
ar
X

iv
:2

30
6.

05
25

3v
1

 [
m

at
h.

C
O

]
 8

 J
un

 2
02

3

QUANTUM COMPUTING ALGORITHMS FOR
INVERSE PROBLEMS ON GRAPHS AND AN

NP-COMPLETE INVERSE PROBLEM

JOONAS ILMAVIRTA, MATTI LASSAS, JINPENG LU, LAURI OKSANEN,

LAURI YLINEN

Contents

1. Introduction 2
1.1. Formulation of the inverse problems for graphs 3
2. Rigidity results for trees 4
3. Quantum algorithm for the inverse travel time problem 5
3.1. Grover’s algorithm 5
3.2. Quantum oracle for the inverse travel time problem 6
3.3. Quantum algorithm for Problem 1 15
4. NP-completeness of the restricted inverse travel time problem 19
5. Proofs of main results 21
5.1. Proof of Theorem 1 21
5.2. Proof of Theorem 3 24
Appendix A. Grover’s algorithm 28
Appendix B. The OR gate and the iterated AND and OR operators 34
References 35

Abstract. We consider an inverse problem for a finite graph (X,E)
where we are given a subset of vertices B ⊂ X and the distances
d(X,E)(b1, b2) of all vertices b1, b2 ∈ B. The distance of points x1, x2 ∈ X
is defined as the minimal number of edges needed to connect two ver-
tices, so all edges have length 1. The inverse problem is a discrete
version of the boundary rigidity problem in Riemannian geometry or
the inverse travel time problem in geophysics. We will show that this
problem has unique solution under certain conditions and develop quan-
tum computing methods to solve it. We prove the following uniqueness
result: when (X,E) is a tree and B is the set of leaves of the tree,
the graph (X,E) can be uniquely determined in the class of all graphs
having a fixed number of vertices. We present a quantum computing
algorithm which produces a graph (X,E), or one of those, which has
a given number of vertices and the required distances between vertices

Date: June 9, 2023.

1

http://arxiv.org/abs/2306.05253v1

2 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

in B. To this end we develop an algorithm that takes in a qubit rep-
resentation of a graph and combine it with Grover’s search algorithm.
The algorithm can be implemented using only O(|X|2) qubits, the same
order as the number of elements in the adjacency matrix of (X,E).
It also has a quadratic improvement in computational cost compared
to standard classical algorithms. Finally, we consider applications in
theory of computation, and show that a slight modification of the above
inverse problem is NP-complete: all NP-problems can be reduced to a
discrete inverse problem we consider.

1. Introduction

We consider inverse travel time problems for graphs that are anal-
ogous to the boundary rigidity problems studied in Riemannian ge-
ometry or the inverse travel time problems studied in seismic imag-
ing. The boundary rigidity problem asks if a Riemannian manifold
with boundary can be determined by the knowledge of the distances
between boundary points. The problem was conjectured [35] to be
uniquely solvable for simple manifolds (i.e., with convex boundary and
no conjugate points), and proved in two dimensions in [41]. In higher
dimensions, boundary rigidity is known for simple conformal metrics
[36, 17], generic simple manifolds including all analytic ones [44], met-
rics close to Euclidean or hyperbolic [25, 18, 33, 12, 11], and for man-
ifolds foliated by strictly convex hypersurfaces [45, 46]. See also the
surveys [31, 48, 47, 40].

The boundary rigidity problem originally arose from geophysics as
the inverse travel time problem or the inverse kinematic problem [28,
49], where the goal is to reconstruct the interior structure of the body
from the travel time measurements of waves on its boundary. In seismic
imaging, the speeds of seismic waves define a metric structure, and the
distance between points is the travel time of the waves between the
points.

We are interested in a discrete version of the inverse travel time
problem. This type of problem has applications in the determination of
phylogenetic tree of species in biology [42, 22, 19] (a branching diagram
or a tree showing the evolutionary relationships among various species
based upon similarities in their physical or genetic characteristics), in
chemistry [50, 20, 4, 54] (notably the Wiener index), and in tomography
of networks such as internet tomography [15, 13, 14]. See also the
surveys [2, 52]. The problem is also related to inverse problems for
random walks [51, 34, 5, 6] and a discrete version of a Calderón type
problem [24]. In particular, the random walk measurements used in
[6] contain more data than the distance data considered in the present
paper. Related to these applications, we prove a uniqueness result
showing that a tree with n vertices can be uniquely reconstructed from
the leaf-to-leaf distances in the class of all connected graphs with n

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 3

vertices. Furthermore, in this paper we demonstrate how quantum
computing algorithms can be used to solve discrete inverse problems.
We will also show that a certain generalized inverse travel time problem
for graphs is an NP-complete problem.

1.1. Formulation of the inverse problems for graphs. Let (X,E)
be a finite undirected simple graph with B ⊂ X being the set of “ob-
servation nodes”, where X is the set of vertices and E is the set of
edges. We denote this by (X,E,B). Recall that a graph is said to be
simple if there is at most one edge between any pair of vertices and
there is no edge that connects a vertex to itself. For undirected simple
graphs, edges are two-element subsets of X . Two vertices x, y ∈ X
are called adjacent if {x, y} ∈ E, i.e., there is an edge between x and
y. Two graphs are said to be isomorphic if there is an edge-preserving
bijection, i.e., graph isomorphism, between the sets of vertices of the
graphs. The graph distance function on a graph (X,E), denoted by
d(X,E) or dE for short, is defined to be the minimal number of edges
in paths that connect two vertices. In particular, any pair of adjacent
vertices has distance 1. If there is no path connecting vertices x and y,
then we set dE(x, y) =∞. Then a graph can be considered as a metric
space equipped with the graph distance. Two graphs are isomorphic if
and only if they are isometric as metric spaces.

Problem 1 (Inverse travel time problem for graphs). Given an integer
n ∈ N = {0, 1, 2, . . .}, a finite set B and a function d0 : B×B → N, find
a graph (X,E) such that |X| = n (that is, the graph has n vertices),
B ⊂ X and that the graph distance dE|B×B : B×B → N is the function
d0.

In particular, we are interested in whether a solution to the problem,
if it exists, is unique up to a graph isomorphism. Note that we consider
this problem within the class of graphs with fixed total number of
vertices. This is because without fixing the number of vertices the
solution to the problem is never unique, as one can add isolated vertices
to the graph without changing the graph distance at all. If all solutions
(X,E) to the above inverse problem are isometric, we say that the
graph (X,E,B) is B-observation rigid in the class of graphs with n
vertices.

We also consider a generalized version of the above problem. In the
generalization we may specify that certain edges must appear in the
solution, and that certain edges must not appear in the solution; we
also allow the boundary distance function to be only partially defined
on the boundary nodes:

Problem 2 (Restricted inverse travel time problem for graphs). Given
a finite set X , sets V ⊂ X×X and E0 ⊂ E1 ⊂ {{x1, x2} : x1, x2 ∈ X},
and a function d0,V : V → N, find a set of edges E such that E0 ⊂

4 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

E ⊂ E1 and that the restriction dE|V : V → N of the graph distance
function of (X,E) coincides with d0,V .

2. Rigidity results for trees

In general, one cannot expect a solution to the inverse travel time
problem for graphs, if it exists, to be unique even up to a graph iso-
morphism. A simple counterexample would be a triangle and a path
of three vertices, with B being a pair of adjacent vertices. Strong as-
sumptions on B or d0 are likely necessary to make the solution unique.

As a first step in solving this uniqueness, or rigidity, problem, we
consider the case where d0 is induced by a tree metric on the set B of
vertices of degree 1 (that is, B and d0 : B×B → N are such that there
exists a tree (X0, E0) containing n vertices, B ⊂ X0 is the set of leaves
of X0 and d0(b1, b2) = d(X0,E0)(b1, b2) for all b1, b2 ∈ B). Recall that a
tree is a connected graph without cycles, and a vertex of degree 1 in a
tree is called a leaf. The degree of a vertex v in a graph (X,E) is the
number of edges incident to v, denoted by deg(X,E)(v) or degE(v) for
short. In this case, we will prove that the inverse travel time problem
with such B, d0 is uniquely solvable in the class of graphs with fixed
total number of vertices. We emphasize that we do not a priori assume
that the unknown graph (X,E) is a tree. We formulate this rigidity
result as follows.

Form ≤ n, consider the following class of finite connected undirected
simple graphs (X,E,B) with a subset B ⊂ X :

G(n,m) = {(X,E,B) : |X| = n, |B| = m, and

degE(b) = 1 for all b ∈ B}.(2.1)

Here | · | denotes the cardinality. Note that also vertices in X \B may
have degree 1.

Theorem 1 (Boundary rigidity for trees). Let T = (X̄, Ē, B̄) ∈ G(n,m)
be a tree, where B̄ is the set of all leaves of the tree. For any G =
(X,E,B) ∈ G(n,m), if there exists an identification of B and B̄ such
that d|B×B = d̄|B̄×B̄ where d, d̄ denote the graph distance functions on
G, T , then G is isomorphic to T .

The proof of Theorem 1 is given in Section 5.1. We remark that in
the literature, the set of leaves is often chosen to act as the ”boundary”
for a tree for various purposes, and Theorem 1 can be formulated in
short that trees are boundary rigid in G(n,m) for fixed n,m. The key
point is that we do not a priori assume G is a tree: we allow G to be
in the class of all connected simple graphs. If one a priori knows G is
also a tree, the result reduces to (the uniqueness part of) the classical
Tree-metric Theorem (e.g. [9, 8, 27, 43, 53]).

Trees can be seen as the combinatorial analogue to simple manifolds,
in the sense that the shortest path between any pair of vertices in trees

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 5

is unique. Note that the meaning of ”simple” is different for graphs
and manifolds. In fact, trees have even stronger property that any pair
of vertices in a tree can be connected by a unique path that does not
repeat vertices.

3. Quantum algorithm for the inverse travel time

problem

The basic unit of information in quantum computing is the qubit—
a two-level quantum mechanical system. The two levels of the qubit
are mathematically represented by two orthonormal vectors denoted
by |0〉, |1〉 ∈ C

2; a general state of the qubit is a unit vector in C
2.

A quantum register is a system comprising multiple qubits; the state
of a quantum register consisting of N qubits is described by a unit
vector in the N -fold tensor product (C2)⊗N . To every classical bit
string x ∈ {0, 1}N there corresponds the quantum state

(3.1) |x〉 = |x1x2 · · ·xN〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉 ∈ (C2)⊗N ;

states of the form (3.1) form the computational basis of (C2)⊗N .
Quantum computation consists of a sequence of elementary opera-

tions applied to a quantum register, accompanied by a measurement in
the end. The elementary operations are represented by quantum gates,
which are unitary operators on (C2)⊗N that act on a small number of
qubits. The result of the measurement is a classical bit string; if the
state of the quantum register immediately before the measurement is
|ψ〉, then a bit string x ∈ {0, 1}N is observed in the measurement with
probability |〈x|ψ〉|2.

A fixed sequence of quantum gates (optionally followed by a mea-
surement) that is used as a part of an algorithm describing quantum
computation is called a quantum subroutine. A sequence of quantum
gates and a measurement together constitute a quantum circuit. For
basic concepts related to quantum algorithms, we refer to the paper
[37]. For a treatise, see [38].

3.1. Grover’s algorithm. Grover’s algorithm [26] is an algorithm
that solves a quantum version of following unstructured search prob-
lem: Let N be a positive integer and {T, F} be a partition of the set
{0, 1}N . This means that {0, 1}N = T ∪ F and T ∩ F = ∅, not exclud-
ing the possibility that T = ∅ or F = ∅. The elements of T are called
solutions to the search problem. For each x ∈ {0, 1}N it is possible to
query a function for whether x ∈ T or x /∈ T . The function is viewed as
a black box and it is called an oracle. The problem is to find a solution
x ∈ T (if there are any) by querying the oracle as few times as possible.
In the worst case finding a solution requires querying all possibilities,
so the classical query complexity (the minimum number of queries to
find a solution in the worst case) of the problem is 2N .

6 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

In the quantum version of the problem the oracle is replaced by
a quantum oracle which may be queried by arguments that are in a
superposition. More precisely, a quantum oracle (corresponding to a
set T) is a quantum subroutine that maps a computational basis state
of the form |x〉 ⊗ |r〉 ⊗ |0〉k (where x ∈ {0, 1}N , r ∈ {0, 1} and |0〉k =
|0〉 ⊗ · · · ⊗ |0〉 ∈ (C2)⊗k are k extra qubits) as

(3.2) |x〉 ⊗ |r〉 ⊗ |0〉k 7→ |x〉 ⊗ |r + f(x)mod 2〉 ⊗ |0〉k,
where f(x) = 1 if x ∈ T , f(x) = 0 otherwise. In other words, the
quantum oracle uses the qubit |r〉 to mark whether x ∈ T or x /∈ T .
Here the extra qubits |0〉k are called ancillae and they are used as a
working memory. Grover’s algorithm is a method that finds a solution
(if such exists) in this quantum setting with high probability with only
O(2N/2) queries to the quantum oracle.

In Section 3.2 below we will construct a quantum oracle for the
inverse travel time problem for graphs (Problem 1). After that, in
Section 3.3 we will explain how Grover’s algorithm together with the
oracle constructed in Section 3.2 can be used to find a solution to
Problem 1. The standard version of Grover’s algorithm assumes that
the number of solutions, |T |, is known; this is not true in the case of
Problem 1. For the convenience of the reader, in Appendix A we recall
(with proof) how Grover’s algorithm can be applied in the case of an
unknown number of solutions.

3.2. Quantum oracle for the inverse travel time problem. We
will consider a quantum algorithm where the adjacency matrix of the
graph (X,E) is represented by a sequence of qubits. Our algorithm
computes if the distances between the vertices in the subset B ⊂ X
satisfy the required conditions given by the data d0 in Problem 1.

To transform the inverse travel time problem for graphs to a com-
putational problem, we enumerate the elements of X as {1, 2, . . . , n}
and the elements of B as {1, 2, . . . , m}. Let us consider a binary-
valued function e : {1, 2, . . . , n}2 → {0, 1} that satisfies e(j, j) = 0 and
e(j, k) = e(k, j). Such a function specifies a graph (X,E), defined by

{xj , xk} ∈ E ⇐⇒ e(j, k) = 1.

Our aim is to find values of e(j, k) for which the corresponding graphs
(X,E) with a subset B ⊂ X satisfy dE|B×B = d0.

Without loss of generality, we assume that the data d0 and n given
in Problem 1 satisfy d0(j, j) = 0 for all j ∈ B, d0(j, k) = d0(k, j) and
d0(j, k) ≥ 1 for all j, k ∈ B, j 6= k, and also maxj,k∈B d0(j, k) ≤ n− 1.
This is possible without loss of generality, as these conditions can easily
be checked by a fast classical algorithm, and they clearly are necessary
for the existence of a solution. In our implementation of the algorithm,
we assume that |B| = m ≥ 4.

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 7

Before introducing the quantum algorithm, we consider two classical
algorithms, Algorithm 1 and Algorithm 2 below, which test if a given
graph is a solution to the inverse travel time problem for graphs, and
then consider the analogous quantum algorithms. In the classical algo-
rithms we consider variables having values in {0, 1} (i.e., classical bits),
or equivalently, TRUE/FALSE.

Algorithm 1 takes in as an input the vector ~e = (e(i, j))1≤i<j≤n,
where e(i, j) ∈ {0, 1} (in fact, in the algorithm we consider the extended
variable e(i, j), defined for all i 6= j, that satisfy e(j, i) = e(i, j)),
and computes distances from a specific node o ∈ B. The distances
are computed using a graph (X,E) that corresponds to the adjacency
matrix ~e.

Algorithm 2 tests if the distances in the graph (X,E) corresponding
to the adjacency matrix ~e satisfy the conditions given in the data d0 for
the inverse problem, that is, whether dE(i, j) = d0(i, j), for all i, j ∈ B.

In Algorithm 1, we compute, for a fixed node o ∈ B, the truth values
p(d, j), d = 1, . . . , |X| − 1, j ∈ X \ {o}, such that

p(d, j) = 1 if and only if there is a path of length ≤ d

between o and j.
(P)

8 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Algorithm 1 Compute shortest paths from o ∈ B
Require: adjacency matrix e(j, k), j, k ∈ X and o ∈ B
Ensure: p(d, j) ∈ {0, 1}, d = 1, . . . , n− 1, j ∈ X \ {o}, satisfies (P)
for all j ∈ X \ {o} do

if e(o, j) = 1 then
p(1, j)← 1

else
p(1, j)← 0

end if
end for
for d = 2, . . . , n− 1 do

for all j ∈ X \ {o} do
for all k ∈ X \ {o, j} do

if p(d− 1, k) = 1 and e(k, j) = 1 then
a(k)← 1

else
a(k)← 0

end if
end for
if p(d− 1, j) = 1 or a(k) = 1 for some k ∈ X \ {o, j} then

p(d, j)← 1
else

p(d, j)← 0
end if

end for
end for

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 9

Algorithm 2 Test if a graph (X,E) has the correct B-distances

Require: adjacency matrix e(j, k), j, k ∈ X , and numbers d0(j, k),
j, k ∈ B

Ensure: dE(j, k) = d0(j, k) for j, k ∈ B
for all o ∈ B do

Call Algorithm 1 with
Input: e(j, k), j, k ∈ X and o ∈ B
Output: p(d, j), d = 1, . . . , n− 1, j ∈ X \ {o}

for all j ∈ B \ {o} do
d← d0(o, j)
if d = 1 and p(1, j) = 1 then

s(j)← 1
else if d ≥ 2 and p(d− 1, j) = 0 and p(d, j) = 1 then

s(j)← 1
else

s(j)← 0
end if

end for
t(o)← s(1)& s(2)& · · · & s(o− 1)& s(o+ 1)& · · · & s(m)

end for
r ← t(1)& t(2)& · · · & t(m)
output r

Let us next introduce some tools that will allow writing quantum
versions of our algorithms. We will denote quantum gates and quan-
tum subroutines by boxes containing the name of the quantum gate
or subroutine and the qubits on which it operates. The qubits are
listed in three categories: “Controls”, “Targets”, and “Ancillae”. If
the quantum register is in a computational basis state before the quan-
tum gate/subroutine is applied, then the values of the control qubits
are not changed, whereas the values of the target qubits may change.
The ancilla qubits are assumed to be in the state |0〉 at the beginning
of the subroutine, during the execution of the subroutine their values
may change, but their values are returned to the original value |0〉 by
uncomputation at the end of the subroutine. The controls, targets,
and ancillae correspond to input, output, and working memory of a
classical algorithm, respectively.

Below, we denote the classical {0, 1}-valued bit by lower case letter,
such as c1 and qubits by capital letter, such as C1.

A basic example of a gate is the double controlled NOT gate, CC-
NOT, also called the Toffoli gate. We write this gate as

CCNOT
Controls: C1 and C2

Target: T

10 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

The CCNOT gate has two control qubits C1 and C2, one target qubit
T and no ancillae. When viewed as a Boolean function the CCNOT
gate is given by

(c1, c2, t) 7→ (c1, c2, (t+ c1 · c2)mod 2), c1, c2, t ∈ {0, 1}.
As a quantum gate, CCNOT maps a computational basis state |C1C2T 〉
to the computational basis state |C1〉 ⊗ |C2〉 ⊗ |(T + C1 · C2)mod 2〉.

The NOT gate acts on a single qubit as the unitary operator

X|0〉 = |1〉, X|1〉 = |0〉.
For the NOT gate, there is no reason to label the qubit and we write
simply

NOT T

for the NOT gate operating on the qubit T .
The Hadamard gate H also acts on a single qubit, its action is spec-

ified by

H|0〉 = 1√
2
(|0〉+ |1〉), H|1〉 = 1√

2
(|0〉 − |1〉).

The operation performed by an arbitrary quantum gate G is in-
vertible, we denote the gate that performs the inverse operation by
REV ERSE − G, and we use similar notation for quantum subrou-
tines. Even though CCNOT gate is its own inverse, we sometimes
write REV ERSE − CCNOT = CCNOT to emphasize that we do
uncomputing steps.

As simple examples, we describe in Appendix B how the OR gate
with two qubits can be implemented in terms of the AND and NOT
gates, and how to implement the quantum iterated AND operator and
OR operator that correspond to the classical operators

AND(m)(c1, c2, . . . , cm) = c1AND c2AND · · · AND cm,

OR(m)(c1, c2, . . . , cm) = c1 OR c2OR · · · OR cm.

3.2.1. Pseudocodes of quantum algorithms. Next, we consider quantum
versions of Algorithms 1 and 2 above. Let (X,E) be a graph, and
B ⊂ X be a subset where distances are observed. As before, we identify
the set X of n vertices by {1, 2, . . . , n}, and the set B ⊂ X ofm vertices
by {1, 2, . . . , m}. We consider qubits E(j, k), j, k ∈ X , that have the
state |1〉 if j, k are adjacent (i.e., {j, k} ∈ E) in the graph (X,E), and
have the state |0〉 if j, k are not adjacent (i.e., {j, k} /∈ E). We always
assume that j 6= k, and when the set X is identified with {1, 2, . . . , n},
these qubits are indexed as E(j, k), where 1 ≤ j < k ≤ n. When we
refer in the algorithms below to a qubit E(j, k) where j > k, we mean
the qubit E(k, j).

We start with procedures that our main algorithm ORACLE uses.
Later, Grover’s algorithm calls the ORACLE as a subroutine.

The subroutine ORACLE operates on the following qubits:

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 11

E(j, k) for 1 ≤ j < k ≤ n that encodes an adjacency matrix in
X ×X ;

R is the target qubit.

Moreover, ORACLE uses the following ancilla qubits having initial
state |0〉:
P (d, j) for d = 1, . . . , n− 1, j = 1, . . . , n;

A(k) for k = 1, . . . , n;

F (k) for k = 1, . . . , n;

T (o) for o = 1, . . . , m.

Next, we give pseudocodes of the subroutines for the ORACLE. We
give these in very precise form to show how ancilla qubits are used so
that the total number of qubits used is O(n2).

The following subroutine UPDATE takes in the current value of the
distance parameter d and the number o ∈ B of the starting vertex from
which we consider the distances to the other vertices x ∈ X \ {o}. The
subroutine UPDATE operates on the qubits E(j, k) corresponding to
the adjacency matrix and the qubits P (d − 1, j) and P (d, j), where
j ∈ X \ {o}. Assuming that the qubits P (d − 1, j) satisfy a quantum
version of Condition (P) for the distances computed from the node o,
UPDATE changes the values of the qubits P (d, j), j ∈ X \ {o}, so
that also they satisfy the same condition. As the operator OR(n) can
be realized by O(n) CCNOT gates, the subroutine UPDATE can be
implemented using O(n2) CCNOT gates.

12 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Algorithm 3 UPDATE subroutine

Require: Parameters: n, d ∈ {2, 3, . . . , n− 1}, o ∈ B
Operates on qubits
Control 1: E(j, k), j, k ∈ X \ {o} ⊲ adjacency matrix
Control 2: P (d− 1, j), j ∈ X \ {o} ⊲ Is d(o, j) ≤ d− 1?
Targets: P (d, j), j ∈ X \ {o} ⊲ “Output”
Ancillae: A(k), F (k), k ∈ X \ {o}

for all j ∈ X \ {o} do
for all k ∈ X \ {o, j} do

CCNOT
Controls: P (d− 1, k) and E(k, j)
Target: A(k)

end for
⊲ We view X \ {o, j} as being synonymous to {1, . . . , n− 2} ⊳

OR(n−1)

Controls: A(k), for k ∈ X \ {o, j}, and
P (d− 1, j)

Target: P (d, j)
Ancillae: F (k), k = 1, . . . , n− 3

for all k ∈ X \ {o, j} do ⊲ Uncompute ancillae

REVERSE-CCNOT
Controls: P (d− 1, k) and E(k, j)
Target: A(k)

end for
end for

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 13

The following subroutine PATHS takes in the number o ∈ B of
the starting vertex from which we consider the distances to the other
vertices x ∈ X \ {o}. The subroutine PATHS iterates the subroutine
UPDATE and it operates on the qubits E(j, k) corresponding to the
adjacency matrix and the qubits P (d, j), where j ∈ X \ {o} and d =
1, 2, . . . , n− 1. The subroutine PATHS changes the values of all qubits
P (d, j) so that they satisfy the quantum version of Condition (P) for
the distances computed from the node o. As UPDATE consists ofO(n2)
CCNOT gates, the subroutine PATHS can be implemented using O(n3)
CCNOT gates.

Algorithm 4 PATHS subroutine

Require: Parameters: n, o
Operates on qubits
Controls: E(j, k) for j, k ∈ X \ {o} ⊲ adjacency matrix
Targets: P (d, j) for d = 1, . . . , n− 1, j ∈ X \ {o}
Ancillae: A(k), F (k) for k ∈ X \ {o}

⊲ UPDATE cannot be used to initialize P (1, j), therefore this case
is treated separately: ⊳

for all j ∈ X \ {o} do

CNOT
Control: E(j, o)
Target: P (1, j)

end for
⊲ UPDATE computes P (d, j) for d ≥ 2: ⊳
for d = 2, . . . , n− 1 do

UPDATE

Parameters: n, d, o
Controls 1: E(j, k) for k ∈ X \ {o}, j ∈ X \ {o}
Controls 2: P (d− 1, j) for j ∈ X \ {o}
Targets: P (d, j) for j ∈ X \ {o}
Ancillae: A(k), F (k) for k ∈ X \ {o}

end for

In the following subroutine TEST, we consider the distances from all
vertices o ∈ B to the other vertices b ∈ B \ {o}. The subroutine TEST
iterates the subroutine PATHS, and it operates on the qubits E(j, k)
corresponding to the adjacency matrix and the qubits T (o), where o
runs over all vertices in B. The qubits T (o) tell if the distances from
the vertex o to the other vertices b ∈ B \ {o} have the correct values.
We point out that the uncomputing of the qubits P (d, j) inside the
subroutine TEST is the reason why the ORACLE uses only O(n2)
qubits. As PATHS consists of O(n3) CCNOT gates, the subroutine
TEST can be implemented using O(mn3) CCNOT gates.

14 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Algorithm 5 TEST subroutine

Require: Parameters: d0(j, k) for j, k ∈ B
Operates on qubits
Controls: E(j, k) for j, k ∈ X ⊲ adjacency matrix
Targets: T (o) for o ∈ B ⊲ “Output”
Ancillae: A(k), F (k) for k ∈ X
Ancillae: P (d, j) for d = 1, . . . , n− 1, j ∈ X

for o ∈ B do

PATHS

Parameters: n, o
Controls: E(j, k) for j, k ∈ X \ {o}
Targets: P (d, j) for d = 1, . . . , n− 1, j ∈ X \ {o}
Ancillae: A(k), F (k) for k ∈ X \ {o}

⊲ Since PATHS uncomputes A(k) and F (k), they can be reused
as ancillae below. ⊳

for j ∈ B \ {o} do
d← d0(j, o)
⊲ Determine if dE(j, o) = d0(j, o): ⊳
if d = 1 then

CNOT
Control: P (d, j)
Target: A(j)

else

NOT P (d− 1, j)

CCNOT
Controls: P (d, j) and P (d− 1, j)
Target: A(j)

end if
end for

AND(m−1)

Controls: A(j), j ∈ B \ {o}
Target: T (o)
Ancillae: F (k), k = 1, . . . , m− 3

⊲ Uncompute A(j) and restore P (d− 1, j) to its original value: ⊳
for j ∈ B \ {o} do

d← d0(j, o)
if d = 1 then

CNOT
Control: P (d, j)
Target: A(j)

else

REVERSE-CCNOT
Controls: P (d, j) and P (d− 1, j)
Target: A(j)

NOT P (d− 1, j)

end if
end for
⊲ Uncompute P (d, j): ⊳

REVERSE-PATHS

Parameters: n, o
Controls: E(j, k) for j, k ∈ X \ {o}
Targets: P (d, j), d = 1, . . . , n− 1, j∈X\{o}
Ancillae: A(k), F (k) for k ∈ X \ {o}

end for

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 15

The following subroutine ORACLE operates on the qubits E(j, k)
corresponding to the adjacency matrix and the ‘output’ qubit R. The
value of R is changed according to whether the graph corresponding
to the adjacency matrix E(j, k) is such that the distances between all
vertices in B have the correct values. We point out that the subroutine
ORACLE uses O(n2) qubits. As TEST consists of O(mn3) CCNOT
gates, ORACLE can be implemented using O(mn3) CCNOT gates.

Algorithm 6 ORACLE subroutine

Require: Parameters: n = |X|, m = |B|, and d0(j, k) for j, k ∈ B
Operates on qubits
Controls: E(j, k) for j, k ∈ X ⊲ adjacency matrix
Target: R ⊲ “output”
Ancillae: P (d, j) for d = 1, . . . , n− 1, j ∈ X
Ancillae: A(k), F (k) for k ∈ X
Ancillae: T (o) for o ∈ B

TEST

Parameters: d0(j, k) for j, k ∈ B
Controls: E(j, k) for j, k ∈ X
Targets: T (o) for o ∈ B
Ancillae: A(k), F (k) for k ∈ X
Ancillae: P (d, j) for d = 1, . . . , n− 1, j ∈ X

AND(m)

Controls: T (o), o ∈ B
Target: R
Ancillae: F (k), k = 1, . . . , m− 2

REVERSE-TEST

Parameters: d0(j, k) for j, k ∈ B
Controls: E(j, k) for j, k ∈ X
Targets: T (o) for o ∈ B
Ancillae: A(k), F (k) for k ∈ X
Ancillae: P (d, j) for d = 1, . . . , n− 1, j ∈ X

3.3. Quantum algorithm for Problem 1. In order to apply Grover’s
algorithm to the inverse travel time problem for graphs we identify
the search space {0, 1}N , N = n(n − 1)/2, with the set of all graphs
(X,E) that have |X| = n vertices. In this identification a vector
~e = e(j, k)1≤j<k≤n specifies an adjacency matrix, which in turn speci-
fies a graph. The set T of solutions to the search problem consists of
those vectors ~e for which the corresponding graph (X,E) is a solution
to Problem 1. The quantum oracle corresponding to the set T is the
ORACLE subroutine (Algorithm 6).

Grover’s algorithm consist of a repeated application of ORACLE
subroutine together with another subroutine called DIFFUSION. The
target qubits for DIFFUSION are the N qubits E(j, k) that describe

16 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

the adjacency matrix, and on these qubits it acts as the operator

(3.3) DN := 2|γN〉〈γN | − id⊗N ,

where id is the identity operator and |γN〉 is the uniform superposition

(3.4) |γN〉 :=
1√
2N

∑

x∈{0,1}N
|x〉.

See Appendix A for more details. DIFFUSION subroutine can be
realized with O(N) gates and O(N) ancillae; see [32].

Both ORACLE and DIFFUSION subroutines expect the ancillae to
be initialized to the state |0〉 in the beginning, and in the end they
uncompute the ancillae back to the state |0〉. As these subroutines
are run sequentially, they may use the same ancillae. Both subrou-
tines require O(N) ancillae; we will label the set of the ancillae for the
subroutines by S(k), k = 1, 2, . . . , O(N). In addition, the quantum
register contains the target qubit R for the ORACLE.

Subroutine GROVER-L below describes Grover’s algorithm with L
iterations. The main part of the algorithm consists of a repeated ap-
plication of ORACLE and DIFFUSION subroutines. A key question
is to decide the number L of applications performed. If the number of
solutions of the search problem, |T |, is a priori known, then it is well
known that an optimal value of L can be calculated; see Appendix A.
In our case the number of solutions, i.e., the number of graphs (X,E)
for which the graph distance function coincides with the given data d0
on the set B ⊂ X , is a priori unknown. In GROVER-L we choose to
take L as one of the input parameters to the algorithm; in Algorithm 8
below we will show how GROVER-L can be used as a subroutine in an
algorithm that solves the search problem with an unknown number of
solutions.

The HADAMARD subroutine below consists of N + 1 Hadamard
gates; the subroutine applies a Hadamard gate to each of the N + 1
target qubits individually.

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 17

Algorithm 7 GROVER-L

Require: Parameters: L, n, m, d0(j, k) for j, k ∈ B

initialize all qubits to |0〉
NOT R

HADAMARD Target: R and E(j, k) for j, k ∈ X
for ℓ = 1, 2, . . . , L do

ORACLE

Parameters: n, m, d0(j, k) for j, k ∈ B
Controls: E(j, k) for j, k ∈ X
Target: R
Ancillae: S(k), k = 1, . . . , O(N)

DIFFUSION
Target: E(j, k) for j, k ∈ X
Ancillae: S(k), k = 1, . . . , O(N)

end for
~e← measurement of E(j, k) for j, k ∈ X ⊲ ~e = e(j, k)1≤j<k≤n

output ~e

Algorithm 8 below consists of a repeated application of GROVER-L
as a subroutine, where the value of L is varied between the applications.
After each application of GROVER-L it is tested if the obtained value
~e is a solution to Problem 1. This test can be computed classically by
Algorithm 2. If ~e is a solution, then the algorithm outputs ~e and halts.

The function L(θ) appearing in the algorithm is defined by

(3.5) L(θ) :=





⌈
π
4θ
− 1

2

⌉
, if 0 < θ < π

8
,

1, if π
8
≤ θ < π

4
,

0, if π
4
≤ θ < π

2
.

18 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Algorithm 8 Quantum algorithm for inverse travel time problem for
graphs

Require: Parameters: n, m, d0(j, k) for j, k ∈ B
N ← n(n− 1)/2
for L = 0, 1, 2 do

~e← GROVER-L with parameter L
if ~e is a solution then

output ~e and halt
end if

end for
for K = 2N−4, 2N−5, . . . , 2, 1 do

find θ ∈ (0, π/2) such that sin θ =
√
K/2N

L← L(θ)
~e← GROVER-L with parameter L
if ~e is a solution then

output ~e and halt
end if

end for
output “no solution found”

Properties of Grover’s algorithm are discussed in Appendix A; see
Propositions A.1 and A.3. Combining these results with the ORACLE
algorithm, we obtain our main result:

Theorem 2. Let there be given n = |X|, m = |B| and the target
distance function d0 : B × B → N for the inverse travel time problem
for graphs (Problem 1). Then the following holds:

(1) If Algorithm 8 outputs a solution ~e, then the solution is correct.
This means that the graph (X,E), where the set of edges E is
specified by ~e, is such that the graph distance function on the
set B ⊂ X coincides with the given data d0, that is, dE(x, y) =
d0(x, y) for all x, y ∈ B.

Let N = n(n − 1)/2, choose δ ∈ (0, 1), and let M > log2(δ
−1) be

an integer. If the data n, m and d0 are such that Problem 1 admits a
solution, then also the following hold:

(2) With probability greater than or equal to 1/2, Algorithm 8 finds
a solution ~e with

O
(
2N/2

(1
e
(N

1

2 −m)
)−(N

1
2−m)/2)

queries to the quantum subroutine ORACLE (Algorithm 6) and
to the classical Algorithm 2.

(3) If Algorithm 8 is applied M times, then at least one solution is
found with probability greater than 1− δ.

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 19

The quantum subroutine ORACLE can be implemented with O(N) =
O(n2) qubits and O(mn3) gates from the set {NOT, CNOT, CCNOT}.

Proof. (1) Algorithm 8 outputs a solution only after having verified
it is correct.

(2) We note that even in the case when the inverse problem of
finding a graph (X,E) that satisfies dE|B×B = d0 is uniquely
solvable, that is, the graph is uniquely determined up to an
isomorphism, the number of solutions ~e is (n −m)! as we can
change the numbering of the vertices X \ B. By Robbins esti-
mates similar to Stirling’s formula, p! ≥ cpp+1/2e−p > c(p/e)p,

where c > 0 is a universal constant. As n ≥ N
1

2 , the number of
solutions, |T |, satisfies

|T | ≥ (n−m)! ≥ c((N
1

2 −m)/e)N
1
2 −m.

The claim then follows from Proposition A.3.
(3) In a single application of Algorithm 8 a solution is found with

probability at least 1/2 by Proposition A.3. As any two appli-
cations of Algorithm 8 are statistically independent, the prob-
ability of not finding a solution M times in a row is less than
1/2M ≤ δ.

The number of qubits and gates in subroutine ORACLE is apparent
from its description; see Algorithm 6. �

4. NP-completeness of the restricted inverse travel time

problem

We will now consider the computational complexity of the restricted
inverse travel time problem for graphs (Problem 2). As is customary
in computational complexity theory, we will consider a decision version
of the problem. The decision problem asks that given an instance of
Problem 2 specified by data (X, V, E0, E1, d0,V), does there exist at
least one solution to the problem.

A procedure that solves the original formulation of the restricted
inverse travel time problem, i.e., a procedure that finds a solution
E if such exists, trivially also solves the decision version. On the
other hand, a procedure that solves the decision version can be turned
into an algorithm that produces a solution. Namely, suppose that
SOLUTION EXISTS is a procedure that with input (X, V, E0, E1, d0,V)
returns either true or false according to whether the instance of Prob-
lem 2 specified by this input has at least one solution. Then Algo-
rithm 9 below produces a solution—provided one exists—by calling
SOLUTION EXISTS at most |E1| − |E0|+ 1 times.

20 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Algorithm 9 Find a solution by solving decision problems

if ¬SOLUTION EXISTS(X, V, E0, E1, d0,V) then
output “there are no solutions” and halt

end if
while E0 6= E1 do

pick arbitrary {x, y} ∈ E1 \ E0

E ′
0 ← E0 ∪ {x, y}

if SOLUTION EXISTS(X, V, E ′
0, E1, d0,V) then

E0 ← E ′
0

else
E1 ← E1 \ {x, y}

end if
end while
output E0

For the purpose of this section, the following three notions from
computational complexity theory are relevant: the complexity class
P, the complexity class NP, and the class of NP-complete problems.
These classes measure computational complexity in terms of classical
algorithms (as opposed to quantum algorithms). We informally review
these notions below; for formal definitions we refer the reader to [3,
39].

The complexity class P consists of those problems whose solutions
can be computed in time that is polynomial in the length of the input
to the problem. Here ‘time’ refers to the number of steps required by
a Turing machine to produce a solution. Usually this class of problems
is equated with the class of problems that are efficiently solvable in
practice.

The complexity class NP consists of decision problems for which
a “yes” answer has a short (polynomial length) “certificate” (or a
“proof”) that can be verified in polynomial time. The decision ver-
sion of Problem 2 is in NP, because the certificate can be taken to
be a set E that solves the problem. Verifying that E is a solution to
the problem can be done by checking that E0 ⊂ E ⊂ E1 and that
dE|V = d0,V , and these verifications can be done in polynomial time.

A problem in NP is NP-complete if any other problem in NP is
reducible (in polynomial time) to the problem. This means that a
procedure that solves an NP-complete problem can be used to solve
any other problem in NP. In this sense, NP-complete problems are the
hardest problems in NP. Well-known NP-complete problems include the
Boolean satisfiability problem and the decision version of the travelling
salesman problem [23].

There is no known polynomial time algorithm for any NP-complete
problem, and therefore NP-complete problems are often thought to

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 21

be intractable in practice [23] (although sometimes efficient methods
to find good enough approximate solutions exist [29]). It is generally
thought that no polynomial time algorithm for an NP-complete prob-
lem exists, but there is no proof (this is the P vs. NP problem, one of
the major open problems in theoretical computer science).

We emphasize the difference between computational complexity of
a problem and time complexity of an algorithm: Computational com-
plexity is an intrinsic property of a problem; it provides a lower bound
for the run time of any algorithm that solves the problem. Time com-
plexity of an algorithm, on the other hand, is only a property of that
specific algorithm.

Following theorem implies that there is a polynomial time classical
algorithm for Problem 2, if and only if P=NP:

Theorem 3. The decision version of the restricted inverse travel time
problem for graphs (Problem 2) is NP-complete.

We prove Theorem 3 in section 5.2.

5. Proofs of main results

5.1. Proof of Theorem 1. The proof of Theorem 1 relies on the
following key Proposition 5.1. This proposition can be seen as a com-
binatorial analogue to the minimal filling problem for manifolds; see
e.g. [25, 30, 12, 31].

Proposition 5.1. Let T1 = (X1, E1, B1) and T2 = (X2, E2, B2) be two
trees with |B1| = |B2|, where B1, B2 are the sets of all leaves of T1, T2.
Denote by d1, d2 the graph distance function on T1, T2. If there is a
bijection σ : B1 → B2 such that

d1(p, q) ≥ d2(σ(p), σ(q)), for all p, q ∈ B1,

then |X1| ≥ |X2|. Moreover, the equality |X1| = |X2| holds if and only
if T1 is isomorphic to T2 via an isomorphism extending σ.

Proof. The proof is done by induction on |B1|(= |B2|). The case with
|B1| = 2 is trivial. When |B1| = 3, there can only be one vertex with
degree larger than 2. Then the total number of edges of the tree is
simply half of the sum of all leaf-to-leaf distances. Hence the condition
that d1 ≥ d2 on leaves implies that |E1| ≥ |E2|, which for trees shows
|X1| ≥ |X2|. Furthermore, the equality case |X1| = |X2| implies that
d1 = d2 on all pair of leaves, which determines a unique tree structure
due to the Tree-metric Theorem (Lemma 5.2).

By induction, assume that the proposition is true for |B1| ≤ m− 1,
and consider the case when |B1| = m. Let us use a simpler notation
p̄ = σ(p) for p ∈ B1. Given a leaf p of a tree T , we denote by T (p) the
maximal (in length) simple path px1 · · ·xNy such that degT (xi) = 2
for all i = 1, · · · , N . Intuitively, this means that y is the first vertex

22 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

where the path from the leaf p starts to branch. (Recall that a path is
simple if the vertices in the path do not repeat.) Denote by |T (p)| the
length of the path T (p). First we prove the following claim:

Claim (∗). There exists a leaf p ∈ B1 such that |T (p)| ≥ |T (p̄)|.
The claim can be proved as follows. Consider the following quantity

(5.1) (p, q)z := d1(p, z) + d1(q, z)− d1(p, q).
We remark that this quantity, sometimes called the Gromov product,
was considered in e.g. [8, 21], [10, Chapter 8.4].

We search for p, q, z ∈ B1 such that

(5.2) (p, q)z is maximal among all choices of p, q, z ∈ B1.

Then by maximality, one can show that the paths T (p) and T (q) join
at the non-leaf end vertex, so that

(5.3) d1(p, q) = |T (p)|+ |T (q)|.
(This fact can be seen as follows. Consider the unique shortest path
[pz], meaning from p to z, and the shortest path [qz]. The two paths
must coincide already before reaching z, since z has degree 1 and the
simple path between any pair of vertices in a tree is unique. Denote by
v the vertex where the two paths first join. Then the quantity (p, q)z
above is equal to 2d(v, z). We claim that all vertices on the paths [pv]
and [qv] have degree 2 except p, q, v, in which case (5.3) is satisfied.
Otherwise, if there exists a vertex v′ 6= v of degree at least 3 on [pv],
then the tree branches out from [pv] at v′, and one can take any leaf b′

on this branched subtree. Then the quantity (p, b′)z is equal to 2d(z, v
′)

which is larger than 2d(z, v), contradicting maximality.)
Then one can see that one of the following situations must happen:

either |T (p)| ≥ |T (p̄)|, or |T (q)| ≥ |T (q̄)|.
Indeed, if none of the above happens, then

d1(p, q) = |T (p)|+ |T (q)| < |T (p̄)|+ |T (q̄)| ≤ d2(p̄, q̄),

which is a contradiction. The claim (∗) is proved.
Using the claim (∗), we remove the path T (p), T (p̄) from T1, T2 re-

spectively. The resulting graphs are still trees, with one less leaf. We
denote by T1 − T (p) and T2 − T (p̄) the remaining subtrees. The dis-
tance relation d1 ≥ d2 on the remaining leaves is still preserved, since
the shortest path between the remaining leaves does not go through
T (p) and T (p̄). Hence by the induction assumption,

number of vertices of T1 − T (p) ≥ number of vertices of T2 − T (p̄).
Now this yields |X1| ≥ |X2|, using the claim (∗) that |T (p)| ≥ |T (p̄)|.
This proves the inequality part of the proposition.

For the equality case, we need a little modification of the argument
above. If d1 = d2 on all pair of leaves, then X1 is isomorphic to X2 by

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 23

the Tree-metric Theorem (Lemma 5.2). Otherwise, there exist some
p0, q0 ∈ B1 such that

(5.4) d1(p0, q0) > d2(p̄0, q̄0).

We need to show that in this case |X1| > |X2|. The point is to repeat
the induction process above until one finds a strict inequality.

Following the argument above, we search for p, q ∈ B1 such that
d1(p, q) = |T (p)|+ |T (q)|. The following three cases may happen.

(1) If {p, q} = {p0, q0}, then one of the following situations, similar
as above but in the strict sense, must happen:

either |T (p0)| > |T (p̄0)|, or |T (q0)| > |T (q̄0)|.
Indeed, if none of the above happens, then

d1(p0, q0) = |T (p0)|+ |T (q0)| ≤ |T (p̄0)|+ |T (q̄0)| ≤ d2(p̄0, q̄0),

which is a contradiction to (5.4). Now suppose |T (p0)| > |T (p̄0)| hap-
pens. Then we remove the paths T (p0), T (p̄0) from the graphs, and
this strictly inequality leads to |X1| > |X2| after using the induction
assumption.

(2) Consider the case when only one of p0, q0 is in {p, q}, say, we have
picked out p0, q for some other q 6= q0. If it turns out |T (p0)| > |T (p̄0)|,
then we simply remove T (p0), T (p̄0) and get a strict inequality. If not,
i.e., |T (p0)| ≤ |T (p̄0)|, the distance relation d1 ≥ d2 on leaves and
(5.3) imply |T (q)| ≥ |T (q̄)|. Then we remove T (q), T (q̄). Although the
latter situation does not give a strict inequality, one can still proceed
the induction further.

(3) If p0, q0 /∈ {p, q}, then proceed the induction further as in the
original argument.

One sees that this procedure ends when case (1) or the first situation
in case (2) happens, where one gets a strict inequality. This proves
|X1| > |X2| under (5.4).

Now for the equality case of the proposition, if |X1| = |X2|, then
d1 = d2 on all pair of leaves (the bijection σ is fixed); indeed, if there
exists a pair p0, q0 ∈ B1 such that d1(p0, q0) > d2(p̄0, q̄0), the argument
above yields |X1| > |X2|. Then the Tree-metric Theorem (Lemma 5.2)
implies that T1 is isomorphic to T2 via an isomorphism extending σ.
The proof of Proposition 5.1 is concluded. �

Now we apply Proposition 5.1 to prove Theorem 1.

Proof of Theorem 1. Let TG denote a spanning tree of G, i.e., a tree
subgraph of G containing all vertices of G. Recall that TG exists since
G is connected. Denote by dTG

the distance function on TG. Since TG
is a subgraph of G, then d ≤ dTG

. This gives

(5.5) dTG
|B×B ≥ d̄|B̄×B̄.

Vertices in B still have degree 1 in TG since they have degree 1 in G.

24 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Note that it may seem that the vertices in X \ B could also have
degree 1 in TG. However, this cannot happen in the class with fixed
total number of vertices due to Proposition 5.1. Indeed, consider the
subtree of TG only having vertices B as leaves, and then (5.5) and
Proposition 5.1 already determine that the subtree has at least |X̄| = n
number of vertices. Thus, any additional leaf in TG will make the
number of vertices in X larger than n, which is a contradiction to
|X| = n.

Now we have shown that TG is a tree with the set of all leaves B.
Since |X| = |X̄| = n, then (5.5) and the equality case of Proposition
5.1 show that TG = T via an isomorphism extending the identification
between B and B̄.

At last, we show that G can only be a tree, i.e., G = TG. This is
because adding any edge to a tree (while keeping the graph simple)
decreases at least one leaf-to-leaf distance. Indeed, suppose the edge is
added to a tree between vertices v1, v2. Then one can take the shortest
path between v1, v2 in TG, and extend it to a shortest path between
a pair of leaves. Clearly, the length of this path between the leaves
strictly decreases when the edge is added. Assume that G is not a tree.
Since we have shown that TG = T via an isomorphism extending the
identification between B, B̄, then there would exist b1, b2 ∈ B such that
d(b1, b2) < dTG

(b1, b2) = d̄(b̄1, b̄2), a contradiction. �

The following is the uniqueness part of the classical Tree-metric The-
orem (e.g. [9, 8, 27, 43, 53]) which we have used in the proofs.

Lemma 5.2 (Uniqueness part of the classical Tree-metric Theorem).
Let T1 = (X1, E1, B1) and T2 = (X2, E2, B2) be two trees with |B1| =
|B2|, where B1, B2 are the sets of all leaves of T1, T2. If there is a
bijection σ : B1 → B2 such that d1|B1×B1

= d2 ◦ σ|B1×B1
, then T1 is

isomorphic to T2 via an isomorphism extending σ.

5.2. Proof of Theorem 3. We will begin by describing a polynomial
time algorithm that takes an instance of a Boolean satisfiability prob-
lem (SAT), i.e., a Boolean formula F in conjunctive normal form, to an
instance of the restricted inverse travel time problem for graphs, i.e.,
to the data

(5.6) D = (X, V, E0, E1, d0,V)

in Problem 2. After that, in Proposition 5.3 below, we will show that
the map F 7→ D(F) is in fact a reduction, i.e., formula F is satisfiable,
if and only if the instance of Problem 2 specified by D(F) admits a
solution. The NP-completeness of the restricted inverse travel time
problem for graphs then readily follows from the reduction.

Recall that a Boolean formula F in conjunctive normal form over
variables uj, j = 1, 2, . . . , N , with M clauses denoted by Ci, i =

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 25

1, 2, . . . ,M , is an expression of the form

(5.7a) F = C1 ∧ C2 ∧ · · · ∧ CM ,

where

(5.7b) Ci = ℓ1,i ∨ ℓ2,i ∨ · · · ℓki,i,
and for each i and j either ℓj,i = uk or ℓj,i = ūk for some k (here
ūk is shorthand for the negation ¬uk of uk). The Boolean satisfiability
problem is to decide whether there exists an assignment of truth values
to the variables uj that makes formula F evaluate to true.

TRUE

u1 ū1

a1 ā1

u2 ū2

a2 ā2

u3 ū3

a3 ā3

C1 C2 C3 C4

Figure 1. From F = (u1∨u2)∧(ū1∨ ū3)∧(u2∨ ū3)∧u3
we construct an instance of the restricted inverse travel
time problem (Problem 2). The set E0 of edges that
must be present in the solution is taken to be the empty
set; the set E1 of edges that are allowed to appear in the
solution consists of the solid and the dotted lines. The
distance from uj to ūj and from TRUE to Ci is required
to be 3 for all i and j. A solution for this instance is the
subgraph drawn with solid lines; in the corresponding
assignment that satisfies F the literals connected with a
solid line to TRUE are true.

Given a Boolean formula F in conjuctive normal form, we construct
an instance D = D(F) of Problem 2, where D is as in (5.6), as follows
(see figure 1):

The set X = X(F) of vertices consists of following 1 + 4N + M
elements:

X := {TRUE,u1, a1, ā1, ū1, u2, a2, ā2, ū2, . . . , uN , aN , āN , ūN ,
C1, C2, . . . , CM}.

26 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Here TRUE, aj , āj , and Ci are arbitrary symbols, and uj and ūj are
the variables and their negations from formula F .

The set V = V (F) is

V := {(uj, ūj) : j = 1, 2, . . . , N} ∪ {(TRUE, Ci) : i = 1, 2, . . . ,M}.
The set E0 of edges that are required to be part of the solution is

defined to be empty: E0(F) := ∅. The set E1 = E1(F) of edges that
are allowed to be present in the solution is the union of the following
four sets (5.8a)–(5.8d):

(5.8a)
N⋃

j=1

{{TRUE, uj}, {TRUE, ūj}},

(5.8b)
N⋃

j=1

{{uj, aj}, {aj, āj}, {āj, ūj}},

and (below uj ∈ Ci (resp. ūj ∈ Ci) means that uj (ūj) appears as a
literal in the i:th clause Ci of F)

(5.8c)

M⋃

i=1

{{aj, Ci} : j is such that uj ∈ Ci},

and

(5.8d)
M⋃

i=1

{{āj, Ci} : j is such that ūj ∈ Ci}.

The distance data on V , d0,V = d0,V (F), is defined to be

(5.9) d0,V (x, y) = 3 for all (x, y) ∈ V.
Proposition 5.3. Consider a Boolean formula F in conjunctive nor-
mal form, and let D(F) = (X, V, E0, E1, d0,V) be the instance of the re-
stricted inverse travel time problem for graphs (Problem 2) constructed
from F as described above. Then there exists a solution to the instance
D(F) of Problem 2, if and only if formula F is satisfiable.

Proof. Below we will identify a path with its vertex sequence, i.e., P =
x1x2 · · ·xn+1 with xi ∈ X is a path of length n if there is an edge
between xi and xi+1 for all i = 1, 2, . . . , n. Also, we will denote the
graph distance function on the graph (X,E1) by dE1

.
Note that dE1

(TRUE, Ci) = 3, and that if P is a path in (X,E1) that
connects TRUE to Ci and if P is of length three, then there exists an
index j such that either

(5.10) uj ∈ Ci and P = TRUEuj aj Ci,

or

(5.11) ūj ∈ Ci and P = TRUE ūj āj Ci.

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 27

Suppose first that formula F is satisfiable. Consider an assignment
satisfying the formula, and let T be the set of true literals in the as-
signment (i.e., if uj is true (resp. false) in the assignment, then uj ∈ T
(ūj ∈ T)). Let E = E(T) consist of the union of the sets (5.8b), (5.8c),
(5.8d), and the set

{{TRUE, ℓ} : ℓ ∈ T }.

Then E ⊂ E1, and the following hold:

• dE(uj, ūj) = 3 for every j. Namely, the path ujaj āj ūj connects
uj to ūj in (X,E), and there are no shorter paths connecting
those points in (X,E), because in (X,E) the vertex TRUE is
connected to only one of uj and ūj.
• dE(TRUE, Ci) = 3 for every i. Namely, for every i there is a
literal ℓ ∈ Ci such that ℓ ∈ T . Therefore, one of the paths
in (5.10) or (5.11) is a path in (X,E), also.

Consequently, E is a solution to the instance D(F) of Problem 2.
Suppose then that the instance D(F) of Problem 2 has a solution E.

Define an assignment of truth values by setting the variable uj to be
true, if and only if there is no edge between TRUE and ūj in (X,E).

Fix i. Since dE(TRUE, Ci) = 3, there exists a path P in (X,E) for
which either (5.10) or (5.11) holds. Let us consider the former case
first. In this case there is no edge between ūj and TRUE (because this
would imply dE(uj, ūj) = 2 6= 3 = d0,V (uj, ūj)), so uj was assigned to
be true in the assignment. Therefore, Ci evaluates to true. In the latter
case uj was assigned to be false in the assignment, and consequently
Ci evaluates to true also in this case. It follows that formula F is
satisfiable. �

Proof of Theorem 3. The decision version of Problem 2 is in NP, be-
cause for a certificate for a ‘yes’ answer (meaning that there exists a
solution) we can take any solution E itself. Namely, given an instance
(X, V, E0, E1, d0,V) of Problem 2 and a certificate E, we first check that
E0 ⊂ E ⊂ E1, and then that dE(x, y) = d0,V (x, y) for all (x, y) ∈ V .
The latter check can be done in polynomial time by algorithms that
are analogous to Algorithms 1 and 2. If both of these checks pass, we
accept, otherwise we reject.

The decision version of Problem 2 is NP-hard, because the NP-
complete problem SAT [16] is polynomial-time reducible to the prob-
lem. Namely, given a Boolean formula F in conjunctive normal form,
we can in polynomial time construct the instance D(F) of Problem 2
as described above. By Proposition 5.3 this construction is a reduc-
tion. �

28 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Appendix A. Grover’s algorithm

We give a review of Grover’s algorithm with main focus on the case
where the number of solutions is unknown. The approach here fol-
lows the outline explained in [1], for other approaches, see [7] or [38,
Section 6.3]. Grover’s original analysis [26] is for the case of a unique
solution.

As in Section 3.1, let N be a positive integer, T ⊂ {0, 1}N a subset
of solutions and F = {0, 1}N \ T its complement, and OT a quantum
oracle for the set T . Assume that OT uses k ancillae and recall that
the action of OT is given by (3.2).

Note that if the target qubit |r〉 in (3.2) is prepared at the superpo-
sition (|0〉 − |1〉)/

√
2 instead of |0〉 or |1〉, then OT acts as

OT

(
|x〉 ⊗ |0〉 − |1〉√

2
⊗ |0〉k

)
=
(
ÕT |x〉

)
⊗ |0〉 − |1〉√

2
⊗ |0〉k,

where the operator ÕT acts on a computational basis state |x〉 ∈
(C2)⊗N as

ÕT |x〉 =
{
−|x〉, x ∈ T,
|x〉, x ∈ F.

The operator ÕT is called a phase oracle.
If necessary, by increasing the number k of ancillae for the oracle OT ,

the diffusion subroutine can be assumed to operate with the same k
ancillae as OT . The diffusion subroutine acts on a computational basis
state of the form |x〉 ⊗ |r〉 ⊗ |0〉k as

|x〉 ⊗ |r〉 ⊗ |0〉k 7→
(
DN |x〉

)
⊗ |r〉 ⊗ |0〉k,

where

DN = 2|γN〉〈γN | − id⊗N ,

and γN is as in (3.4).
The composition of the oracle and the diffusion subroutine is called

Grover iteration and it is denoted by GN ; it acts as

(A.1) GN

(
|ψ〉 ⊗ |0〉 − |1〉√

2
⊗ |0〉k

)
=
(
DNÕT |ψ〉

)
⊗ |0〉 − |1〉√

2
⊗ |0〉k,

where |ψ〉 ∈ (C2)⊗N is arbitrary.
Below is a description of Grover’s algorithm. An essential question

is how many times the Grover iteration should be applied in the algo-
rithm, and this in turn depends on whether the number of solutions |T |
is a priori known. In Algorithm 10 below we choose to take the number
L of Grover iterations to be applied as an input to the algorithm; in
Proposition A.2 we will show how to choose L if |T | is known, and in
Algorithm 11 and Proposition A.3 we will address the case where |T |
is unknown. In Algorithm 10 below the |ξ〉’s in the comments describe

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 29

the state of the quantum register at various points during the execution
of the algorithm, they will be needed in Proposition A.1.

Algorithm 10 Grover’s algorithm with L iterations

Require: Parameter: L ∈ N

initialize all qubits to |0〉
⊲ |ξ(init)〉 := |0〉N ⊗ |0〉 ⊗ |0〉k ⊳
apply the NOT gate X to the (N + 1):th qubit
apply the Hadamard gate H to the first N + 1 qubits
⊲ |ξ(0)〉 = (H⊗N ⊗HX ⊗ id⊗k) |ξ(init)〉 ⊳
for ℓ = 1, 2, . . . , L do

apply the Grover iteration to the register
⊲ |ξ(ℓ)〉 = GN |ξ(ℓ−1)〉, ℓ = 1, . . . , L ⊳

end for
output measurement of the N first qubits

Following proposition describes the evolution of the state of the quan-
tum register during Grover’s algorithm:

Proposition A.1. Assume that the number |T | of solutions satisfies
0 < |T | < 2N . Define

|α〉 := 1√
|F |

∑

x∈F
|x〉 and |β〉 := 1√

|T |
∑

x∈T
|x〉,

and let θ = θ(|T |, N) ∈ (0, π/2) be the number defined by

(A.2) sin θ =

√
|T |√
2N

.

Let (|ξ(ℓ)〉)Lℓ=0 be the sequence of states of the quantum register during
the execution of Algorithm 10.

(1) For ℓ ≥ 0 it holds that

(A.3) |ξ(ℓ)〉 =
(
cos ((2ℓ+1) θ) |α〉+sin ((2ℓ+1) θ) |β〉

)
⊗|0〉 − |1〉√

2
⊗|0〉k.

(2) The probability that Grover’s algorithm with L iterations out-
puts a correct solution is sin2((2L+ 1)θ).

Proof. A calculation shows that

|ξ(0)〉 = (H⊗N ⊗HX ⊗ id⊗k)|0〉N+1+k

=

(|0〉+ |1〉√
2

)
⊗ · · · ⊗

(|0〉+ |1〉√
2

)

︸ ︷︷ ︸
N times

⊗|0〉 − |1〉√
2
⊗ |0〉k

= |γN〉 ⊗
|0〉 − |1〉√

2
⊗ |0〉k,

30 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

and by (A.1) for ℓ = 1, 2, . . . , L,

|ξ(ℓ)〉 = (GN)
ℓ

(
|γN〉 ⊗

|0〉 − |1〉√
2
⊗ |0〉k

)

=
(
(DNÕT)

ℓ|γN〉
)
⊗ |0〉 − |1〉√

2
⊗ |0〉k.

Therefore, in order to prove (A.3), it suffices to prove that

(A.4) (DNÕT)
ℓ|γN〉 = cos ((2ℓ+ 1) θ) |α〉+ sin ((2ℓ+ 1) θ) |β〉

for all ℓ ≥ 0.
Since |F |+ |T | = 2N and 0 < θ < π/2, it follows that

cos θ =
√
1− sin2 θ =

√
|F |√
2N

.

Therefore,

(A.5) |γN〉 =
1√
2N

∑

x∈F
|x〉+ 1√

2N

∑

x∈T
|x〉 = cos θ |α〉+ sin θ |β〉,

and (A.4) holds if ℓ = 0.
Let us consider the case ℓ ≥ 1. Observe that the plane spanned by

the orthonormal vectors |α〉 and |β〉 is an invariant subspace under the

mapping ÕT (since ÕT |α〉 = |α〉 and ÕT |β〉 = −|β〉), and it is also
an invariant subspace under the mapping |γN〉〈γN | (because of (A.5)).

Therefore, it is an invariant subspace under the mapping DNÕT , too.
In fact, as we will next prove, with respect to the basis (|α〉, |β〉) the
operator DNÕT acts as a rotation by 2θ:

DNÕT (a|α〉+ b|β〉) = a′|α〉+ b′|β〉,
where the coefficients a, b ∈ C and a′, b′ ∈ C are related by

(A.6)

[
a′

b′

]
=

[
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

] [
a
b

]
.

Note that 〈γN |α〉 = cos θ. Consequently, with (A.5) and the double
angle formulas for the trigonometric functions we obtain

DNÕT |α〉 = 2 cos θ |γN〉 − |α〉
= (2 cos2 θ − 1) |α〉+ 2 cos θ sin θ |β〉
= cos(2θ) |α〉+ sin(2θ) |β〉.

This determines the first column of the matrix in (A.6), and an analo-

gous calculation for DNÕT |β〉 determines the second column.
Now (A.4) for ℓ = 1, 2, . . . can be proved by induction on ℓ us-

ing (A.6) and the angle sum formulas for the trigonometric functions.

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 31

Finally, for x ∈ T ⊂ {0, 1}N , y ∈ {0, 1} and z ∈ {0, 1}k we have

〈xyz|ξ(L)〉 =
{
0, if z 6= 0k,
(−1)y√

2
sin((2L+ 1)θ)/

√
|T |, if z = 0k,

where 0k ∈ {0, 1}k is the zero vector and xyz ∈ {0, 1}N+1+k is the
concatenation of x, y and z. Therefore, the probability that the result
x of the measurement of the first N qubits belongs to T is

∑

(x,y,z)∈T×{0,1}k+1

|〈xyz|ξ(L)〉|2 = |T | sin
2((2L+ 1)θ)

|T | = sin2((2L+ 1)θ).

�

Following well-known proposition shows that if |T | is known, then
with an appropriate choice of L Algorithm 10 finds a solution with
probability at least 1/2.

Proposition A.2. Suppose that the number of solutions |T | is known
and that 0 < |T | < 2N . Let θ be defined by (A.2) and L = L(θ)
by (3.5).

With probability at least 1/2 Grover’s algorithm with L iterations
(Algorithm 10) outputs a solution x ∈ T . Furthermore, the algorithm

queries the oracle at most
√

2N/|T | times.

Proof. Grover’s algorithm with L iterations produces a correct solution
with probability sin2((2L+1)θ) by Proposition A.1, and the choice (3.5)
implies that

π

4
≤ (2L+ 1)θ <

3π

4
.

This implies sin2((2L+ 1)θ) ≥ 1/2.
The number of queries the algorithm makes is L, which implies the

desired bound. �

The search problem is most interesting when |T | ≪ 2N . In this case
the angle θ defined by (A.2) is small and the choice (3.5) implies that
(2L+ 1)θ ≈ π/2. Therefore, if 0 < |T | ≪ 2N and L is as in (3.5), then
Grover’s algorithm with L iterations finds a solution with probability
close to one.

Following variation of Grover’s algorithm applies to the case where
the number of solutions to the search problem is unknown. The algo-
rithm consists of a repeated application of Grover’s algorithm with L
iterations as a subroutine, where the value of L is varied. After each
subroutine the obtained value x is tested for membership in T , and if
x ∈ T , then x is returned and the algorithm is terminated. The test
for membership is thought of as a query to a classical oracle, and the
query complexity of the algorithm is the total number of queries to the
quantum and classical oracles.

32 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Algorithm 11 Grover’s algorithm for the search problem with an un-
known number of solutions

for L = 0, 1, 2 do
apply Algorithm 10 with parameter L to obtain x ∈ {0, 1}N
if x ∈ T then

output x and halt
end if

end for
for K = 2N−4, 2N−5, . . . , 2, 1 do

find θK ∈ (0, π/2) such that sin θK =
√
K/2N

L← L(θK) ⊲ L(θ) is defined in (3.5)
apply Algorithm 10 with parameter L to obtain x ∈ {0, 1}N
if x ∈ T then

output x and halt
end if

end for
output “no solution found”

Following proposition shows that if there are solutions, then Algo-
rithm 11 finds a solution with probability at least 1/2:

Proposition A.3. Consider Grover’s algorithm for the search problem
with an unknown number of solutions (Algorithm 11).

(1) The algorithm queries the quantum and classical oracles in total
O(2N/2) times.

(2) If |T | > 0, then with probability at least 1/2 the algorithm
outputs a solution x ∈ T after querying the oracles at most
C
√

2N/|T | times (where C > 0 is a universal constant).

Proof. The first for-loop in Algorithm 11 involves in total six queries
to the classical or quantum oracles, and in the second for-loop for each
K the oracles are queried L(θK) + 1 ≤ 2N/2/

√
K +1 times. Therefore,

the total number of queries is O(2N/2), and (1) of the proposition is
proved.

To prove (2), we may assume that 0 < |T | < 2N . Let θ ∈ (0, π/2)

be such that sin θ =
√
|T |/2N . Recall that by Proposition A.1 Algo-

rithm 10 with input L yields a solution with probability sin2((2L+1)θ).
Let ℓ0 be the integer for which 2ℓ0−1 ≤ |T | < 2ℓ0. A calculation

shows that if ℓ0 ≥ N − 3, then either θ, 3θ, or 5θ is contained in the
interval [π/4, 3π/4]. Consequently, if ℓ0 ≥ N − 3, then the algorithm
outputs a solution and halts with probability at least 1/2 during the
execution of the first for-loop.

Assume that ℓ0 ≤ N − 4 and consider K = 2ℓ0 . Then 0 < θK < π/8,
and

sin θ

sin θK
=

√
|T |√
2ℓ0
∈
[1√

2
, 1
)
,

QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS 33

so we can estimate (using θK > θ, sin θ ≤ θ, and sin θK ≥ θK/
√
2)

1

2
≤ θ

θK
< 1.

Choice (3.5) guarantees that with LK = L(θK) it holds that π/2 ≤
(2LK + 1)θK < 3π/4, so

(2LK + 1)θ = (2LK + 1)θK ·
θ

θK
∈
[
π

4
,
3π

4

]
.

Therefore, with probability at least 1/2 the algorithm outputs a solu-
tion and halts at the latest when the second for-loop is executed with
K = 2ℓ0 .

The total number of queries executed up to and including the loop
corresponding to K = 2ℓ0 is bounded from the above by

6 +

N−ℓ0∑

j=4

(√
2N

2N−j
+ 1

)
≤ C

√
2N

2ℓ0
≤ C

√
2N

|T | . �

34 ILMAVIRTA, LASSAS, LU, OKSANEN, YLINEN

Appendix B. The OR gate and the iterated AND and OR

operators

Algorithm 12 OR operator

Require: Controls: C1 and C2

Target: T

NOT C1

NOT C2

NOT T

CCNOT
Controls: C1 and C2

Target: T

NOT C1

NOT C2

Algorithm 13 AND(m) operator

Require: Parameter: m ≥ 3 ⊲ “Number of input variables”
Operates on qubits
Controls: C1, C2, . . . , Cm

Target: T ⊲ “Output”
Ancillae: F (k), k = 1, . . . , m− 2

CCNOT
Controls: C1 and C2

Target: F (1)

if m ≥ 4 then
for j = 2, . . . , m− 2 do

CCNOT
Controls: F (j − 1) and Cj+1

Target: F (j)

end for
end if

CCNOT
Controls: F (m− 2) and Cm

Target: T

if m ≥ 4 then ⊲ “Next we uncompute ancillae”
for j = m− 2, . . . , 2 do

REVERSE-CCNOT
Controls: F (j − 1) and Cj+1

Target: F (j)

end for
end if

REVERSE-CCNOT
Controls: C1 and C2

Target: F (1)

REFERENCES 35

Algorithm 14 OR(m) operator

Require: Parameter: m ≥ 3 ⊲ “Number of input variables”
Operates on qubits
Controls: C1, C2, . . . , Cm

Target: T ⊲ “Output”
Ancillae: F (k), k = 1, . . . , m− 2

for j = 1, . . . , m do

NOT Cj

end for

AND(m)

Controls: C1, C2, . . . , Cm

Target: T
Ancillae: F (k), k = 1, . . . , m− 2

NOT T

for j = 1, . . . , m do

NOT Cj

end for

References

[1] Aaronson, Scott. Introduction to Quantum Information Science
Lecture Notes. https://www.scottaaronson.com/qclec.pdf. Ac-
cessed: 2023-06-05. 2018.

[2] Mustapha Aouchiche and Pierre Hansen. “Distance spectra of
graphs: A survey”. In: Linear Algebra and its Applications 458
(2014), pp. 301–386. doi: https://doi.org/10.1016/j.laa.2014.06.010.

[3] Sanjeev Arora and Boaz Barak. Computational complexity. A
modern approach. Cambridge University Press, Cambridge, 2009,
pp. xxiv+579. isbn: 978-0-521-42426-4.doi: 10.1017/CBO9780511804090.

[4] Alexandru T. Balaban, Dan Ciubotariu, and Mihai Medeleanu.
“Topological indices and real number vertex invariants based on
graph eigenvalues or eigenvectors”. In: J. Chem. Inf. Comput.
Sci. 31 (1991), pp. 517–523.

[5] Emilia Bl̊asten, Hiroshi Isozaki, Matti Lassas, and Jinpeng Lu.
“Gel’fand’s inverse problem for the graph Laplacian”. In: to ap-
pear in J. Spectral Theory (2021). arXiv: 2101.10026 [math.SP].

[6] Emilia Bl̊asten, Hiroshi Isozaki, Matti Lassas, and Jinpeng Lu.
“Inverse problems for discrete heat equations and random walks
for a class of graphs”. In: to appear in SIAM. Discrete Math.
(2021). arXiv: 2107.00494 [math.SP].

[7] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp.
“Tight bounds on quantum searching”. In: Fortschritte der Physik:
Progress of Physics 46.4-5 (1998), pp. 493–505.

https://www.scottaaronson.com/qclec.pdf
https://doi.org/https://doi.org/10.1016/j.laa.2014.06.010
https://doi.org/10.1017/CBO9780511804090
https://arxiv.org/abs/2101.10026
https://arxiv.org/abs/2107.00494

36 REFERENCES

[8] Peter Buneman. “A note on the metric properties of trees”. In:
Journal of Combinatorial Theory, Series B 17.1 (1974), pp. 48–
50. doi: https://doi.org/10.1016/0095-8956(74)90047-1.

[9] Peter Buneman. “The recovery of trees from measures of dis-
similarity”. In: Mathematics in the Archaeological and Historical
Sciences. Ed. by F.R. Hodson, D.G. Kendall, and P. Tautu. Ed-
inburgh: Edinburgh University Press, 1971, pp. 387–395.

[10] Dmitri Burago, Yu. D. Burago, and Sergei O. Ivanov. “A Course
in Metric Geometry”. In: Graduate Studies in Mathematics 33.
American Mathematical Society, 2001.

[11] Dmitri Burago and Sergei Ivanov. “Area minimizers and bound-
ary rigidity of almost hyperbolic metrics”. In: Duke Mathematical
Journal 162.7 (2013), pp. 1205–1248. doi: 10.1215/00127094-2142529.

[12] Dmitri Burago and Sergei Ivanov. “Boundary rigidity and fill-
ing volume minimality of metrics close to a flat one”. In: Ann. of
Math. (2) 171.2 (2010), pp. 1183–1211. doi: 10.4007/annals.2010.171.1183.

[13] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin
Yu. “Network Tomography: Recent Developments”. In: Statistical
Science 19.3 (2004), pp. 499–517. doi: 10.1214/088342304000000422.

[14] Vanniarajan Chellappan and Kamala Krithivasan. “Distance real-
ization problem in Network Tomography: A heuristic approach”.
In: 2013 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS). IEEE. 2013, pp. 1–6.

[15] Fan Chung, Mark Garrett, Ronald Graham, and David Shallcross.
“Distance realization problems with applications to internet to-
mography”. In: J. Comput. System Sci. 63.3 (2001), pp. 432–448.
doi: 10.1006/jcss.2001.1785.

[16] Stephen A. Cook. “The Complexity of Theorem-Proving Proce-
dures”. In: Proceedings of the Third Annual ACM Symposium on
Theory of Computing. STOC ’71. Shaker Heights, Ohio, USA:
Association for Computing Machinery, 1971, pp. 151–158. isbn:
9781450374644. doi: 10.1145/800157.805047.

[17] Christopher B. Croke. “Rigidity and the distance between bound-
ary points”. In: Journal of Differential Geometry 33.2 (1991),
pp. 445–464. doi: 10.4310/jdg/1214446326.

[18] Christopher B. Croke, Nurlan S. Dairbekov, and Vladimir A.
Sharafutdinov. “Local Boundary Rigidity of a Compact Riemann-
ian Manifold with Curvature Bounded above”. In: Transactions
of the American Mathematical Society 352.9 (2000), pp. 3937–
3956.

[19] Frédéric Delsuc, Henner Brinkmann, and Hervé Philippe. “Phy-
logenomics and the reconstruction of the tree of life”. In: Nature
Reviews Genetics 6 (2005), pp. 361–375. doi: https://doi.org/10.1038/nrg1603.

https://doi.org/https://doi.org/10.1016/0095-8956(74)90047-1
https://doi.org/10.1215/00127094-2142529
https://doi.org/10.4007/annals.2010.171.1183
https://doi.org/10.1214/088342304000000422
https://doi.org/10.1006/jcss.2001.1785
https://doi.org/10.1145/800157.805047
https://doi.org/10.4310/jdg/1214446326
https://doi.org/https://doi.org/10.1038/nrg1603

REFERENCES 37

[20] Roger C. Entringer, Douglas E. Jackson, and D. A. Snyder. “Dis-
tance in graphs”. In: Czechoslovak Mathematical Journal 26.2
(1976), pp. 283–296.

[21] Steven N. Evans. Probability and real trees. Lecture Notes in
Mathematics. Springer, 2008. isbn: 978-3-540-74797-0.

[22] Joseph Felsenstein. Inferring Phylogenies. Sinauer, 2003. isbn:
9780878931774.

[23] Michael R Garey and David S Johnson. Computers and intractabil-
ity. Vol. 174. freeman San Francisco, 1979.

[24] Hannes Gernandt and Jonathan Rohleder. “A Calderón type in-
verse problem for tree graphs”. In: Linear Algebra and its Applica-
tions 646 (2022), pp. 29–42. doi: https://doi.org/10.1016/j.laa.2022.03.018.

[25] Mikhael Gromov. “Filling Riemannian manifolds”. In: Journal of
Differential Geometry 18.1 (1983), pp. 1–147. doi: 10.4310/jdg/1214509283.

[26] Lov K. Grover. “A fast quantum mechanical algorithm for data-
base search”. In: Proceedings of the Twenty-eighth Annual ACM
Symposium on the Theory of Computing (Philadelphia, PA, 1996).
ACM, New York, 1996, pp. 212–219. doi: 10.1145/237814.237866.

[27] S. Louis Hakimi and S. S. Yau. “Distance matrix of a graph and
its realizability”. In: Quarterly of Applied Mathematics 22 (1965),
pp. 305–317.

[28] G. Herglotz. “Über das Benndorfsche Problem der Fortpflanzungs-
geschwindigkeit der Erdbebenstrahlen”. In: Physikal. Zeitschr. 8
(1907), pp. 145–147.

[29] Dorit S Hochba. “Approximation algorithms for NP-hard prob-
lems”. In: ACM Sigact News 28.2 (1997), pp. 40–52.

[30] Sergei Ivanov. “On two-dimensional minimal filling”. In: Algebra
i Analiz 13 (2001), pp. 26–38.

[31] Sergei Ivanov. “Volume comparison via boundary distances”. In:
Proceedings of the International Congress of Mathematicians. Vol. II.
New Delhi: Hindustan Book Agency, 2010, pp. 769–784. doi:
https://doi.org/10.1142/7920.

[32] A.Y. Kitaev, A. Shen, and M.N. Vyalyi. Classical and Quantum
Computation. Graduate studies in mathematics. American Math-
ematical Society, 2002. isbn: 9780821832295.

[33] Matti Lassas, Vladimir Sharafutdinov, and Gunther Uhlmann.
“Semiglobal boundary rigidity for Riemannian metrics”. In:Math.
Ann. 325.4 (2003), pp. 767–793. doi: 10.1007/s00208-002-0407-4.

[34] Naoki Masuda, Mason A. Porter, and Renaud Lambiotte. “Ran-
dom walks and diffusion on networks”. In: Physics Reports 716-
717 (2017), pp. 1–58. doi: https://doi.org/10.1016/j.physrep.2017.07.007.

[35] René Michel. “Sur la rigidité imposée par la longueur des géodésiques”.
In: Invent. Math. 65.1 (1981), pp. 71–83. doi: 10.1007/BF01389295.

https://doi.org/https://doi.org/10.1016/j.laa.2022.03.018
https://doi.org/10.4310/jdg/1214509283
https://doi.org/10.1145/237814.237866
https://doi.org/https://doi.org/10.1142/7920
https://doi.org/10.1007/s00208-002-0407-4
https://doi.org/https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1007/BF01389295

38 REFERENCES

[36] R.G. Mukhometov and V.G. Romanov. “On the problem of find-
ing an isotropic Riemannian metric in an n-dimensional space”.
In: Dokl. Akad. Nauk SSSR 243.1 (1978), pp. 41–44.

[37] Giacomo Nannicini. “An Introduction to Quantum Computing,
without the Physics”. In: SIAM Review 62.4 (2020), pp. 936–981.
doi: 10.1137/18M1170650.

[38] Michael A. Nielsen and Isaac L. Chuang. Quantum computation
and quantum information. Cambridge University Press, Cam-
bridge, 2000, pp. xxvi+676. isbn: 0-521-63235-8.

[39] Christos H. Papadimitriou. Computational complexity. Addison-
Wesley Publishing Company, Reading, MA, 1994, pp. xvi+523.
isbn: 0-201-53082-1.

[40] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann. Geo-
metric Inverse Problems: With Emphasis on Two Dimensions.
Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 2023. doi: 10.1017/9781009039901.

[41] Leonid Pestov and Gunther Uhlmann. “Two dimensional compact
simple Riemannian manifolds are boundary distance rigid”. In:
Ann. of Math. (2) 161.2 (2005), pp. 1093–1110. doi: 10.4007/annals.2005.161.1093.

[42] Charles Semple and Mike Steel. Phylogenetics. Vol. 24. Oxford
Lecture Series in Mathematics and its Applications. Oxford Uni-
versity Press, Oxford, 2003, pp. xiv+239. isbn: 0-19-850942-1.

[43] J.M.S. Simões Pereira. “A note on the tree realizability of a dis-
tance matrix”. In: Journal of Combinatorial Theory 6.3 (1969),
pp. 303–310. doi: https://doi.org/10.1016/S0021-9800(69)80092-X.

[44] Plamen Stefanov and Gunther Uhlmann. “Boundary Rigidity and
Stability for Generic Simple Metrics”. In: Journal of the American
Mathematical Society 18.4 (2005), pp. 975–1003. doi: https://doi.org/10.1090/S0894-0347-05-00494-7.

[45] Plamen Stefanov, Gunther Uhlmann, and Andras Vasy. “Bound-
ary rigidity with partial data”. In: Journal of the American Math-
ematical Society 29.2 (2016), pp. 299–332. doi: https://doi.org/10.1090/jams/846.

[46] Plamen Stefanov, Gunther Uhlmann, and Andras Vasy. “Local
and global boundary rigidity and the geodesic X-ray transform in
the normal gauge”. In: Ann. of Math. (2) 194 (2021), pp. 1–95.
doi: https://doi.org/10.4007/annals.2021.194.1.1.

[47] Plamen Stefanov, Gunther Uhlmann, Andras Vasy, and Hanming
Zhou. “Travel time tomography”. In: Acta Math. Sin. (Engl. Ser.)
35.6 (2019), pp. 1085–1114. doi: https://doi.org/10.1007/s10114-019-8338-0.

[48] Gunther Uhlmann. “Inverse problems: Seeing the unseen”. In:
Bulletin of Mathematical Sciences 4 (2014), pp. 209–279. doi:
10.1007/s13373-014-0051-9.

[49] E. Wiechert. “Bestimmung des Weges von Erdbebenwellen im
Erdinnern”. In: Theoretisches. Phys. Z. 11 (1910), pp. 294–311.

[50] HarryWiener. “Structural determination of paraffin boiling points”.
In: J. Am. Chem. Soc. 69 (1947), pp. 17–20.

https://doi.org/10.1137/18M1170650
https://doi.org/10.1017/9781009039901
https://doi.org/10.4007/annals.2005.161.1093
https://doi.org/https://doi.org/10.1016/S0021-9800(69)80092-X
https://doi.org/https://doi.org/10.1090/S0894-0347-05-00494-7
https://doi.org/https://doi.org/10.1090/jams/846
https://doi.org/https://doi.org/10.4007/annals.2021.194.1.1
https://doi.org/https://doi.org/10.1007/s10114-019-8338-0
https://doi.org/10.1007/s13373-014-0051-9

REFERENCES 39

[51] Dominik M.Wittmann, Daniel Schmidl, Florian Blöchl, and Fabian
J. Theis. “Reconstruction of graphs based on random walks”. In:
Theoretical Computer Science 410.38 (2009), pp. 3826–3838. doi:
https://doi.org/10.1016/j.tcs.2009.05.026.

[52] Kexiang Xu, Muhuo Liu, Kinkar Das, Ivan Gutman, and Boris
Furtula. “A Survey on Graphs Extremal with Respect to Dis-
tance–Based Topological Indices”. In: MATCH Commun. Math.
Comput. Chem. 71 (2014), pp. 461–508.

[53] K. A. Zaretskii. “Constructing a tree on the basis of a set of
distances between the hanging vertices”. In: Uspekhi Mat. Nauk
20 (1965), pp. 90–92.

[54] B. Zhou and N. Trinajstić. “Mathematical properties of molecular
descriptors based on distances”. In: Croatica Chemica Acta 83
(2010), pp. 227–242.

https://doi.org/https://doi.org/10.1016/j.tcs.2009.05.026

	1. Introduction
	1.1. Formulation of the inverse problems for graphs

	2. Rigidity results for trees
	3. Quantum algorithm for the inverse travel time problem
	3.1. Grover's algorithm
	3.2. Quantum oracle for the inverse travel time problem
	3.3. Quantum algorithm for Problem 1

	4. NP-completeness of the restricted inverse travel time problem
	5. Proofs of main results
	5.1. Proof of Theorem 1
	5.2. Proof of Theorem 3

	Appendix A. Grover's algorithm
	Appendix B. The OR gate and the iterated AND and OR operators
	References

