator

This section provides a detailed analysis of the operator N culmi-
nating in a leading order parametrix construction in the non-smooth
symbol calculus presented in section 2.4. The parametrix construction
is the main tool used in the proofs of our main theorems.

3.1. The Schwartz kernel and the symbol. The objective of this
section is to study the operator N as a non-smooth elliptic pseudodif-
ferential operator. We begin from the Schwartz kernel of the operator
and analyse its symbol by dissecting it into manageable parts. The
end result containing the principal part of the symbol is presented in
corollary 16.

Lemma 8. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 2. Let a(x, y) = det(d expx |exp−1
x (y))

−1. Then for all f ∈ L2(M)
we have

Nf(x) = 2

∫

M

a(x, y)dg(x, y)
1−nf(y) dVolg(y). (12)



X-RAY TRANSFORM IN NON-SMOOTH GEOMETRY 7

Proof. The same formula is derived in [11, Lemma 8.1.10] when g ∈
C∞(M). The computation works when g ∈ Ck(M) with k ≥ 2. �

The Schwartz kernel of the operator N is

K(x, y) = 2a(x, y)dg(x, y)
1−n (13)

on M ×M . We will construct leading order parametrices for operators
on R

n related to the Schwartz kernels of the form

K̃(x, y) := ψ(x)2a(x, y)dg(x, y)
1−n det(g(y))

1

2φ(y) (14)

where ψ and φ are suitable cut-off functions in R
n.

Consider Ω ⊆ M and consider f ∈ Hs
c (M) so that supp f ⊆ Ω. We

can choose a cut-off function φ ∈ C∞
c (M) so that φf = f on M . Then

if ψ ∈ C∞
c (M) is to that ψ = 1 on Ω we have for all x ∈ Ω that

Nf(x) =

∫

Rn

ψ(x)K(x, y) det(g(y))
1

2φ(y)f(y) dy

=

∫

Rn

K̃(x, y)f(y) dy.

(15)

We let Ñ be the operator corresponding to the kernel K̃. ThenNf(x) =

Ñf(x) on Ω which shows that it is enough to only consider operators
with kernel of the form (14). For the details see the proof of Theorem 1

in section 4. From now on we let N = Ñ to avoid cluttered notation
and we keep the cut-off functions ψ and φ fixed for the remainder of
this section.

We will prove that N ∈ Ψ−1(k−s, s−4) for all s ∈ N with 4 ≤ s ≤ k.
This is accomplished by studying the operator in the global coordinates
of the Euclidean unit ball and by computing the symbol of the operator.
By [11, Lemma 8.1.12] we can write in the coordinates that

K̃(x, y) = ψ(x)
2a(x, y) det(g(y))1/2

[Gjk(x, y)(x− y)j(x− y)k]
n−1

2

φ(y) (16)

for some functions Gjk with Gjk(x, x) = gjk(x).

Lemma 9. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 3. Then K̃ ∈ Ck−2(Rn × R
n \∆) where ∆ := {(x, x) : x ∈ R

n} is

the diagonal in R
n × R

n.

Proof. The kernel K̃ can be expressed in the form

K̃(x, y) = ψ(x)2a(x, y)dg(x, y)
1−n det(g(y))

1

2φ(y). (17)

By standard ODE theory the geodesic flow has Ck−1 smooth initial
value dependence when g ∈ Ck(M), and thus the exponential func-
tion is also Ck. It follows that a ∈ Ck−2(M × M). In addition,
since dg(x, expx(v)) = |v|g for (x, v) ∈ TM it follows that dg(x, y) ∈

Ck−1(M ×M \∆). Finally, since the determinant term in (17) is Ck

we see that K̃ is Ck−2 off diagonal as claimed. �
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By denoting

k(x, z) := K̃(x, x− z) (18)

and letting

a(x, ξ) :=

∫

Rn

e−iz·ξk(x, z) dz (19)

the normal operator on L2(M) can be brought to the form

Nf(x) =

∫

Rn

eix·ξa(x, ξ)f̂(ξ) dξ. (20)

The following lemma is a finite regularity adaptation of the classical
result [18, Chapter VI.7.4].

Lemma 10. Let m < 0 and suppose that κ ∈ C l
c(R

n × (Rn \ {0}))
where l ∈ N satisfies estimates

∣

∣∂αx∂
β
z κ(x, z)

∣

∣ ≤ Cαβ |z|
−m−n−|β|

, z 6= 0, (21)

for |α|+ |β| ≤ l. Then the function on R
n × R

n defined by

b(x, ξ) :=

∫

Rn

e−iz·ξκ(x, z) dz (22)

is a symbol in the class Sm(l − s, s− 2) for all s ∈ N with 2 ≤ s ≤ l.

Proof. Since by assumption
∣

∣∂βz κ(x, z)
∣

∣ ≤ Cβ |z|
−m−n−|β|

, z 6= 0, (23)

holds for all |β| ≤ l and since κ is compactly supported, it can be
shown by using [18, VI 4.5.] as in [18, VI 7.4.] that b is a continuous
function on R

n × R
n and
∣

∣

∣
∂
β
ξ b(x, ξ)

∣

∣

∣
≤ Cβ(1 + |ξ|)m−|β| (24)

for all |β| ≤ l − 2, which is the first estimate we set out to prove.
Then let s ∈ [2, l] be an integer. Since κ is compactly supported we

have

∂αx b(x, ξ) =

∫

Rn

e−iz·ξ∂αxκ(x, z) dz. (25)

Let us denote κα(x, z) = ∂αxκ(x, z). Then it holds that
∣

∣∂βz κα(x, z)
∣

∣ ≤ Cαβ |z|
−m−n−|β|

, z 6= 0, (26)

for all |β| ≤ l − |α|. Therefore by a similar application of [18, VI 4.5]
we have

∣

∣

∣
∂
β
ξ ∂

α
x b(x, ξ)

∣

∣

∣
≤ Cαβ(1 + |ξ|)m−|β| (27)

for all |α|+ |β| ≤ l − 2. Then it follows that
∥

∥

∥
∂
β
ξ b( · , ξ)

∥

∥

∥

Cl−s
∗

≤
∥

∥

∥
∂
β
ξ b( · , ξ)

∥

∥

∥

Cl−s
≤ Cαβ(1 + |ξ|)m−|β|, (28)
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which uses compactness of the support of κ again. By estimates (24)
and (28) we have shown b ∈ Sm(l− s, s− 2) for all integers s ∈ [2, l] as
claimed. �

Lemma 11. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 5. Then the function a defined by (19) belongs to S−1(k− s, s− 4)
for all s ∈ [4, k] with 4 ≤ s ≤ k.

Proof. We write the kernel in (18) in the form

k(x, z) = |z|1−n
ψ(x)

2a(x, x− z) det(g(x− z))
1

2

[Gjk(x, x− z) z
j

|z|
zk

|z|
]
n−1

2

φ(x− z) (29)

and denote

k0(x, z) = ψ(x)
2a(x, x− z) det(g(x− z))

1

2

[Gjk(x, x− z) z
j

|z|
zk

|z|
]
n−1

2

φ(x− z). (30)

Then k0(x, z) is Ck−2 for z 6= 0 and its derivatives ∂αx∂
β
z k0(x, z), z 6=

0, are bounded for all |α| + |β| ≤ k − 2 since k0(x, z) is compactly
supported. Thus k satisfies estimates

∣

∣∂αx∂
β
z k(x, z)

∣

∣ ≤ Cαβ |z|
1−n−|β|

, z 6= 0, (31)

for all |α|+ |β| ≤ k − 4 and the claim follows from lemma 10. �

Remark 12. The symbol a(x, ξ) is smooth in ξ but our argument does
not prove that a(x, ξ) satisfies the estimates of the class Sm(k, L) for all
orders L of ξ-derivatives. Thus we cannot use paradifferential calculus
to study N .

Lemma 11 shows that N ∈ Ψ−1(k − s, s − 4) for all s ∈ N with
4 ≤ s ≤ k when the Riemannian metric is in Ck(M) when k ≥ 5. The
rest of this section is devoted to computing the principal symbol of the
normal operator. We start by writing the kernel k as

k(x, z) = |z|1−n
h

(

x, z,
z

|z|

)

(32)

where h is a function on R
n × [0,∞)× Sn−1 defined by

h(x, r, ω) = ψ(x)
2a(x, x− rω) det(g(x− rω))

1

2

[Gjk(x, x− rω)ωjωk]
n−1

2

φ(x− rω). (33)

Since Gjk(x, x− rω)ωjωk is non-vanishing we see that h ∈ Ck−2(Rn ×
[0,∞)× Sn−1). By the Fundamental theorem of calculus

h(x, r, ω) = h(x, 0, ω) + r

∫ 1

0

∂rh(x, rt, ω) dt (34)

and we can decompose k(x, z) = k−1(x, z) + r(x, z) where

k−1(x, z) := |z|1−n
h

(

x, 0,
z

|z|

)

(35)
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and

r(x, z) := |z|2−n

∫ 1

0

∂rh

(

x, |z| t,
z

|z|

)

dt. (36)

Since k(x, z) is compactly supported in z we can choose a cut-off func-
tion χ(z) so that 0 ≤ χ ≤ 1 and χ = 1 near the origin so that

k(x, z) = χ(z)k(x, z) = χ(z)k−1(x, z) + χ(z)r(x, z). (37)

Now the full symbol of N is decomposed as

a(x, ξ) = F(χ( · )k−1(x, · ))(ξ) + F(χ( · )r(x, · ))(ξ)

=: a−1(x, ξ) + c(x, ξ).
(38)

Lemma 13. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 5. Then a−1 ∈ S−1(k − s, s − 4) for all s ∈ N with 4 ≤ s ≤ k

and c ∈ S−2(k − s, s− 5) for all s ∈ N with 5 ≤ s ≤ k.

Proof. Since h ∈ Ck−2(Rn× [0,∞)×Sn−1) is compactly supported in x
and r and Sn−1 is compact, we can extend h to a compactly supported
function on R

n × [0,∞) × Sn−1. Thus ∂αx∂
l
r∂

β
ωh(x, r, ω) is continuous

and compactly supported for all α ∈ N
n, β ∈ N

n−1 and l ∈ N for which
we have |α|+ l + |β| ≤ k − 2.

First, we prove the claim about the Fourier transform c of the remain-
der. Since derivatives of h are continuous and compactly supported, a
simple computation using the chain rule shows that

∣

∣

∣

∣

∂αx ∂zj∂rh

(

x, |z| t,
z

|z|

)
∣

∣

∣

∣

≤ C |z|−1 (39)

near z = 0 and for all t ∈ [0, 1] when |α| + 2 ≤ k − 2. Therefore by
iteration

∣

∣

∣

∣

∂αx ∂
β
z ∂rh

(

x, |z| t,
z

|z|

)
∣

∣

∣

∣

≤ Cαβ |z|
−|β| (40)

near z = 0 when |α|+ |β|+ 1 ≤ k − 2. The above estimate applied to
the remainder term r(x, z) yields

∣

∣

∣

∣

∂αx∂
β
z

∫ 1

0

∂rh

(

x, |z| t,
z

|z|

)

dt

∣

∣

∣

∣

≤ Cαβ |z|
−|β| (41)

near z = 0 when |α|+ |β|+ 1 ≤ k − 2, which implies that
∣

∣∂αx∂
β
z (χ(z)r(x, z))

∣

∣ ≤ Cαβ |z|
2−n−|β| (42)

for all z and |α| + |β| ≤ k − 3 since the cut-off χ(z) implies that only
have to derive the estimate near z = 0. It follows from lemma 10 that
c ∈ S−2(k − s, s− 5) for all s ∈ N with 5 ≤ s ≤ k.

By a similar computation we see that k−1 satisfies estimates
∣

∣∂αx ∂
β
z (χ(z)k−1(x, z))

∣

∣ ≤ Cαβ |z|
1−n−|β| (43)

for all z and |α| + |β| ≤ k − 2. Thus, again, by lemma 10 we have
a−1 ∈ S−1(k− s, s− 4) for all s ∈ N with 4 ≤ s ≤ k, which finishes the
proof. �
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In the next section we construct a leading order parametrix for N .
To this end we need to find a more explicit representation for a−1. We
write χ(z)k−1(x, z) = k−1(x, z) − (1 − χ(z))k−1(x, z) and analyze the
Fourier transforms of the parts separately.

Lemma 14. For a dimensional constant C it holds that
∫

Rn

e−iz·ξk−1(x, z) dz = Cψ(x) |ξ|−1
g(x) φ(x). (44)

Proof. The Fourier transform of

k−1(x, z) = ψ(x)
2 det(g(x))1/2

(gjk(x)zjzk)
n−1

2

φ(x) (45)

in z is computed in [11, Chapter 8.1]. The only difference is regularity
in x, which does not affect the computation. �

Lemma 15. Let (M, g) be a simple manifold with g ∈ Ck(M) for

some k ≥ 3. Let b(x, ξ) := F((1 − χ( · ))k−1(x, · ))(ξ). Then b ∈

Ck−2
x C∞

ξ (Rn × (Rn \ {0})). Moreover, b has a singularity of type |ξ|−1
g

at the origin, and satisfies |b(x, ξ)| ≤ C |ξ|2−k
when |ξ| is large enough.

Proof. The fact that b(x, ξ) has a singularity of type |ξ|−1
g(x) at the origin

follows from the fact that b(x, ξ) = a(x, ξ) − Cψ(x) |ξ|−1
g(x) φ(x) near

ξ = 0 and a ∈ Ck−2
x C∞

ξ (Rn × R
n).

Next, we prove the claim about the decay of b away from ξ = 0.
Since (1− χ(z))k−1(x, z) = 0 for z near the origin and since

(1− χ(z))k−1(x, z) = (1− χ(z))ψ(x)
2 det(g(x))1/2

(gjk(x)zjzk)
n−1

2

φ(x) (46)

for z 6= 0, we know that (1 − χ)k−1 is in Ck−2(Rn × (Rn \ {0})) and
compactly supported in x. As in the proof of lemma 13 we can use
boundedness of the derivatives of h(x, 0, z |z|−1) to prove that

|∂αz k−1(x, z)| =

∣

∣

∣

∣

∂αz

(

(1− χ(z)) |z|1−n
h

(

x, 0,
z

|z|

))
∣

∣

∣

∣

≤ Cα |z|
−n−1

(47)
for 2 ≤ |α| ≤ k−2 which proves that for a fixed x we have ∂αz k−1(x, z) ∈
L1(Rn). Therefore by the Riemann–Lebesgue lemma we conclude that

|ξαF((1− χ( · ))k−1(x, · ))(ξ)|

= |F(∂αz ((1− χ( · ))k−1(x, · )))(ξ)|

→ 0

(48)

for all 2 ≤ |α| ≤ k − 2 as |ξ| → ∞. Thus since 48 holds for all

2 ≤ |α| ≤ k − 2 we have |b(x, ξ)| ≤ C |ξ|2−k for |ξ| large enough. �

Lemmas 13, 14 and 15 together prove the following corollary.
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Corollary 16. Let (M, g) be a simple manifold with g ∈ Ck(M) for

some k ≥ 5. Then N ∈ Ψ−1(k− s, s− 4) for all s ∈ N with 4 ≤ s ≤ k.

The principal symbol of N is

a−1(x, ξ) = Cψ(x) |ξ|−1
g φ(x)− b(x, ξ) ∈ S−1(k − s, s− 4) (49)

where b is as in lemma 15 and s ∈ N with 4 ≤ s ≤ k, in particular this

shows that N is elliptic of order −1 in the sense of principal symbol.

The function a−1 is a function on the whole cotangent bundle and
thus b has to have a singularity of type |ξ|−1

g(x) at ξ = 0 to cancel out

the singularity in Cψ(x) |ξ|−1
g φ(x).

3.2. Parametrix construction. In this section we construct a lead-
ing order parametrix for the normal operator. The construction is
based on a commutator result in [7]. We define p(x, ξ) := C−1ζ(ξ) |ξ|g(x)
for some ζ ∈ C∞(Rn) so that 0 ≤ ζ ≤ 1, ζ = 0 near ξ = 0 and ζ = 1 for
large ξ, and where C is the same dimensional constant as in lemma 14.
We will prove that the operator corresponding to the symbol p which
is in S1(k− s,N) for all s ∈ N with 4 ≤ s ≤ k and N ∈ N provides the
parametrix to the leading order.

Lemma 17. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7 + n
2
. Let P = Op(p). If τ ∈ (0, 1] is fixed then the operator

PN −Op(pa) : H t−τ (Rn) → H t(Rn) (50)

is continuous when −(1 − τ)(k − 5− n
2
− τ) < t < k − 6− n

2
.

Proof. Choose s ∈ N so that s ∈ (4 + n
2
, k − 1) which is possible since

k ≥ 7 + n
2
. Let L := s − 4 and let r := k − s. Then L > n

2
and

r > 1 ≥ τ . By lemma 11 we have N ∈ Ψ−1(r, L) and also it holds
that P ∈ Ψ1(r, L + 1 + n

2
), which means that we are in the setting of

lemma 7. For δ and ρ as the lemma it holds that

δ = τ, ρ = 1 and δ < ρ. (51)

Thus since m1 = −1 and m2 = 1 in the lemma the commutator

PN −Op(pa) : H t−τ (Rn) → H t(Rn) (52)

is continuous for

max{−1, 0} − (1− τ)(r − τ) < t < r −max{1, 0} (53)

which simplifies to

−(1− τ)(k − s− τ) < t < k − s− 1. (54)

To have a non-empty range of indices t we must have

k − s >
1 + (1− τ)τ

2− τ
(55)

which is satisfied since s < k− 1 and by an elementary computation it

holds that 1+(1−τ)τ
2−τ

≤ 1 for all τ ∈ (0, 1].
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Finally to conclude the proof we note that if

−(1− τ)(k − 5−
n

2
− τ) < t < k − 6−

n

2
(56)

there is st ∈ N so that st ∈ [4 + n
2
, k − 1) and

−(1− τ)(k − st − τ) < t < k − st − 1 (57)

since k ≥ 7 + n
2
and thus the operator PN − Op(pa) : H t−τ (Rn) →

H t(Rn) is continuous as claimed. �

Lemma 18. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7+ n
2
. Then Op(pa−1) = Id+R1 where Id is an operator acting as

the identity on elements in H t+2−k(Rn) which are supported in the set

where ψ = 1 = φ and the remainder

R1 : H
t+2−k(Rn) → H t(Rn) (58)

is continuous when −k + 2 < t < k − 2.

Proof. By corollary 16 the principal symbol a−1 of N can be decom-
posed as

a−1(x, ξ) = Cψ(x) |ξ|−1
g(x) φ(x)− b(x, ξ) (59)

where b(x, ξ) is in Ck−2
x C∞

ξ (Rn × (Rn \ {0})) which is compactly sup-

ported in x and decays faster than |ξ|2−k in ξ. Therefore

p(x, ξ)a−1(x, ξ) = ζ(ξ)ψ(x)φ(x)− C−1ζ(ξ)b(x, ξ)

= ψ(x)φ(x)− (1− ζ(ξ))ψ(x)φ(x)− C−1ζ(ξ)b(x, ξ).
(60)

Since (1−ζ(ξ))ψ(x)φ(x) is smooth and compactly supported, it decays

faster than |ξ|−l for any l ∈ N. Since ψ(x)φ(x) equals to 1 on in the
set where ψ = 1 = φ the corresponding operator acts as the identity
on functions in H t+2−k(Rn) which are supported in this set. Also, by

lemma 15 the function ζ(ξ)b(x, ξ) decays faster than |ξ|2−k. Therefore,
since the support in x is compact and b ∈ Ck−2

x C∞
ξ (Rn × (Rn \ {0}))

and ζ(ξ) = 0 near ξ = 0 it follows from the definitions that

b̃(x, ξ) := −(1− ζ(ξ))ψ(x)φ(x)− C−1ζ(ξ)b(x, ξ) (61)

is a symbol in the class S2−k(k − 2, 1 + ⌊n
2
⌋). Therefore by lemma 6

that Op(b̃) : H t+2−k(Rn) → H t(Rn) for all −k + 2 < t < k − 2 since
1 + ⌊n

2
⌋ > n

2
, which proves the claim. �

Lemma 19. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7 + n
2
. Then the operator

Op(pc) : H t−1(Rn) → H t(Rn) (62)

is continuous when −k + 6 + n
2
< t < k − 6− n

2
.
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Proof. Let s ∈ N be so that s ∈ (5 + n
2
, k). Since p is in S1(k −

s, s − 5) and c is in S−2(k − s, s − 5) by lemma 13 the product pc is
in S−1(k − s, s − 5). Furthermore, since s − 5 > n

2
it follows from

lemma 6 that Op(pc) continuously maps from H t−1(Rn) to H t(Rn) for
all −k + s < t < k − s. To see that the continuous mapping property
holds for all −k+6+ n

2
< t < k− 6− n

2
, we note that given any such t

we can choose any st ∈ N so that st ∈ (5 + n
2
, k − t) when t ≥ 0 or

st ∈ (5+ n
2
, k+t) when t < 0 and it holds that st ∈ N with st ∈ (5+ n

2
, k)

and −k + st < t < k − st. This finishes the proof. �

Lemma 20. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7 + n
2
. Let P = Op(p). Then there is ε > 0 so that PN = Id+R

where Id is an operator acting as the identity on elements in H t−τ (Rn)
which are supported in the set where ψ = 1 = φ and the remainder

R : H t−τ (Rn) → H t(Rn) (63)

is continuous whenever 0 < τ ≤ ε and

−k + 6 +
n

2
< t < k − 6−

n

2
. (64)

Proof. By lemma 13 we may write

PN = Op(pa) + (PN −Op(pa))

= Op(pa−1) + (PN −Op(pa)) + Op(pc).
(65)

Let τ ∈ (0, 1]. Then by lemma 17 we have that

PN −Op(pa) : H t−τ (Rn) → H t(Rn) (66)

is continuous for −(1−τ)(k−5− n
2
−τ) < t < k−6− n

2
. By lemmas 18

and 19 the operator Op(pa−1) is the identity up to an operator R1

that is smoothing by 2 degrees and Op(pc) is smoothing by 1 degree,
and therefore R1 and Op(pc) are also smoothing by τ degrees. More
precisely, Op(pa−1) = Id+R1, and we have that

R1 : H
t−τ (Rn) → H t(Rn) (67)

is continuous for −k + 2 < t < k − 2 and

Op(pc) : H t−τ (Rn) → H t(Rn) (68)

is continuous for −k+6+ n
2
< t < k−6− n

2
. Letting R be the sum of the

operators in (66), (67) and (68) we find that PN = Id+R. Now sup-
pose that τ is close enough to zero. Then the remainder continuously
maps H t−τ (Rn) to H t(Rn) for

−k + 6 +
n

2
< t < k − 6−

n

2
(69)

since k − 6 − n
2
is the smallest among the upper bound requirements

and when τ is close to zero −k+6+ n
2
is the largest of the lower bound.

This proves the claimed identity and the mapping properties. �
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4. Proofs of main theorems

In the last section we show that the parametrix construction in
lemma 20 in combination with the recent result [3, Theorem 1] can
be used to prove our main results.

Proof of theorem 1. Let f ∈ Hs
c (M) for some s > −k+6+n

2
and assume

that Nf = 0. Let supp f ⊆ Ω. There is a cut-off function φ ∈ C∞
c (M)

so that φf = f and moreover there is a cut-off ψ ∈ C∞
c (M) with

ψ = 1 on Ω so that Nf(x) = (ψNφ)f(x) = 0 for all x ∈ M . The
operator ψNφ has Schwartz kernel of the form (14) so by lemma 20
there is an operator P and ε > 0 so that P (ψNφ) = Id+R where
Id acts as the identity on elements in H t(Rn) with support in Ω and
R : H t

c(M) → H t+τ (Rn) is continuous for τ ∈ (0, ε] and

−k + 6 +
n

2
− τ < t < k − 6−

n

2
− τ. (70)

We may choose τ so small that s > −k + 6+ n
2
− τ . Then f ∈ Hs

c (M)
and

φf = P (ψNφ)f −Rf = −Rf. (71)

Thus φf ∈ H t+τ (Rn) and therefore f ∈ H t+τ
c (M).

Then let s < r < k−6− n
2
. By possibly choosing τ to be even smaller

we may assume that there is m ∈ N so that r < s+mτ < k−6− n
2
−τ .

Then by iterating m times the argument in the previous paragraph we
see that f ∈ Hs+mτ

c (M) ⊆ Hr
c (M) as claimed in the theorem. �

Proof of proposition 2. The composition of I and I∗ was computed
in [11, Lemma 8.1.5] for g ∈ C∞(M). The same computation works
for g ∈ Ck(M) when k ≥ 2. �

Proof of theorem 3. Let (M̃, g̃) be a simple extension of (M, g) and let

Ĩ be the X-ray transform of (M̃, g̃). Suppose that f ∈ L2(M) and
If = 0. Then zero extension of f to M̃ still denoted by f satisfies
Ĩf = 0. Therefore Ñf = Ĩ∗Ĩf = 0 by proposition 2 where Ñ and
Ĩ∗ are the operators on M̃ defined by (2) and (1) with all objects

replaced by corresponding objects of (M̃, g̃). Therefore by theorem 1
applied to the simple extension (M̃, g̃) implies that f ∈ Hr

c (M̃) for all
s < r < k − 6 + n

2
. Since k ≥ n + 8 there is some r ∈ R so that

⌈1 + n
2
⌉ < r < k − 6 + n

2
and f ∈ Hr

c (M̃). Sobolev embedding yields

Hr
c (M̃) ⊆W 1,∞(M̃) = Lip(M̃). (72)

Thus f ∈ Lip(M̃) and since f vanishes in M̃ \M we have f ∈ Lip0(M).
We see that f = 0 since I is injective on Lip(M) by [3, Theorem 1.]
which finishes the proof. �
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