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Abstract. We prove that if P (D) is some constant coefficient partial
differential operator and f is a scalar field such that P (D)f vanishes
in a given open set, then the integrals of f over all lines intersecting
that open set determine the scalar field uniquely everywhere. This is
done by proving a unique continuation property of fractional Laplacians
which implies uniqueness for the partial data problem. We also apply
our results to partial data problems of vector fields.

1. Introduction

Let f be a scalar field and V ⊂ Rn a nonempty open set where n ≥ 2.
We study the following partial data problem in X-ray tomography: can we
say something about f if we know the integrals of f over all lines intersect-
ing V ? Especially, we are interested in the uniqueness problem which can
be formulated in terms of the X-ray transform X0 as follows: if X0f = 0
on all lines which intersect V , does it follow that f = 0? In general, the
answer is no [29] and one has to put some conditions on f |V . We prove that
if there is some constant coefficient partial differential operator P (D) such
that P (D)f |V = 0 and X0f = 0 on all lines intersecting V , then f = 0.
This generalizes a recent partial data result in [20]. As a special case we
obtain that if f is for example polynomial or (poly)harmonic in V , then f
is uniquely determined by its partial X-ray data.

The partial data result is proved by using a unique continuation property
of fractional Laplacian (−∆)s. We prove that if s ∈ (−n/2,∞) \ Z and
there is some constant coefficient partial differential operator P (D) such
that P (D)f |V = (−∆)sf |V = 0, then f = 0. This generalizes earlier re-
sults about unique continuation of fractional Laplacians [6, 14]. The unique
continuation of (−∆)s implies a unique continuation result for the normal
operator N0 of the X-ray transform X0, and the uniqueness for the partial
data problem follows directly from the unique continuation of N0. This ap-
proach which uses the unique continuation of the normal operator in proving
uniqueness for partial data problems was also used in [20, 21].
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We also study partial data problems of vector fields. Let F be a vector
field and denote by dF its exterior derivative or curl which components are
(dF )ij = ∂iFj − ∂jFi. We prove that if there are some constant coefficient
partial differential operators Pij(D) such that Pij(D)(dF )ij |V = 0 and the
integrals of F over all lines intersecting V vanish, then F must be a potential
field (F is the gradient of some scalar field). This is a generalization of a
recent result in [21]. The partial data result is proved by using a relation
between the normal operator of the X-ray transform of scalar fields and the
normal operator of the X-ray transform of vector fields (see lemma 4.4).
This allows one to reduce the partial data problem for the vector field F to
partial data problems for the scalar fields (dF )ij . As a special case we obtain
that if F is for example componentwise polynomial or (poly)harmonic in V ,
then the solenoidal part of F is uniquely determined by the partial X-ray
data of F .

The partial data problems we study have a relation to the region of in-
terest (ROI) tomography [4, 23, 24, 29, 46]. The main goal in such imaging
problems is to determine the attenuation inside a small part of a human
body (region of interest) by using only the X-ray data on lines which go
through the ROI. This for example reduces the needed X-ray dose which is
given to the patient. Our results imply that if the attenuation f satisfies
P (D)f |V = 0 for some open subset V of the ROI and some constant co-
efficient partial differential operator P (D), then f is uniquely determined
by its partial X-ray data on lines which intersect the ROI. Note that f is
uniquely determined not only in the ROI but also outside the ROI. This
holds for example if the attenuation is polynomial or (poly)harmonic in a
small subregion of the ROI. In general, f does not have to be smooth and it
can have singularities in the ROI. We also note that our proof for uniqueness
does not give stability for the partial data problem. Especially, outside the
ROI we have invisible singularities which cannot be seen by the X-ray data
and the reconstruction of such singularities is not stable (see remark 1.5
and [25, 34, 35]).

Similar ROI tomography problems can be studied in the case of vector
fields. In vector field tomography the usual objective is to determine the
velocity field of a fluid flow using acoustic travel time or Doppler backscat-
tering measurements [30, 31, 39]. Assuming that the velocity of the fluid
flow is much smaller than the speed of the propagating signal one can lin-
earize the problem. Linearization then leads to the X-ray transform of
the velocity field. Our results imply that if the velocity field F satisfies
Pij(D)(dF )ij |V = 0 for some open subset V of the ROI and some constant
coefficient partial differential operators Pij(D), then the solenoidal part of F
is uniquely determined everywhere by the partial X-ray data of F on lines
intersecting the ROI. Examples of such velocity fields are those which are
componentwise polynomial or (poly)harmonic in a small subregion of the
ROI. As in the scalar case, F can have singularities in the ROI, and our
proof does not give stability for the partial data problem (since it is based
on reduction to the scalar case).

The article is organized as follows. In section 1.1 we introduce our nota-
tion, in section 1.2 we give our main theorems and in section 1.3 we discuss
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some related results. We go through the theory of distributions and the
X-ray transform in section 2, and study the space of admissible functions in
section 3. Finally, we prove our main results in section 4.

1.1. Notation. We quickly go through the notation used in our main the-
orems. More detailed information about distributions and the X-ray trans-
form of scalar and vector fields can be found in section 2.

We denote by f a scalar field. The set O ′C(Rn) is the space of rapidly
decreasing distributions and the space E ′(Rn) ⊂ O ′C(Rn) consists of com-
pactly supported distributions. The subset C∞(Rn) ⊂ O ′C(Rn) is the set of
all continuous functions which decay faster than any polynomial at infinity.
We let X0 be the X-ray transform of scalar fields and it maps a function
to its line integrals. The normal operator is N0 = X∗0X0 where X∗0 is the
adjoint of X0.

We let Hr(Rn) be the fractional L2-Sobolev space of order r ∈ R and
H−∞(Rn) =

⋃
r∈RH

r(Rn). We define the fractional Laplacian as (−∆)sf =

F−1(|·|2s f̂) where f̂ = F(f) is the Fourier transform of f and F−1 is the
inverse Fourier transform. The fractional Laplacian (−∆)s is well-defined
in O ′C(Rn) for all s ∈ (−n/2,∞)\Z and in Hr(Rn) for all s ∈ (−n/4,∞)\Z.

We denote by P the set of all polynomials in Rn with complex coefficients
with the convention that the zero polynomial P ≡ 0 does not belong to P.
A polynomial P ∈ P of degree m ∈ N induces a constant coefficient partial
differential operator P (D) of order m ∈ N by setting P (D) =

∑
|α|≤m aαD

α

where aα ∈ C, Dα = Dα1
1 · · ·Dαn

n , Dj = −i∂j and α = (α1, . . . , αn) ∈ Nn is a
multi-index such that |α| = α1+. . .+αn. The set of admissible functions AV
is defined as

AV = {f ∈ H−∞(Rn) : P (D)f |V = 0 for some P ∈ P}(1)

where V ⊂ Rn is some nonempty open set.
We denote by F a vector field. The notation F ∈ (E ′(Rn))n means that

F = (F1, . . . , Fn) where Fi ∈ E ′(Rn) for all i = 1, . . . , n. The exterior
derivative of F is written in components as (dF )ij = ∂iFj −∂jFi. For scalar
fields φ the notation dφ denotes the gradient of φ. We let X1 be the X-ray
transform of vector fields which maps a vector field to its line integrals. The
normal operator is N1 = X∗1X1 where X∗1 is the adjoint of X1.

1.2. Main results. In this section we give our main theorems. The proofs
of the results can be found in section 4.

Our main theorem is the following unique continuation result for the
fractional Laplacian.

Theorem 1.1. Let n ≥ 1, s ∈ (−n/4,∞) \Z and f ∈ AV where V ⊂ Rn is
some nonempty open set. If (−∆)sf |V = 0, then f = 0. If f ∈ O ′C(Rn)∩AV ,
then the claim holds for s ∈ (−n/2,∞) \ Z.

Theorem 1.1 generalizes the result in [6] (see lemma 4.1) where one as-
sumes that (−∆)sf |V = f |V = 0. In fact, theorem 1.1 is proved by reducing
the claim to the case treated in [6, Theorem 1.1] (see section 4). The mean-
ing of the condition f ∈ AV is discussed in section 3 (see remark 3.3).
When s ∈ (−n/2,−n/4] \ Z, we need to have f ∈ O ′C(Rn) so that (−∆)sf
is well-defined and we can use lemma 4.1 in the proof of theorem 1.1.



4 JOONAS ILMAVIRTA AND KEIJO MÖNKKÖNEN

Remark 1.2. If f ∈ E ′(Rn), then instead of assuming (−∆)sf |V = 0 in
theorem 1.1 we could only require that (−∆)sf vanishes to infinite order at
some point x0 ∈ V , i.e. ∂β((−∆)sf)(x0) = 0 for all β ∈ Nn. This follows
since a corresponding unique continuation result is known for f ∈ E ′(Rn)
under the assumptions f |V = 0 and ∂β((−∆)sf)(x0) = 0 for all β ∈ Nn (see
corollary 4 on page 12 in [6]), and constant coefficient partial differential op-
erators P (D) commute with fractional Laplacians and ordinary derivatives.
Therefore we can use the same proof to prove this slightly stronger result
(see the proof of theorem 1.1).

From the unique continuation of fractional Laplacians we immediately
obtain the following unique continuation result for the normal operator of
the X-ray transform of scalar fields. The reason is that the normal operator
can be written as N0 = (−∆)−1/2 up to a constant factor (see section 2.2).

Theorem 1.3. Let n ≥ 2 and f ∈ E ′(Rn)∩AV or f ∈ C∞(Rn)∩AV where
V ⊂ Rn is some nonempty open set. If N0f |V = 0, then f = 0.

Theorem 1.3 is a generalization of the result in [20] where one assumes
N0f |V = f |V = 0. When f ∈ E ′(Rn)∩AV , we could replace the assumption
N0f |V = 0 with the requirement that N0f vanishes to infinite order at some
point x0 ∈ V (see remark 1.2). In order to use theorem 1.1 in the case
s = −1/2 and n ≥ 2, and to guarantee that N0f is well-defined, we need to
have f ∈ E ′(Rn) ⊂ O ′C(Rn) or f ∈ C∞(Rn) ⊂ O ′C(Rn) in theorem 1.3.

The unique continuation of N0 implies uniqueness for the following partial
data problem.

Theorem 1.4. Let n ≥ 2 and f ∈ E ′(Rn)∩AV or f ∈ C∞(Rn)∩AV where
V ⊂ Rn is some nonempty open set. If X0f = 0 on all lines intersecting V ,
then f = 0.

Theorem 1.4 generalizes theorem 1.2 in [20], where one assumes f |V = 0,
to the case P (D)f |V = 0 for some P ∈ P. We note that if f is polynomial
in V , then there is P ∈ P such that P (D)f |V = 0. Hence those scalar fields
which are polynomial in V can be uniquely determined from their X-ray
data on lines intersecting V . This special case of theorem 1.4 is previously
known in two dimensions [23, 46]. We also note that theorem 1.4 includes
much larger class of functions than just polynomials. The scalar field f can
be (poly)harmonic in V and f can also have singularities in V if f is for
example a non-smooth solution to the wave equation (see section 3 for more
examples of admissible functions).

It is important to notice that from the vector space structure of admissible
functions AV it follows that theorem 1.4 is indeed a uniqueness result: if f1

and f2 satisfy P1(D)f1|V = P2(D)f2|V = 0 for some P1, P2 ∈ P and X0f1 =
X0f2 on all lines intersecting V , then f1 = f2 (see proposition 3.4 and
remark 3.5 for more details). Especially, the equality of the X-ray data on all
lines intersecting V implies that the scalar fields are equal everywhere even
though f1 and f2 a priori can have very different behaviour in V since P1(D)
can be different from P2(D).

Remark 1.5. We note that our proof for theorem 1.4 gives only uniqueness
but not stability for the partial data problem. In theorem 1.4 we eventually
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have to assume that f is not supported in V since otherwise we would have
P (D)f = 0 everywhere and therefore f = 0 without assuming anything about
the X-ray data (see the proof of theorem 1.1). When f is supported outside V
we do not have access to all singularities of f via the X-ray data, i.e. we
have invisible singularities outside V . It is known that the recovery of such
invisible singularities is not stable [25, 34, 35].

Remark 1.6. We note that similar results as in theorems 1.3 and 1.4 also
hold for the d-plane transform when d is odd (see corollaries 1 and 2 on page
6 in [6]). The d-plane transform takes a scalar field and integrates it over
d-dimensional affine planes where 0 < d < n. The case d = 1 corresponds
to the X-ray transform. The normal operator Nd of the d-plane transform
can be expressed as Nd = (−∆)−d/2 up to a constant factor (see [6, 16]).
Hence Nd admits the same unique continuation property as in theorem 1.1
for functions in E ′(Rn)∩AV or C∞(Rn)∩AV provided d is odd. The unique
continuation of Nd then implies a similar uniqueness result as in theorem 1.4
for a partial data problem of the d-plane transform when d is odd.

From the unique continuation of fractional Laplacians we also obtain a
partial data result for the X-ray transform of vector fields. The normal
operators satisfy the relationship d(N1F ) = N0(dF ) up to a constant factor
(see lemma 4.4). Hence the unique continuation and partial data problems
of vector fields can be reduced to the corresponding problems for scalar
fields, namely the components (dF )ij .

The next theorem generalizes the result in [21] where the authors assume
that dF |V = 0 instead of (dF )ij ∈ AV .

Theorem 1.7. Let n ≥ 2 and F ∈ (E ′(Rn))n such that (dF )ij ∈ AV for all
i, j = 1, . . . , n where V ⊂ Rn is some nonempty open set. If X1F = 0 on all
lines intersecting V , then dF = 0. Especially, F = dφ for some φ ∈ E ′(Rn).

The conclusion F = dφ in theorem 1.7 is equivalent to that the solenoidal
part F s vanishes in the solenoidal decomposition F = F s +dφ (see e.g. [41]).
Therefore theorem 1.7 can be seen as a solenoidal injectivity result in terms
of partial data (see [21] and [33, 41]). Theorem 1.7 holds also for vector
fields F ∈ (S (Rn))n which components are Schwartz functions since in that
case (dF )ij ∈ C∞(Rn) ∩ AV .

We note that if the components Fi are all polynomial in V , then also
(dF )ij are all polynomial in V . Hence there are some Pij ∈ P such that
Pij(D)(dF )ij |V = 0 and therefore (dF )ij ∈ AV . This means that solenoidal
vector fields which are polynomial in V can be uniquely determined from
their X-ray data on lines intersecting V . However, this is only a small
subset of admissible vector fields: F can be for example componentwise
(poly)harmonic in V and more generally F can also have singularities in V .

Remark 1.8. Theorems 1.1 and 1.3 imply a unique continuation result
for N1: if F ∈ (E ′(Rn))n satisfies (dF )ij ∈ AV for all i, j = 1, . . . , n and
N1F |V = 0, then dF = 0. This follows since d(N1F ) = N0(dF ) up to a
constant factor (see lemma 4.4) and one can use theorem 1.3 for the compo-
nents (dF )ij ∈ E ′(Rn). One also obtains a stronger version where one can
replace the assumption N1F |V = 0 with the requirement that d(N1F ) van-
ishes componentwise to infinite order at some point x0 ∈ V (see remark 1.2).
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1.3. Related results. There are some earlier unique continuation and par-
tial data results for scalar and vector fields. The partial data problem for
scalar fields has a unique solution if f |V vanishes [4, 20, 24], f |V is poly-
nomial or piecewise polynomial [23, 24, 46] or f |V is real analytic [23]. A
complementary result is the Helgason support theorem: if the integrals of f
vanish on all lines not intersecting a given compact and convex set, then f
has to vanish outside that set [16, 42]. The normal operator of the X-ray
transform of scalar fields has a unique continuation property under the as-
sumptions N0f |V = f |V = 0 [20]. This is a special case of a more general
unique continuation property of fractional Laplacians [6, 14]. There are also
partial data and unique continuation results for the d-plane transform of
scalar fields when d is odd, including the X-ray transform as a special case
d = 1 (see [6] and remark 1.6).

The partial data problem of vector fields is known to be uniquely solvable
up to potential fields, if dF |V = 0 [21]. Similarly, the normal operator of the
X-ray transform of vector fields has a unique continuation property under
the assumptions N1F |V = dF |V = 0 [21]. There are other partial data
results for vector fields where one knows the integrals of F over lines which
are parallel to a finite set of planes [22, 38, 40] or which intersect a certain
type of curve [9, 36, 44]. There is also a Helgason-type support theorem for
vector fields: if the integrals of F vanish on all lines not intersecting a given
compact and convex set, then dF vanishes outside that set [21, 42].

The normal operator of scalar fields, the normal operator of vector fields
and the fractional Laplacian all admit stronger versions of the unique contin-
uation property (see [6, 11, 12, 13, 20, 21, 37, 47] and remarks 1.2 and 1.8).
Other applications of unique continuation of fractional Laplacians include
fractional inverse problems. Especially, the unique continuation of (−∆)s

is used to prove uniqueness for different versions of the fractional Calderón
problem (see e.g. [1, 2, 5, 6, 7, 14]).

2. The X-ray transform and distributions

In this section we define the X-ray transform of scalar and vector fields,
and introduce the distribution spaces we use in our main theorems. The
basic theory of distributions and Sobolev spaces can be found in [15, 17, 27,
28, 43] and the X-ray transform is treated for example in [29, 41, 42].

2.1. Distributions and Sobolev spaces. We let E(Rn) be the space of
smooth functions, S (Rn) is the Schwartz space and D(Rn) is the space
of compactly supported smooth functions. We equip all these spaces with
their standard topologies. The corresponding duals are denoted by E ′(Rn),
S ′(Rn) and D′(Rn). Elements in E ′(Rn) are identified with distributions of
compact support and elements in S ′(Rn) are called tempered distributions.

We define the space of rapidly decreasing distributions O ′C(Rn) ⊂ S ′(Rn)

as follows: f ∈ O ′C(Rn) if and only if f̂ ∈ OM (Rn) where f̂ = F(f) is the
Fourier transform of tempered distributions. Here OM (Rn) is the space of
polynomially growing smooth functions, i.e. f ∈ OM (Rn) if f and all its
derivatives are polynomially bounded. We note that the Fourier transform
is an isomorphism F : S ′(Rn) → S ′(Rn) and also extends to an isomor-
phism F : L2(Rn) → L2(Rn). We have the inclusions E ′(Rn) ⊂ O ′C(Rn) ⊂
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S ′(Rn) ⊂ D′(Rn). As a special case we have S (Rn) ⊂ C∞(Rn) ⊂ O ′C(Rn)
where C∞(Rn) is the set of all continuous functions which decay faster than
any polynomial at infinity.

The fractional L2-Sobolev space of order r ∈ R is defined as

(2) Hr(Rn) = {f ∈ S ′(Rn) : 〈·〉rf̂ ∈ L2(Rn)}

where 〈ξ〉 = (1 + |ξ|2)1/2. The space Hr(Rn) is equipped with the norm

(3) ‖f‖Hr(Rn) =
∥∥∥〈·〉rf̂∥∥∥

L2(Rn)

and Hr(Rn) becomes a separable Hilbert space for every r ∈ R. It follows
that the spaces are nested, i.e. Hr(Rn) ↪→ Ht(Rn) continuously when r ≥ t.
One can isomorphically identify H−r(Rn) with the dual (Hr(Rn))∗ for all
r ∈ R. We define the following spaces

(4) H∞(Rn) =
⋂
r∈R

Hr(Rn), H−∞(Rn) =
⋃
r∈R

Hr(Rn).

It holds that O ′C(Rn) ⊂ H−∞(Rn) ⊂ S ′(Rn) and S (Rn) ⊂ H∞(Rn). Fur-
ther, using the Sobolev embedding one can see that H∞(Rn) = C∞L2(Rn)
where f ∈ C∞L2(Rn) if f is smooth and f and all its derivatives belong

to L2(Rn) (see [15, Theorem 6.12]).
The fractional Laplacian is defined as

(5) (−∆)sf = F−1(|·|2s f̂)

where F−1 is the inverse Fourier transform of tempered distributions. It fol-
lows that (−∆)sf is well-defined as a tempered distribution for f ∈ O ′C(Rn)
when s ∈ (−n/2,∞) \ Z, and for f ∈ Hr(Rn) when s ∈ (−n/4,∞) \ Z
(see [6, Section 2.2]). We have that (−∆)s : Hr(Rn) → Hr−2s(Rn) is con-
tinuous whenever s ∈ (0,∞) \ Z and (−∆)s also admits a Poincaré-type
inequality for s ∈ (0,∞) \ Z (see [6]). We note that (−∆)s is a non-local
operator in contrast to the ordinary Laplacian (−∆). The non-locality im-
plies a unique continuation property (see theorem 1.1 and lemma 4.1) which
cannot hold for local operators.

We also use local versions of distributions and fractional Sobolev spaces.
Let Ω ⊂ Rn be an open set and r ∈ R. We denote by D(Ω), D′(Ω) etc.
the test function and distribution spaces defined in Ω. We define the local
Sobolev space Hr(Ω) as

Hr(Ω) = {g ∈ D′(Ω) : g = f |Ω for some f ∈ Hr(Rn)}.(6)

In other words, the space Hr(Ω) consists of restrictions of distributions
f ∈ Hr(Rn). The local Sobolev space is equipped with the quotient norm

‖g‖Hr(Ω) = inf{‖f‖Hr(Rn) : f ∈ Hr(Rn) such that f |Ω = g}.(7)

Then Hr(Ω) becomes a separable Hilbert space and the restriction map
|Ω : Hr(Rn)→ Hr(Ω) is continuous. If r ≥ t, then Hr(Ω) ↪→ Ht(Ω) contin-

uously. One can also isomorphically identify H−r(Ω) as the dual (H̃r(Ω))∗

for every r ∈ R where H̃r(Ω) is the closure of D(Ω) in Hr(Rn) (see [3]
and [27]). If r ≥ 0, then Hr(Ω) ⊂ W r(Ω) where W r(Ω) is the Sobolev-
Slobodeckij space which is defined by using weak derivatives of L2-functions
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(see [27] for a precise definition). If Ω is a Lipschitz domain, then we have
the equality Hr(Ω) = W r(Ω) for all r ≥ 0.

More generally, we define the vector-valued test function space (D(Rn))n

by saying that ϕ ∈ (D(Rn))n if and only if ϕ = (ϕ1, . . . , ϕn) and ϕi ∈
D(Rn) for all i = 1, . . . , n. A sequence converges to zero in (D(Rn))n if and
only if all its components converge to zero in D(Rn). We then define the
space of vector-valued distributions (D′(Rn))n by saying that F ∈ (D′(Rn))n

if and only if F = (F1, . . . , Fn) where Fi ∈ D′(Rn) for all i = 1, . . . , n.
The duality pairing is defined as 〈F,ϕ〉 =

∑n
i=1 〈Fi, ϕi〉. The test function

spaces (E(Rn))n and (S (Rn))n, and the corresponding distribution spaces
(E ′(Rn))n and (S ′(Rn))n are defined analogously. The elements in (E ′(Rn))n

are called compactly supported vector-valued distributions. Vector-valued
distributions are a special case of currents (continuous linear functionals in
the space of differential forms, see [8, Section III]).

For F ∈ (D′(Rn))n we define the exterior derivative or curl of F as a
matrix which components are (dF )ij = ∂iFj − ∂jFi. It follows from the
Poincaré lemma (see e.g. [26, Theorem 2.1] and lemma 4.2) that if dF = 0,
then F = dφ for some φ ∈ D′(Rn) where dφ is the distributional gradient
of φ.

2.2. The X-ray transform of scalar fields. Let f ∈ D(Rn) be a scalar
field. The X-ray transform X0 is defined as

(8) X0f(γ) =

∫
γ
fds

where γ is an oriented line in Rn. When we parameterize the set of all
oriented lines with the set

(9) Γ = {(z, θ) : θ ∈ Sn−1, z ∈ θ⊥}
the X-ray transform becomes

(10) X0f(z, θ) =

∫
R
f(z + sθ)ds.

The adjoint or back-projection X∗0 is defined as

(11) X∗0ψ(x) =

∫
Sn−1

ψ(x− (x · θ)θ, θ)dθ

where ψ ∈ E(Γ). One then sees that X0 : D(Rn) → D(Γ) and X∗0 : E(Γ) →
E(Rn) are continuous maps. Using duality we can defineX0 : E ′(Rn)→ E ′(Γ)
and X∗0 : D′(Γ)→ D′(Rn) as

〈X0f, ϕ〉 = 〈f,X∗0ϕ〉(12)

〈X∗0ψ, η〉 = 〈ψ,X0η〉(13)

where 〈·, ·〉 is the dual pairing.
The normal operator is N0 = X∗0X0 and it can be expressed as the con-

volution

(14) N0f(x) = 2(f ∗ |·|1−n)(x).

Using duality the normal operator extends to a map N0 : E ′(Rn)→ D′(Rn)
and the convolution formula holds in the sense of distributions. The normal
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operator can be seen as the fractional Laplacian (−∆)−1/2 up to a constant
factor and we have the reconstruction formula

(15) f = c0,n(−∆)1/2N0f

where c0,n is a constant which depends on dimension. Both X0 and N0 are
also defined for functions f ∈ C∞(Rn).

2.3. The X-ray transform of vector fields. Let F ∈ (D(Rn))n be a
vector field. The X-ray transform X1 is defined as

(16) X1F (γ) =

∫
γ
F · ds

where γ is an oriented line. Using the parametrization Γ for oriented lines
(see equation (9)) we have

(17) X1F (z, θ) =

∫
R
F (z + sθ) · θds.

We define the adjoint X∗1 as the vector-valued operator

(18) (X∗1ψ)i(x) =

∫
Sn−1

θiψ(x− (x · θ)θ, θ)dθ

where ψ ∈ E(Γ) is a scalar field in the space of oriented lines. One sees that
X1 : (D(Rn))n → D(Γ) and X∗1 : E(Γ) → (E(Rn))n are continuous and by
duality we can define X1 : (E ′(Rn))n → E ′(Γ) and X∗1 : D′(Γ) → (D′(Rn))n

by setting

〈X1F,ϕ〉 = 〈F,X∗1ϕ〉(19)

〈X∗1ψ, η〉 = 〈ψ,X1η〉 .(20)

We define the normal operator as N1 = X∗1X1 and it can be expressed in
terms of convolution

(21) (N1F )i =
n∑
j=1

2xixj

|x|n+1 ∗ Fj .

The normal operator extends to a map N1 : (E ′(Rn))n → (D′(Rn))n by du-
ality and the convolution formula holds in the sense of distributions. One
has the reconstruction formula for the solenoidal part F s in the solenoidal
decomposition F = F s + dφ (see for example [41, 42])

(22) F s = c1,n(−∆)1/2N1F

where c1,n is a constant depending on dimension and (−∆)1/2 operates com-
ponentwise on N1F . Both X1 and N1 are also defined for vector fields
F ∈ (S (Rn))n.

3. Partial differential operators and admissible functions

In this section we introduce constant coefficient partial differential oper-
ators and also study the space of admissible functions AV in more detail. A
comprehensive treatment of constant coefficient partial differential operators
can be found in Hörmander’s book [18].

Let us denote by P the set of all polynomials in Rn with complex coeffi-
cients excluding the zero polynomial P ≡ 0. A polynomial P ∈ P of degree
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m ∈ N can be identified with the constant coefficient partial differential
operator P (D) of order m ∈ N as

(23) P (D) =
∑
|α|≤m

aαD
α, aα ∈ C,

where Dα = Dα1
1 · · ·Dαn

n , Dj = −i∂j and α = (α1, . . . , αn) ∈ Nn is a multi-
index such that |α| = α1 + . . .+αn. In fact, using the Fourier transform one
sees that

P̂ (D) = P (ξ) =
∑
|α|≤m

aαξ
α(24)

where ξ ∈ Rn and ξα = ξα1 · · · ξαn . The polynomial P (ξ) is also known as
the full symbol of P (D). If g ∈ D′(Ω) where Ω ⊂ Rn is an open set, then one
can define the distributional derivative P (D)g ∈ D′(Ω) by duality. Further,
it holds that P (D) : Hr(Ω) → Hr−m(Ω) is continuous with respect to the
quotient norm [28, Theorem 12.15] (see equation (7)).

The set of admissible functions AV which we use in our main theorems
can be written as the union

AV =
⋃
P∈P
r∈R

HrP,V (Rn) =
⋃
P∈P
r∈R

{f ∈ Hr(Rn) : P (D)f |V = 0}(25)

where V ⊂ Rn is some nonempty open set and HrP,V (Rn) = {f ∈ Hr(Rn) :

P (D)f |V = 0}. We note that AV ⊂ H−∞(Rn). The following proposition
implies that the sets HrP,V (Rn) in the union (25) are also Hilbert spaces.

Proposition 3.1. The subset HrP,V (Rn) ⊂ Hr(Rn) is a separable Hilbert
space for all r ∈ R, P ∈ P and nonempty open set V ⊂ Rn.

Proof. Clearly HrP,V (Rn) is a linear subspace of Hr(Rn). Let fk ∈ HrP,V (Rn)

be a sequence such that fk → f in Hr(Rn). Then by the continuity of the
restriction map |V : Hr(Rn) → Hr(V ) we have that fk|V → f |V in Hr(V ).
From the continuity of P (D) : Hr(V ) → Hr−m(V ) we obtain that 0 =
P (D)fk|V → P (D)f |V in Hr−m(V ), implying that f ∈ HrP,V (Rn). There-

fore HrP,V (Rn) is a closed subspace of the separable Hilbert space Hr(Rn)
and hence itself a separable Hilbert space. �

Remark 3.2. We note that in the smooth case we have that EP,V (Rn) =
{f ∈ E(Rn) : P (D)f |V = 0} ⊂ E(Rn) is a closed subspace of E(Rn)
and hence a Fréchet space. More generally, D′P,V (Rn) = {f ∈ D′(Rn) :

P (D)f |V = 0} ⊂ D′(Rn) is sequentially closed in D′(Rn) under the weak∗

convergence. These two facts follow from the continuity of P (D) : E(Rn)→
E(Rn) and P (D) : D′(Rn) → D′(Rn) with respect to the standard topolo-
gies. More topological properties of kernels of constant coeffiecient partial
differential operators can be found in [45].

Remark 3.3. The interpretation of the condition f ∈ AV is the following.
If f ∈ AV , then there is some r ∈ R and some P ∈ P such that f ∈ Hr(Rn)
and P (D)f |V = 0. The distributional derivatives commute with restrictions,
i.e. P (D)f |V = P (D)(f |V ) where f |V ∈ D′(V ). Since f ∈ Hr(Rn) we see
that f |V is not only a distribution but in addition f |V ∈ Hr(V ) for some
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r ∈ R. Therefore the existence of r ∈ R and P ∈ P for which P (D)f |V = 0
means that f |V ∈ Hr(V ) and f |V is a weak solution to some homogeneous
constant coefficient partial differential equation. In other words, f |V satisfies

(26)
∑
|α|≤m

aαD
α(f |V ) = 0, f |V ∈

⋃
r∈R

Hr(V ),

for some coefficients aα ∈ C and some integer m ∈ N.

The following proposition is important in the uniqueness of the partial
data problem.

Proposition 3.4. The set AV ⊂ H−∞(Rn) is a vector space for every
nonempty open set V ⊂ Rn.

Proof. Let f1, f2 ∈ AV and λ ∈ C. This means that f1 ∈ Hr1(Rn), f2 ∈
Hr2(Rn) and P1(D)f1|V = P2(D)f2|V = 0 for some r1, r2 ∈ R and P1, P2 ∈
P. It follows that f1 +λf2 ∈ Hr(Rn) where r = min{r1, r2} since the spaces
Ht(Rn), t ∈ R, are nested vector spaces. We also have that P1(D)P2(D)(f1+
λf2)|V = 0 since the distributional derivatives commute P1(D)P2(D) =
P2(D)P1(D). This implies that f1 + λf2 ∈ AV , i.e. AV is a linear subspace
of the vector space H−∞(Rn) ⊂ S ′(Rn). �

Remark 3.5. The vector space structure of AV is important since it implies
that the partial data results we have proved in this article are indeed unique-
ness results. Namely, if f1, f2 ∈ E ′(Rn)∩AV (or f1, f2 ∈ C∞(Rn)∩AV ) such
that X0f1 = X0f2 on all lines intersecting V , then f1 − f2 ∈ E ′(Rn) ∩ AV
(or f1−f2 ∈ C∞(Rn)∩AV ) and X0(f1−f2) = 0 on all lines intersecting V .
Theorem 1.4 then implies that f1 − f2 = 0, i.e. the solution to the partial
data problem is unique.

We list some examples of admissible functions. We have that the function
f ∈ H−∞(Rn) belongs to AV , if

• f is polyharmonic in V , i.e. (−∆)kf |V = 0 for some k ∈ N.

• f is polynomial in V .

• f is independent of one of the variables x1, . . . , xn in V .

• f(x) = q(x)eix·ζ in V where q(x) is a suitable polynomial and ζ ∈ Cn
is a generalized frequency. Especially, if f is of the form f(x) = eix·ξ0

in V where ξ0 ∈ Cn is a zero of P ∈ P, then P (D)f |V = 0.

Further, it holds that for convex sets V and a fixed P ∈ P the linear span of
solutions of the form q(x)eix·ζ is dense in the space of all smooth solutions
of P (D)g = 0 in V (see [17, Theorem 7.3.6] and a more general result [18,
Theorem 10.5.1]).

We note that if P (D) is a hypoelliptic operator, then the condition
P (D)f |V = 0 already implies that f is smooth in V (see [18, 28]). Ba-
sic examples of hypoelliptic operators are elliptic operators such as integer
powers of Laplacians ((−∆)k where k ∈ N) and also the non-elliptic heat
operator ∂t − ∆. However, there are non-smooth distributions f |V which
satisfy the condition P (D)f |V = 0 for some P ∈ P and therefore f can have
singularities in V . For example, the wave operator ∂2

t −∆ is not hypoelliptic
and has non-smooth weak solutions.
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4. Proofs of the main theorems

In this section we prove our main theorems. We need a few auxiliary
results. The first one is a unique continuation result for fractional Laplacians
and the second one is the Poincaré lemma for compactly supported vector-
valued distributions.

Lemma 4.1 ([6, Theorem 1.1]). Let n ≥ 1, s ∈ (−n/4,∞) \ Z and u ∈
Ht(Rn) where t ∈ R. If (−∆)su|V = 0 and u|V = 0 for some nonempty
open set V ⊂ Rn, then u = 0. The claim holds also for s ∈ (−n/2,−n/4]\Z
if u ∈ O ′C(Rn).

Lemma 4.2 (Poincaré lemma). Let U ∈ (E ′(Rn))n such that dU = 0. Then
there is φ ∈ E ′(Rn) such that U = dφ.

The proof of lemma 4.2 can be found for example in [19, 26]. The third
lemma is a known result about the zero set of multivariate polynomials.

Lemma 4.3 ([32, Lemma on p.1]). Let Q = Q(x) be a non-zero multivariate
polynomial of order m ∈ N

(27) Q(x) =
∑
|α|≤m

bαx
α =

∑
|α|≤m

bαx
α1
1 · · ·x

αn
n , bα ∈ C,

where α = (α1, . . . , αn) ∈ Nn is a multi-index such that |α| = α1 + . . .+αn.
Then the set ZQ = {x ∈ Rn : Q(x) = 0} has Lebesgue measure zero.

Lemma 4.3 is proved in [32] for real coefficients but the result holds also
for complex coefficients by splitting bα ∈ C to its real and imaginary parts.
We note that the set ZQ is Zariski closed but not the whole space Rn. From
the coarseness of the Zariski topology (i.e. there are relatively few closed
sets) one can already deduce that the set ZQ must be small in topological
sense (see e.g. [10, Chapter 15.2]).

The next lemma shows how the normal operator of the X-ray transform
of vector fields is related to the normal operator of scalar fields (see also [21,
Proof of theorem 1.1]).

Lemma 4.4. Let F ∈ (E ′(Rn))n. Then d(N1F ) = (n − 1)−1N0(dF ) holds
componentwise where N0 acts on the components (dF )ij ∈ E ′(Rn).

Proof. The normal operator has the expression

(28) (N1F )i =

n∑
j=1

2xixj

|x|n+1 ∗ Fj .

Rewrite the kernel as

(29)
2xixj

|x|n+1 =
2

n− 1

(
δij |x|1−n − ∂i(xj |x|1−n)

)
which implies that

(30) (N1F )i =
2

n− 1

(
1

2
N0Fi −

n∑
j=1

xj |x|1−n ∗ ∂iFj
)
.
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Calculating the components of d(N1F ) we obtain

(31) ∂k(N1F )i − ∂i(N1F )k =
1

n− 1
N0(∂kFi − ∂iFk).

This means that d(N1F ) = (n− 1)−1N0(dF ) where N0 acts componentwise
on dF , giving the claim �

Now we are ready to prove our results. We start with the main theorem.

Proof of theorem 1.1. Let f ∈ AV and s ∈ (−n/4,∞) \ Z. This means
that f ∈ Hr(Rn) for some r ∈ R and P (D)f |V = 0 for some constant co-
efficient partial differential operator P (D) of order m ∈ N and nonempty

open set V ⊂ Rn. In particular, we have f ∈ S ′(Rn) such that f̂ = 〈·〉rg
where g ∈ L2(Rn). Using the properties of the Fourier transform we see
that P (D)((−∆)sf) = (−∆)s(P (D)f) because P (D) has constant coeffi-
cients. Since P (D) is a local operator we obtain the conditions P (D)f |V =
(−∆)s(P (D)f)|V = 0. Now P (D) : Hr(Rn)→ Hr−m(Rn) is continuous (see
e.g. [28, Theorem 12.7]) and we have P (D)f ∈ Hr−m(Rn). We can use
lemma 4.1 for P (D)f to obtain that P (D)f = 0 as a tempered distribu-

tion. Taking the Fourier transform this is equivalent to that P (ξ)f̂(ξ) =
P (ξ)〈ξ〉−rg(ξ) = 0 almost everywhere where P (ξ) is a multivariate polyno-
mial of order m ∈ N. Since 〈·〉−r 6= 0 everywhere and P (ξ) 6= 0 almost
everywhere by lemma 4.3, we have that g = 0 almost everywhere. This
implies that f̂ = 0 as a tempered distribution and hence f = 0.

Let then f ∈ O ′C(Rn)∩AV and s ∈ (−n/2,∞) \Z. Using the same argu-
ments as above we obtain that P (D)f |V = (−∆)s(P (D)f)|V = 0 for some
constant coefficient partial differential operator P (D) and nonempty open

set V ⊂ Rn. We know that f ∈ O ′C(Rn) is equivalent to that f̂ ∈ OM (Rn).

Now F(P (D)f)(ξ) = P (ξ)f̂(ξ) where P (ξ) is a multivariate polynomial
of order m ∈ N. It follows from the Leibnitz product rule for multivari-
able functions that F(P (D)f) ∈ OM (Rn) since P (ξ) is polynomial and

the derivatives of f̂ are polynomially growing. This is equivalent to that
P (D)f ∈ O ′C(Rn) and we can use lemma 4.1 to deduce that P (D)f = 0 as
a tempered distribution. Taking the Fourier transform this is equivalent to
that P (ξ)f̂(ξ) = 0 almost everywhere. As a polynomial P (ξ) 6= 0 almost ev-

erywhere and we obtain that f̂ = 0 almost everywhere. But f̂ is continuous
and hence f̂ = 0, implying f = 0. �

The rest of the results are then direct consequences of theorem 1.1.

Proof of theorem 1.3. If f ∈ E ′(Rn) ∩ AV or f ∈ C∞(Rn) ∩ AV , then also

f ∈ O ′C(Rn)∩AV . Since N0 = (−∆)−1/2 up to a constant factor and n ≥ 2
we have that −1/2 ∈ (−n/2,∞) \ Z and we can use theorem 1.1 to obtain
that f = 0. �

Proof of theorem 1.4. The assumption X0f = 0 on all lines intersecting V
implies that N0f |V = 0. Since we also assume that f ∈ E ′(Rn) ∩ AV or
f ∈ C∞(Rn) ∩ AV we obtain f = 0 by theorem 1.3. �
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Proof of theorem 1.7. The assumption X1F = 0 on all lines intersecting V
implies that N1F |V = 0. By lemma 4.4 we have d(N1F ) = N0(dF ) compo-
nentwise up to a constant factor. The locality of the exterior derivative im-
plies that (dF )ij ∈ E ′(Rn) and N0(dF )ij |V = 0. Since (dF )ij ∈ E ′(Rn)∩AV
we can use theorem 1.3 for the components (dF )ij to obtain that dF = 0.
Lemma 4.2 implies that F = dφ for some φ ∈ E ′(Rn). �
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