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UNIQUE CONTINUATION FOR THE MOMENTUM RAY TRANSFORM

JOONAS ILMAVIRTA, PU-ZHAO KOW AND SUMAN KUMAR SAHOO

Abstract. The present article focuses on a unique continuation result for certain weighted
ray transforms, utilizing the unique continuation property (UCP) of the fractional Laplace
operator. Specifically, we demonstrate a conservative property for momentum ray trans-
forms acting on tensors, as well as the antilocality property for both weighted ray and cone
transforms acting on functions.
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1. Introduction

To what extent is a tensor field determined by its line integrals? Depending on the
weighting and other choices in the line integrals, there may or may not be a gauge freedom
or other non-uniqueness. We will focus on the so-called momentum ray transform, and
study its uniqueness with the help of the unique continuation principle or property (UCP).

The space of m-tensor fields in R
n is denoted by Tm ≡ Tm(Rn), while its subspace

of covariant symmetric m-tensor fields on R
n is denoted by Sm ≡ Sm(Rn). In Cartesian

coordinates, an element f can be written as

f(x) = fi1...im(x) dx
i1 · · · dxim,
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where fi1...im(x) is symmetric in all indices i1, . . . , im ∈ {1, . . . , n}. For repeated indices,
Einstein summation convention will be assumed throughout this article.

Let S(Sm) = S(Rn;Sm(Rn)) be the Schwartz class of symmetric m tensor fields in R
n.

We denote S(S0) = S(Rn). The integral transforms in the focus of our study can be defined
on these spaces as follows:

(1) The ray transform If of f ∈ S(Sm) is defined by

If(x, ξ) :=

∞∫

−∞

fi1···im(x+ tξ) ξi1 · · · ξimdt.

(2) The kth momentum ray transform (MRT) Ikf of f ∈ S(Sm) is defined by

Ikf(x, ξ) :=

∞∫

−∞

tk fi1···im(x+ tξ) ξi1 · · · ξimdt for all integers k ≥ 0.

(3) For s ∈ (0, n2 ), the fractional momentum ray transform I2s−1f of f ∈ S(Rn) is
defined by

(
Xsf

)
(x, ξ) :=

(
I2s−1f

)
(x, ξ) ≡

∞∫

0

t2s−1f(x+ tξ) dt.

In the case k = 0 the momentum ray transform reduces to the classical ray transform:
I0 = I. This transform has been studied extensively due to its wide range of potential
applications in various scientific fields; see [PSU23]. MRTs were first introduced by Shara-
futdinov [Sha94] and studied further in the works [KMSS19, KMSS20, MS21]. For functions,
Ikf appears to give the inversion formula of cone transform and conical Radon transform
whereas the latter transform has promising application in Compton cameras; see [KT17].
For tensors, MRTs appear to solve Calderón type inverse problems for polyharmonic oper-
ators; see [BKS21, SS23]. Another motivation to study MRTs are its connection with the
exponential ray transform defined as (Iαexpf)(x, ξ) :=

∫

R
eαtfi1···im(x + tξ) ξi1 · · · ξimdt, for

some real number α. Formally (and truly whenever the series is convergent in a suitable
sense) the exponential ray transform is related to the momentum ray transforms by

Iαexpf =

∞∑

k=0

αk

k!
Ikf.

We now state the main results (not all) of our article. We refer the reader Section 2 for the
definition of Rkf .

Theorem I. Let m ∈ N and an integer 0 ≤ k ≤ m. Suppose that
{

f ∈ L1(Rn;Sm) ∩ L2
loc(R

n;Sm) when 0 ≤ k ≤ n− 1,

f ∈ L2(Rn;Sm) with compact support when n ≤ k ≤ m.
(1.1)

If there exists an nonempty open set U in R
n such that

Rkf |U = 0 for some 0 ≤ k ≤ m.



UNIQUE CONTINUATION FOR THE MOMENTUM RAY TRANSFORM 3

Suppose that there exists x0 ∈ U such that for each 0 ≤ p ≤ k the following assumption
holds:

Npf vanishes at x0 of infinite derivative order (1.2)

then Rkf ≡ 0 in R
n. If we additionally assuming that f has compact support, then f is a

generalized potential field, that is, f = dk+1v for some v ∈ E ′(Rn;Sm−k−1).

Theorem II. Suppose U ⊆ R
n be any non empty open set and n ≥ 2. Suppose that

N0f ∈ H
1
2 (Rn). If f |U = 0 and there exists a positive measure set E in U such that

(
N0f

)
|E = 0, then f ≡ 0 in R

n.

Theorem III. Let n ≥ 2 be an integer, 0 < s ≤ n
4 with s 6= Z and let f ∈ L

2n
n+4s (Rn). If

there exists a non-empty open set U in R
n such that

f = Asf = 0 in U =⇒ f = 0 in R
n,

where (Asf)(x) = c(n,−s)
∫

Sn−1(Xsf)(x, ξ) dS(ξ) with c(n, s) := 22sΓ(n+2s
2

)

πn/2|Γ(−s)| .

The following table contains the list of some existing results in this direction:

Uniqueness results
Transforms Full data UCP Support theorem
Ray transform [Hel99, Sha94] [IM20, IM21, AKS22] [Kri07]
d plane transform [Hel99] [CMR21] [Hel99]
MRT [KMSS19] [AKS22], current article [AM19]
Cone transform [KT17] current article unknown

The ray transform with full data is a classical concept, and we have only given text book
references rather than original articles for it.

The unique continuation result for ray transform can be considered as a partial data
uniqueness result, in which one considers the following question: If a function or a symmetric
tensor field f satisfies If = 0 and f = 0 in some open set U , then can one conclude that
f = 0 (for functions) or f is a potential field (for symmetric tensor fields) in the whole
space?

This question is related to the interior tomography problem or the region of interest
(ROI) tomography problem. The goal of ROI tomography is to reconstruct the function
within an open set (the region of interest) from the line integrals over all lines through
that set. It is well known that from this information one cannot recover the whole function
in the region of interest; see [KQR15, Example 2.1] However, it is possible to recover the
singularities of the function in the ROI because of the fact that ray transform If is an
elliptic Fourier integral operator (FIO) and its normal operator I∗If is an elliptic pseudo-
differential operator. Therefore by pseudo-local property, we have WF(f) = WF(I∗If), see
[Qui06]. This fact serves as a motivation for Lambda tomography [FRS92], which is a local
reconstruction method that uses ROI data to reconstruct singularities.

However, the problem we pose is different: We only use the rays that meet the set V ,
but our goal is to reconstruct the scalar or tensor field outside V , not inside it. We assume
that something about the field is known in V . The simplest choice is f |V = 0, but this
can be relaxed to the gauge invariant assumption Rf |V = 0, where R is the Saint Venant
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operator. The assumption that the integrals over all lines vanish can be relaxed to (Ik)∗Ikf
vanishing in a subset of positive measure of V or vanishing to infinite order at a point of V .
To make sense of (Ik)∗Ikf vanishing to infinite order, we need it to be smooth, and that
follows from ellipticity of the normal operator (Ik)∗Ik as a pseudo-differential operator.

The following are equivalent for f ∈ S(Sm) and 0 ≤ k ≤ m:

(1) Ikf = 0 for all lines
(2) Rkf = 0 (the kth power of the Saint-Venant operator)
(3) f is the (k + 1)st symmetrized covariant derivative of some v ∈ S(Sm−k−1) (with

the convention that tensor fields of order −1 are identically zero)

To prove a similar conclusion for our partial data setting, we aim to pass from partial data
on Ikf to the global conclusion Rkf = 0, from which the conclusion follows. The advantage
of working with Rkf is that it is a differential operator which is local in nature — unlike
the integral operator Ik.

By connecting the normal operator of ray transform with fractional Laplacian, we see
that the UCP for ray transforms is a consequence of UCP (more precisely, the antilocality
property) of fractional Laplacian. UCP (Unique Continuation Property) is a useful tool for
studying inverse problems, where one aims to recover an unknown function from measured
data. UCP ensures that if a solution to a PDE vanishes in a suitable sense, then it must
be identically zero. UCP has been extensively studied for local operators (e.g., Laplace and
wave operators) [Isa07] and more recently for nonlocal operators (e.g., fractional Laplace
equation, and fractional wave equation of peridynamic type) [GSU20, Gho22]. Interestingly,
the proof of UCP for some nonlocal elliptic operators requires the use of UCP for local elliptic
equations, see [GFR19].

The rest of the article is organized as follows. In Section 2, we provide a recap of some
preliminary results, including definitions and notation that we will use in the upcoming
sections. In Section 3, we study more properties of generalized Saint Venant operator, and
a new decomposition theorem of symmetric tensor fields is presented in Section 4. Finally,
we recall our main results and prove them in Section 5. In Appendix A, we provide the
domain of a negative fractional power of a general elliptic operator (see Definition A.3)
analogously to the fractional Laplace operator.

Acknowledgements

J. I. was supported by the Academy of Finland (grants 332890 and 351665). P.-Z. K and
S. K. S were partly supported by the Academy of Finland (Centre of Excellence in Inverse
Modelling and Imaging, grant 312121) and by the European Research Council under Horizon
2020 (ERC CoG 770924).

2. Preliminaries

In order to make the paper self-contained, in this section, we introduce some operators –
especially the momentum ray transforms and Saint-Venant operators – as well as some of
their known properties. We are not going to exhaust all the details here, see e.g. [AKS22,
KMSS19, Sha94] and references therein for more details. Readers who are already familiar
with the subject may proceed to the next section.
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2.1. Momentum ray transform on Schwartz space. For each vectors ξ(1), · · · , ξ(m) ∈
R
n, their tensor product (or juxtaposition) ξ(1) ⊗ · · · ⊗ ξ(m) is defined by

(ξ(1) ⊗ · · · ⊗ ξ(m))i1···im := ξ
(1)
i1

· · · ξ(m)
im

.

If ξ(1) = · · · = ξ(m) = ξ, we simply denote

ξ⊗m := ξ(1) ⊗ · · · ⊗ ξ(m) ∈ Sm and ξ⊗mi1···im := (ξ⊗m)i1···im .

We also denote 〈·, ·〉 : Sm × Sm → R by

〈f, g〉 := fi1···imgi1···im .

Let S(Rn;Sm) be the Schwartz class of symmetric m tensor fields in R
n. Given any non-

negative integer k, we define the mapping Jk : S(Rn;Sm) → C∞(Rn × (Rn \ {0})) by

(Jkf)(x, ξ) :=

∞∫

−∞

tk 〈f(x+ tξ), ξ⊗m〉dt ≡
∞∫

−∞

tk fi1...im(x+ tξ) ξi1 · · · ξim dt

for all (x, ξ) ∈ R
n × (Rn \ {0}). Denote the tangent bundle of the unit sphere by

TSn−1 :=
{

(x, ξ) ∈ R
n × S

n−1 〈x, ξ〉 = 0
}
.

Since each point (x, ξ) ∈ TSn−1 determines a unique line x + tξ with t ∈ R, then it make
sense to denote Ik ≡ Jk|TSn−1 be the restriction of Jk on TSn−1. Let S(TSn−1) be the
space of smooth functions ϕ(x, ξ) on TSn−1 such that all their derivatives decrease rapidly
in the first argument [Sha94, Section 2.1]. It is easily see that

Ik ≡ Jk|TSn−1 : S(Rn;Sm) → S(TSn−1) is bounded. (2.1)

Definition 2.1. For each m ∈ Z≥0 and integer 0 ≤ k ≤ m, we call (2.1) the kth momentum
ray transform of a symmetric m-tensor field.

Remark 2.2 (An equivalent relation). From [KMSS19, (2.6)] we have

(Jqf)(x, ξ) = |ξ|m−2q−1
q
∑

ℓ=0

(−1)q−ℓ
(
q

ℓ

)

|ξ|ℓ〈ξ, x〉q−ℓ(Iℓf)
(

x− 〈x, ξ〉
|ξ|2 ξ,

ξ

|ξ|

)

︸ ︷︷ ︸

∈TSn−1

which implies, for each integer 0 ≤ k ≤ m, that

(I0f, I1f, · · · , Ikf) = (0, 0, · · · , 0) ⇐⇒ (J0f, J1f, · · · , Jkf) = (0, 0, · · · , 0).

2.2. Momentum ray transform on compactly supported tensor field distribu-

tions. It is well-known that the (classical) ray transform I0 is well-defined on compactly
supported tensor field distributions [Sha94]. Similar extension for momentum ray trans-
forms was considered in [BKS21] in order to study the polyharmonic operator inverse prob-
lem. Similar ideas also work for momentum ray transforms [AKS22, Section 2.3], which will
be presented here in order to make the paper self-contained. Let E ′(Rn;Sm) be the com-
pactly supported symmetric m tensor distribution fields in R

n, and we define the bounded
linear operator Ik : E ′(Rn;Sm) → E ′(TSn−1) by

(Ikf, g)TSn−1 =
(

f, (Ik)∗g
)

Rn;Sm
for all f ∈ E ′(Rn;Sm) and g ∈ C∞(TSn−1),
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where the distributional adjoint (Ik)∗ : C∞(TSn−1) → C∞(Rn;Sm) is defined by
(

(Ik)∗g
)

i1···im
(x) :=

∫

Sn−1

〈x, ξ〉kξi1 . . . ξim g(x− 〈x, ξ〉ξ, ξ) dSξ for all x ∈ R
n.

Similarly, we define Jk : E ′(Rn;Sm) → D′(Rn × S
n−1) by

(Jkf, g)Rn×Sn−1 =
(

f, (Jk)∗g
)

Rn;Sm
for all f ∈ E ′(Rn;Sm) and g ∈ C∞

c (Rn × S
n−1),

where the distributional adjoint (Jk)∗ : C∞
c (Rn × S

n−1) → C∞(Rn;Sm) is defined by
(

(Jk)∗g
)

i1···im
(x) :=

∫

Sn−1

∫

R

tkg(x − tξ, ξ)ξi1 · · · ξim dt dSξ for all x ∈ R
n.

2.3. Normal operator of momentum ray transforms. Using (2.1), for each integer
0 ≤ k ≤ m, let us denote Nk = (Ik)∗Ik : S(Rn;Sm) → C∞(Rn;Sm) the normal operator of
the kth momentum ray transform in Definition 2.1. For each f ∈ S(Rn;Sm), we have

(Nkf)i1···im(x)

= 2

k∑

ℓ=0

(
k

ℓ

)

(−1)ℓx
⊗(2k−ℓ)
p1···p2k−ℓ

(
fj1...jm ∗ Ξp1···p2k−ℓi1···imj1...jm

)
(x),

(2.2)

for all x ∈ R
n, where

Ξp1···p2k−ℓi1···imj1...jm(z) :=
z
⊗(2m+2k−ℓ)
p1···p2k−ℓi1···imj1...jm
|z|2m+2k−2ℓ+n−1

for all z ∈ R
n,

see [AKS22, (2.13)], therefore the normal operators extend to the mapping

(N0, · · · , Nm) : E ′(Rn;Sm) → (S ′(Rn;Sm))m+1 (2.3)

as the convolution of a compactly supported distribution and a tempered distribution. Since

|Ξp1···p2k−ℓi1···imj1...jm(z)| ≤
1

|z|n−1−ℓ for all ℓ ∈ Z≥0,

then the convolution with Ξp1···p2k−ℓi1···imj1...jm(z) is the mapping from Lp(Rn) to Lq(Rn)

provided 1
q = 1

p − 1+ℓ
n when 0 ≤ ℓ ≤ n − 2, see (5.6). When ℓ = n − 1, it is trivial to

see that the convolution with Ξp1···p2k−ℓi1···imj1...jm(z) is the mapping from L1(Rn) to itself.
Therefore the normal operators also extend to the mapping

Nk : L1(Rn;Sm) → D′(Rn;Sm) for all integer 0 ≤ k ≤ n− 1. (2.4)

When m = k = 0, (2.2) becomes

(
N0|S0f

)
= 2f ∗ 1

| · |n−1
for all f ∈ E ′(Rn) ∪ S(Rn), (2.5)

and for each integer ℓ ≥ 0 we know that

N0|S0 : W ℓ,p(Rn) →W ℓ,q(Rn) is bounded provided
1

q
=

1

p
− 1

n
,
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see (5.7).

2.4. Some differential operators. We now recall certain differential operators from
[Sha94, Section 2.1]. The symmetrization with respect to a part of indices is formally given
by

σ(i1, · · · , ip)ui1,··· ,im =
1

p!

∑

π∈Πp

uiπ(1)···iπ(p)ip+1···im ,

where Πp is the set of p-permutations. Let D ′(Rn;Sm) be the symmetric m tensor dis-
tribution fields in R

n. The inner derivative or symmetrized derivative is denoted as
d : D ′(Rn;Sm) → D ′(Rn;Sm+1) given by

(df)i1···im+1 = σ(i1 · · · im+1)
∂fi1···im
∂xim+1

≡ 1

(m+ 1)!

∑

π∈Πm+1

∂fiπ(1)···iπ(m)

∂xiπ(m+1)

(2.6)

The divergence δ : D ′(Rn;Sm) → D ′(Rn;Sm−1) is defined by

(δf)i1...im−1 =
∂fi1...im
∂xim

.

The operators d and −δ are formally dual to each other with respect to L2 inner product
in the sense of

(du, v)Rn;Sm+1 = −(u, δv)Rn ;Sm

for all u ∈ C∞
c (Rn;Sm) and v ∈ C∞

c (Rn;Sm+1), see [Sha94, (2.1.8)]. It is also interesting
to mention that δk+1Nkf = 0 and for each integer 0 ≤ r ≤ k that

(

δrNkf
)

(x) =
k!

(k − r)!

∫

Sn−1

〈x, ξ〉k−rξ⊗(m−r)
(

Ikf
)

(x− 〈x, ξ〉ξ, ξ) dSξ

=
k!

(k − r)!

k∑

ℓ=0

(
k

ℓ

) ∫

Sn−1

〈x, ξ〉2k−r−ℓξ⊗(m−r)
(

Jℓf
)

(x, ξ) dSξ ,

(2.7)

for all f ∈ E ′(Rn;Sm)∪S(Rn;Sm), see [AKS22, (2.14)]. Given any m ∈ Z≥0 and an integer
0 ≤ k ≤ m, it is well-known that the momentum ray transforms (in Definition 2.1) satisfy
the following property:

Ik|Sm(dv) = −kIk−1|Sm−1(v) for all v ∈ E ′(Rn;Sm−1) ∪ S(Rn;Sm−1), (2.8)

where d is given in (2.6), see e.g. [KMSS19, Section 2]. By utilizing (2.8), we can easily
show that the similar scaling property also holds for their corresponding normal operators.

Lemma 2.3. Given any m ∈ Z≥0 and integer 0 ≤ k ≤ m, there holds

δNk|Sm(dv) = −k2Nk−1|Sm−1(v) for all v ∈ E ′(Rn;Sm−1) ∪ S(Rn;Sm−1).
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Proof. Choosing f = dv and r = 1 in (2.7), using (2.8) one obtain
(

δNk|Smdv
)

(x) = k

∫

Sn−1

〈x, ξ〉k−1ξ⊗(m−1)
(

Ik|Sm(dv)
)

(x− 〈x, ξ〉ξ, ξ) dSξ

= −k2
∫

Sn−1

〈x, ξ〉k−1ξ⊗(m−1)
(

Ik−1|Sm−1(v)
)

(x− 〈x, ξ〉ξ, ξ) dSξ

= −k2
(

Nk−1|Sm−1(v)
)

(x),

which immediately implies our lemma. �

2.5. Generalized Saint-Venant operator. We now denote Sm1 × Sm2 the set of (m1 +
m2)-tensors symmetric with respect to the group first m1 indices and last m2 indices.
Accordingly, we introduce the generlized Saint-Venent operator as in [AKS22, (2.8)], which
is a generalization of curl on R

n, see Remark 2.6.

Definition 2.4. For m ∈ Z≥0 and integer 0 ≤ k ≤ m, the kth generalized Saint-Venant
operator W k : D ′(Rn;Sm) → D ′(Rn;Sm−k ⊗ Sm) is defined as

(W kf)i1···ikp1···pm−kq1···qm−k

:= σ(p1, · · · , pm−k)σ(q1, · · · , qm−k, i1 . . . ik)×

×
m−k∑

ℓ=0

(−1)ℓ
(
m− k

ℓ

)
∂m−kf i1···ikp1...pm−k−ℓq1···qℓ

∂xpm−k−ℓ+1 · · · ∂xpm−k∂xqℓ+1 · · · ∂xqm−k
.

When k = 0, the 0th generalized Saint-Venant operator W 0 reduces to the (classical)
Saint-Venent operator on Sm [Sha94, (2.8)]. When k = m, we have Wm = I, where I is the
identity operator.

Remark 2.5 (An equivalent definition). For each m ∈ Z≥0 and integer 0 ≤ k ≤ m, we
consider the operator Rk ≡ Rk|Sm : D ′(Rn;Sm) → D ′(Rn;T 2m) given by

(Rkf)i1...ikp1q1...pm−kqm−k
:= α(p1q1) . . . α(pm−kqm−k)

∂m−kf i1...ikp1...pm−k

∂xq1 . . . ∂xqm−k
(2.9)

where the alternation of two indices is defined as:

α(i1i2)ui1i2j1···jp :=
1

2
(ui1i2j1···jp − ui2i1j1···jp).

In particular, one has
(

Rk|Smf
)i1...ik

p1q1...pm−kqm−k

=
(
R0|Sm−kf i1···ik

)

p1q1···pm−kqm−k
, (2.10)

see [AKS22, (2.6)]. For each m ∈ Z≥0 and integer 0 ≤ k ≤ m, one can show that1

(W kf)i1···ikp1···pm−kq1···qm−k

= 2m−kσ(q1 · · · qm−ki1 · · · ik)σ(p1 · · · pm−k)(R
kf)i1···ikp1q1···pm−kqm−k

,

1We again remind readers about the typos in [Sha94, (2.4.6)(2.4.7)], see [AKS22, (2.6)(2.7)] for corrected
statement.
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and

(Rkf)i1···ikp1q1···pm−kqm−k

=
1

m− k + 1

(
m

k

)

α(p1q1) · · ·α(pm−kqm−k)(W
kf)i1···ikp1···pm−kq1···qm−k

,

see [AKS22, Lemma 4.1]. Hence, for each open set U ⊂ R
n and f ∈ D ′(Rn;Sm) there holds

W kf = 0 in U ⇐⇒ Rkf = 0 in U . (2.11)

Based on the above observation, we can slightly abuse the terminology by also referring
(2.9) the kth generalized Saint-Venant operator. In view of the reduction formula (2.10), it
is more convenient to work with Rk rather than W k.

Remark 2.6. By identifying D ′(Rn;S1) ∼= ((D ′(Rn)))n, when m = 1 and k = 0, we see
that

(
R0|S1f

)

p,q
= α(p, q)

∂fp
∂xq

=
1

2

(
∂fp
∂xq

− ∂fq
∂xp

)

≡ 1√
2
(curl (f))p,q (2.12)

for all f ∈ D ′(Rn;S1) ∼= (D ′(Rn))n, see also Remark 3.2 for more details about (2.12).

For u ∈ Sk, we denote by iu : Sm → Sm+k the operator of symmetric multiplication by
u and by ju : Sm+k → Sm the corresponding dual operator, and defined as

(iuv)i1···im+k
:= σ(i1 · · · im+k)ui1···ikvik+1···ik+m

for all v ∈ Sm,

(juw)i1···im+k
:= wi1···im+k

uim+1···im+k for all w ∈ Sm+k,

see [Sha94, (2.1.5)]. Let ek ∈ Sk be the Euclidean metric tensor, given by

eki1···ik =

{

1 if i1 = · · · = ik,

0 otherwise,

and we write i(k) := iek , j(k) := jek . We end this section by recalling [AKS22, Proposi-
tion 4.4], which gives a connection between normal operator of momentum ray transform
and generalized Saint-Venant operator.

Proposition 2.7. [AKS22, Proposition 4.4] Given m ∈ Z≥0 and integer 0 ≤ k ≤ m, we
consider f ∈ E ′(Rn;Sm) ∪ S(Rn;Sm). If N0|S0 be the operator given in (2.5), then there
holds

m!N0|S0

(
(R0|Sm−kf i1···ik)p1q1···pm−kqm−k

)

= σ(i1 . . . ik)

k∑

r=0

(−1)r
(
k

r

)
∂r

∂xi1 · · · ∂xir (R
k|Sm−r (Gm−r))

ir+1···ik
p1q1···pm−kqm−k

,
(2.13)

where Gm−r is a symmetric (m− r)-tensor given by

Gm−r =

⌊m−r
2

⌋
∑

ℓ=0

cℓ,m−ri
ℓ
(2)j

ℓ
(2)

r∑

p=0

(−1)r−p
1

p!

(
r

p

)

jx⊗(r−p)δpNpf,
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with coefficients

cℓ,s =





s−ℓ−1∏

p=0

(n− 1 + 2p)




(−1)ℓs!

2ℓℓ!(s− 2ℓ)!
,

where Np is the normal operator of the kth in momentum ray transform given in (2.2) and
for each α ∈ R the “floor” ⌊α⌋ denotes the largest integer with ≤ α.

Remark 2.8. In particular when m = 1 and k = 0, (2.13) reads

N0|S0

((
R0|S1f

)

ij

)

= (n− 1)
(
R0|S1

(
N0|S1f

))

ij
∀ f ∈ E ′(Rn;S1) ∪ S(Rn;S1). (2.14a)

Plugging (2.12) into (2.14a), we conclude

N0|S0

(

(curl (f))ij

)

= (n− 1)
(
curl

(
N0|S1f

))

ij
∀ f ∈

(
E ′(Rn)

)n ∪ (S(Rn))n. (2.14b)

3. A generalization of the curl-curl identity

We shall prove the following useful property of generalized Saint-Venant operator (Def-
inition 2.4), which is new based on our knowledge. As an application, we also prove a
smoothing property of generalized Saint-Venant operator in Lemma 3.3.

Proposition 3.1. Given any integer m ≥ 0, the identity

∂ℓ

∂xj1 · · · ∂xjℓ
(
R0|Smf

)

i1j1···iℓjℓiℓ+1jℓ+1···imjm

=
1

2ℓ
σ(i1 · · · iℓ)

ℓ∑

p=0

(
ℓ

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
ℓ−p (R0|Sm−ℓ

(
(δpf)ip+1···iℓ))

iℓ+1jℓ+1···imjm

(3.1)
holds true for all f ∈ D ′(Rn;Sm) and integer 0 ≤ ℓ ≤ m.

Remark 3.2. When m = ℓ = 1, (3.6) reduces to the following well-known curl-curl identity

∆f i − ∂

∂xi
(δf) = 2

∂

∂xj
(R0|S1f)i,j =

∂

∂xj

(
∂fi
∂xj

− ∂fj
∂xi

)

= − (curl⊺ curl (f))i , (3.2)

where (curl⊺ (g))i :=
1√
2
∂
∂xj

(gi,j−gj,i) is the formal transpose of curl. In 3-dimensional case,

one even can reduce (3.2) to

∆f −∇(∇ · f) = −∇× (∇× f) for all f ∈
(
D

′(R3)
)3
,

where ∇× · : D ′(R3) → D ′(R3) is the usual curl on R
3.

Proof of Proposition 3.1. The identity (3.1) is trivial when ℓ = 0, we only need to prove
(3.1) for ℓ ≥ 1.

Step 1: Basic case. We first prove (3.1) when ℓ = 1. Given any integer m ≥ 1, by ap-
plying the divergence operator δ on the classical Saint-Venant operator R0 : D ′(Rn;Sm) →
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D ′(Rn;T 2m), we obtain

2
∂

∂xj1

(
R0|Smf

)

i1j1i2j2···imjm

= 2
∂

∂xj1

(

α(i1j1) · · ·α(imjm)
∂m

∂xj1 · · · ∂xjm fi1i2···im
)

= ∆α(i2j2) · · ·α(imjm)
∂m−1

∂xj2 · · · ∂xjm f
i1
i2···im

− ∂

∂xi1
α(i2j2) · · ·α(imjm)

∂m−1

∂xj2 · · · ∂xjm (δf)i2···im

=

(

∆R0|Sm−1f i1 − ∂

∂xi1
R0|Sm−1(δf)

)

i2j2···imjm

(3.3)

for all f ∈ D ′(Rn;Sm).

Step 2: Induction on ℓ. Assume that there exists an integer ℓ ≥ 1 such that (3.1) holds
true for all m ≥ ℓ. Taking the derivative ∂

∂xjℓ+1
on the induction hypothesis gives

2ℓ
∂ℓ+1

∂xj1 · · · ∂xjℓ+1

(
R0|Smf

)

i1j1···iℓ+1jℓ+1iℓ+2jℓ+2···imjm

= σ(i1 · · · iℓ+1)2
ℓ ∂ℓ+1

∂xj1 · · · ∂xjℓ+1

(
R0|Smf

)

i1j1···iℓ+1jℓ+1iℓ+2jℓ+2···imjm

= σ(i1 · · · iℓ+1)
ℓ∑

p=0

(
ℓ

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
ℓ−p ∂

∂xjℓ+1

(
R0|Sm−ℓ

(
(δpf)ip+1···iℓ))

iℓ+1jℓ+1···imjm ,

(3.4)
here we utilize the fact that σ(i1 · · · iℓ+1)σ(i1 · · · iℓ) = σ(i1 · · · iℓ+1). Similar to (3.3), we
have

(δp+1f)
ip+1···iℓ
iℓ+2···im = (δp+1f)

ip+2···iℓ+1

iℓ+2···im (because δp+1f ∈ C∞(Rn;Sm−(p+1))),

∂

∂xiℓ+1
R0|Sm−(ℓ+1)

(
δp+1f

)ip+2···iℓ+1 =
∂

∂xip+1
R0|Sm−(ℓ+1)

(
δp+1f

)ip+2···iℓ+1 .

This implies

2
∂

∂xjℓ+1

(
R0|Sm−ℓ

(
(δpf)ip+1···iℓ))

iℓ+1jℓ+1···imjm

= 2
∂

∂xjℓ+1
α(iℓ+1jℓ+1) · · ·α(imjm)

∂m−ℓ

∂xjℓ+1 · · · ∂xjm (δpf)
ip+1···iℓ
iℓ+1···im

= ∆α(iℓ+2jℓ+2) · · ·α(imjm)
∂m−(ℓ+1)

∂xjℓ+2 · · · ∂xjm (δpf)
ip+1···iℓiℓ+1

iℓ+2···im

− ∂

∂xiℓ+1
α(iℓ+2jℓ+2) · · ·α(imjm)

∂m−(ℓ+1)

∂xjℓ+2 · · · ∂xjm (δp+1f)
ip+2···iℓ+1

iℓ+2···im

=

(

∆R0|Sm−(ℓ+1) (δpf)
ip+1···iℓ+1 − ∂

∂xip+1
R0|Sm−(ℓ+1)

(
δp+1f

)ip+2···iℓ+1

)

iℓ+2jℓ+2···imjm
.

(3.5)
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We now combine (3.4) and (3.5) to obtain

2ℓ+1 ∂ℓ+1

∂xj1 · · · ∂xjℓ+1

(
R0|Smf

)

i1j1···iℓ+1jℓ+1iℓ+2jℓ+2···imjm

= σ(i1 · · · iℓ+1)
ℓ∑

p=0

(
ℓ

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
(ℓ+1)−p

(

R0|Sm−(ℓ+1) (δpf)
ip+1···iℓ+1

)

iℓ+2jℓ+2···imjm

− σ(i1 · · · iℓ+1)
ℓ∑

p=0

(
ℓ

p

)

(−1)p
∂p+1

∂xi1 · · · ∂xip+1
∆ℓ−p

(

R0|Sm−(ℓ+1)

(
δp+1f

)ip+2···iℓ+1
)

iℓ+2jℓ+2···imjm

= σ(i1 · · · iℓ+1)

ℓ∑

p=0

(
ℓ

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
(ℓ+1)−p

(

R0|Sm−(ℓ+1) (δpf)
ip+1···iℓ+1

)

iℓ+2jℓ+2···imjm

+ σ(i1 · · · iℓ+1)

ℓ+1∑

p=1

(
ℓ

p− 1

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
(ℓ+1)−p

(

R0|Sm−(ℓ+1) (δpf)
ip+1···iℓ+1

)

iℓ+2jℓ+2···imjm

= σ(i1 · · · iℓ+1)

ℓ+1∑

p=0

(
ℓ+ 1

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
(ℓ+1)−p

(

R0|Sm−(ℓ+1) (δpf)
ip+1···iℓ+1

)

iℓ+2jℓ+2···imjm
.

This finishes the induction step and completes the proof. �

When ℓ = m, (3.1) in Proposition 3.1 gives

∂m

∂xj1 · · · ∂xjm
(
R0|Smf

)

i1j1···imjm

=
1

2m
σ(i1 · · · im)

m∑

p=0

(
m

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
m−p ((δpf)ip+1···im) .

(3.6)

As an application of (3.6), we now able to prove the following smoothing property of gener-
alized Saint-Venant operator (Definition 2.4), which is also true by replacing Rk with W k

due to (2.11).

Lemma 3.3. Given m ∈ Z≥0, let U be an open set in R
n and g ∈ D ′(Rn;Sm). If there

exists an integer 0 ≤ k ≤ m such that

Rkg = 0 and δk+1g = 0 in U , (3.7)

then g ∈ C∞(U ;Sm). In addition when g ∈ E ′(Rn;Sm) and (3.7) holds for U = R
n, then

we conclude that g ≡ 0 in R
n.
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Proof. From (2.9), we have

(Rk−1|Smf)
i1...ik−1
p1q1...pm−k+1qm−k+1

= α(pm−k+1qm−k+1)
∂

∂xqm−k+1

(

α(p1q1) . . . α(pm−kqm−k)
∂m−kf

i1...ik−1
p1...pm−k+1

∂xq1 . . . ∂xqm−k

)

= α(pm−k+1qm−k+1)
∂

∂xqm−k+1

(

α(p1q1) . . . α(pm−kqm−k)
∂m−kf

i1...ik−1pm−k+1
p1...pm−k

∂xq1 . . . ∂xqm−k

)

= α(pm−k+1qm−k+1)
∂

∂xqm−k+1
(Rk|Smf)

i1···ikpm−k+1
p1q1···pm−kqm−k

for all 1 ≤ k ≤ m and f ∈ D ′(Rn;Sm). Therefore the first assumption in (3.7) and (2.10)
implies

(
R0|Sm−kgi1···ik

)

p1q1···pm−kqm−k
= 0 in U for all 0 ≤ k ≤ k,

therefore we have
(

R0|Sm−k(δkg)
)

p1q1···pm−kqm−k

= 0 in U for all 0 ≤ k ≤ k. (3.8)

Choosing f = δkg in (3.6), from (3.8) and second assumption in (3.7), we see that

0 = 2m
∂m

∂xj1 · · · ∂xjm
(

R0|Sm−k(δkg)
)

i1j1···imjm

= σ(i1 · · · im)
k−k∑

p=0

(
m

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
m−p

(

(δp+kg)ip+1···im
)

in U .

(3.9)

By choosing k = k in (3.9), one see that ∆m
(
(δkg)i1···im

)
= 0 in U . Therefore, by local

elliptic regularity, one know that

δkg ∈ C∞(U ;Sm−k). (3.10a)

In addition, when g ∈ E ′(Rn;Sm) and U = R
n, we know that

δkg ≡ 0 in R
n. (3.10b)

On the other hand, for each 0 ≤ k < k, we can write (3.9) as

∆m
(

(δkg)
)i1···im

= σ(i1 · · · im)∆m
(

(δkg)
)i1···im

= −σ(i1 · · · im)
k−k∑

p=1

(
m

p

)

(−1)p
∂p

∂xi1 · · · ∂xip ∆
m−p

(

(δp+kg)ip+1···im
)

= σ(i1 · · · im)
k−k−1∑

p=0

(
m

p+ 1

)

(−1)p
∂p+1

∂xi1 · · · ∂xip+1
∆m−p−1

(

(δp+k+1g)ip+2···im
)

in U . Therefore, for each 0 ≤ k < k we have the implication

δk+1g ∈ C∞(U ;Sm−k−1) implies δkg ∈ C∞(U ;Sm−k). (3.11a)
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In addition, when g ∈ E ′(Rn;Sm) and U = R
n, for each 0 ≤ k < k we have the implication

δk+1g ≡ 0 in R
n implies δkg ≡ 0 in R

n. (3.11b)

Combining (3.10a) and (3.11a) for the general case, and combining (3.10b) and (3.11b) for
the case when g ∈ E ′(Rn;Sm) and U = R

n, we conclude our result. �

4. A solenoidal decomposition theorem

The main theme of this section is to prove a generalized solenoidal potential decomposi-
tion theorem, which is also new according to our best knowledge.

Proposition 4.1. Let Ω be a bounded smooth domain in R
n. For each f ∈ Hα(Ω;Sm) with

α ∈ Z≥0, there exists a unique decomposition

f = f̃ + dkv in Ω (4.1)

with f̃ ∈ Hα(Ω;Sm) and v ∈ Hα+k(Ω;Sm−k) ∩Hk
0 (Ω;S

m−k).

We shall borrow some ideas from [SS23, Lemma 7.1] (see also [DS11, Theorem 1.5] and
[Sha94, Theorem 3.3.2]) to proof Proposition 4.1. Formally acting δk on (4.1), one reach
the equation δkf = δkdkv. This suggests us to prove the following lemma.

Lemma 4.2. Let Ω be a bounded smooth domain in R
n (n ≥ 2), and given k ∈ N and m ∈ N.

Given any h ∈ Hℓ(Ω;Sm) with integer ℓ ≥ −k, there exists a unique w ∈ H2k+ℓ(Ω;Sm) ∩
Hk

0 (Ω;S
m) such that

(−1)kδkdkw = h in Ω. (4.2)

Proof. Since the principal symbol of δk (resp. dk) is ikjξ⊗k (resp. ikiξ⊗k), then the principal

symbol of (−1)kδkdk is jξ⊗k iξ⊗k . By using [Sha94, Lemma 3.3.3], one have

jξiξ =
1

m+ 1
|ξ|2I+ m

m+ 1
iξjξ > 0 in Sm,

where I is the identity operator. Since jξ⊗(ℓ+1)iξ⊗(ℓ+1) = jξ(jξ⊗ℓiξ⊗ℓ)iξ for all ℓ ∈ N, then we

know that jξ⊗k iξ⊗k > 0 in Sm. Therefore from [Tay11, Exercises 5.11.3 and 5.11.4], we know
that the mapping

(−1)kδkdk : H2k+ℓ(Ω) ∩Hk
0 (Ω) → Hℓ(Ω) is Fredholm of index zero.

In view of Fredholm theory, it remains to show the solution of (4.2) is unique. In particular,
if w ∈ Hk

0 (Ω;S
m) satisfies δkdkw = 0, integration by parts yields

〈δkdkw,w〉 = 〈dkw,dkw〉 = 0,

which implies dkw = 0. Finally, repeating using [DS11, Theorem 1.3] as in the proof of
[SS23, Lemma 7.1], we conclude our lemma. �

We are now ready to prove the main result of this section.

Proof of Proposition 4.1. By choosing h = (−1)kδkf ∈ Hα−k(Ω;Sm−k) in Lemma 4.2, there
exists a unique v ∈ Hα+k(Ω;Sm−k) ∩Hk

0 (Ω;S
m−k) such that

δkdkv = δkf.
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Clearly, if we define f̃ := f − dkv, then we have δk f̃ = 0. The uniqueness of the decompo-
sition also easily follows from the uniqueness of solution in Lemma 4.2. �

5. Main results

5.1. Unique continuation property for momentum ray transform on tensors. We
say that a tensor g ∈ C∞(Rn;Sm) vanishes at x0 of infinite derivative order if

∂α

∂xα
gi1···im

∣
∣
∣
∣
x=x0

= 0 for all multi-index α.

In this section, we generalize [AKS22, Theorem 2.4] in the following theorem.

Theorem I. Let m ∈ N and an integer 0 ≤ k ≤ m. Suppose that
{

f ∈ L1(Rn;Sm) ∩ L2
loc(R

n;Sm) when 0 ≤ k ≤ n− 1,

f ∈ L2(Rn;Sm) with compact support when n ≤ k ≤ m.
(1.1)

If there exists an nonempty open set U in R
n such that

Rkf |U = 0 for some 0 ≤ k ≤ m.

Suppose that there exists x0 ∈ U such that for each 0 ≤ p ≤ k the following assumption
holds:

Npf vanishes at x0 of infinite derivative order (1.2)

then Rkf ≡ 0 in R
n. If we additionally assuming that f has compact support, then f is a

generalized potential field, that is, f = dk+1v for some v ∈ E ′(Rn;Sm−k−1).

In particular the assumption (1.2) makes sense by the following lemma.

Lemma 5.1. Let m ∈ N and an integer 0 ≤ k ≤ m. Suppose that f satisfies (1.1). If
there exists an open set U in R

n such that Rkf = 0 in U , then Npf is smooth in U for all
0 ≤ p ≤ k.

Proof. Fix x0 ∈ U , and let B be a ball in U containing x0. Using Proposition 4.1 (with
α = 0), one can decompose f ∈ L2(B) in B as

f = f̃ + dk+1v in B

where f̃ ∈ L2(B;Sm) satisfying δk+1f̃ = 0 in B and v ∈ Hk+1
0 (B;Sm−k−1). Note that the

zero extension vχB of v is in Hk+1(Rn;Sm−k−1) and satisfies

f = f̃ + dk+1(vχB) in R
n, (5.1)

by extending f̃ = f outside B. By using [Sha94, Theorem 2.17.2] (with F = dk+1(vχB) ∈
E ′(Rn;Sm)) and the equivalence in Remark 2.5, we have Rk(dk+1(vχB)) = 0. Therefore,
acting Rk on (5.1) one see that

Rkf = Rkf̃ in R
n,

therefore we conclude that Rkf̃ |B = 0. Since δk+1f̃ = 0 in B, Lemma 3.3 guarantees that f̃
is smooth in B. Since (1.1), we know that Npf is well-defined by (2.4) (when 0 ≤ k ≤ n−2)



UNIQUE CONTINUATION FOR THE MOMENTUM RAY TRANSFORM 16

and (2.3) (when n − 1 ≤ k ≤ m). By using (2.8), for each 0 ≤ p ≤ k, acting Np on (5.1)
one see that

Npf = Npf̃ in R
n,

which implies that Npf is smooth in B, and hence smooth near x0. By arbitrariness of
x0 ∈ U , we conclude our lemma. �

With Proposition 2.7 and a unique continuation principal of ray transform of scalar
functions in [IM20, Theorem 1.1] at hand, we now able to prove Theorem I.

Proof of Theorem I. Since Npf vanishes at x0 of infinite derivative order, by using Propo-
sition 2.7 we know that N0|S0

(
(R0|Sm−kf i1...ik)p1q1...pm−kqm−k

)
vanishes at x0 of infinite

derivative order as well. Since R0|Sm−k(f i1···ik) = Rk|Smf = 0 in U , using [IM20, The-
orem 1.1] and the equivalence (2.11) we reach Rkf = W kf = 0 in R

n. Then our result
follows from [Sha94, Theorem 2.17.2]. �

Remark 5.2. Following the ideas of [IM22], it is possible to improve the Theorem I by
replacing the assumption Rkf = 0 in U with P (D)Rkf = 0 in U , where P (D) is a constant
coefficient differential operator.

5.2. Measurable unique continuation property of momentum ray transform. We
first recall the following unique continuation property from positive measure set (MUCP)
for fractional Laplace operator from [GRSU20] (or [GFR19]).

Lemma 5.3. [GRSU20, Proposition 5.1]. Let n ≥ 1 and Ω be an open set in R
n. Let

q ∈ L∞(Ω) and assume that u ∈ Hs(Rn)) with s ∈ [14 , 1) satisfies

((−∆)s + q)u = 0 in Ω.

If there exists a measurable set E ⊂ Ω with positive measure such that u = 0 in E, then
u ≡ 0 in R

n.

Remark 5.4. See also [GFR19, Theorem 4] for more general results. We also refer to
Lemma 5.10 in the next section for antilocality property for fractional elliptic operators,
which implies the unique continuation property from nonempty open sets.

By utilizing the above lemma, we can prove some MUCP results for ray transforms.

Theorem II. Suppose U ⊆ R
n be any non empty open set and n ≥ 2. Suppose that

N0f ∈ H
1
2 (Rn). If f |U = 0 and there exists a positive measure set E in U such that

(
N0f

)
|E = 0, then f ≡ 0 in R

n.

Proof of Theorem II. It is well-known that (see e.g. [Ilm21, Exercise 12.10]) there exists a
constant cn 6= 0 such that

(−∆)
1
2N0f = cnf in R

n. (5.2)

Now f |U = 0 entails that
(
(−∆)1/2

(
N0f

))
|U = 0. Since

(
N0f

)∣
∣
E

= 0, by applying

Lemma 5.3 (with s = 1
2 , u = N0f and q = 0), this implies that N0f = 0 in R

n, and our
result follows from (5.2). �

By using (2.14b), we also can obtain an analogue for vector fields.
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Theorem 5.5. Suppose U ⊆ R
n be any non empty open set and n ≥ 2. Suppose that

curl (N0|S1f) ∈ H
1
2 (Rn) (see Section 2.2). If (curl (f)) |U = 0 and there exists a positive

measure set E in U such that curl (N0|S1f)
∣
∣
E
= 0, then curl (f) ≡ 0 in R

n.

Remark 5.6. We now consider the case when n = 2, 3. Let U be an open set in R
n which

is star-shaped with respect to some x0 ∈ U . If f ∈ (C1(U))n and curl (f) = 0 in U , then it
is well-known that there exists a potential p ∈ C2(U) such that f = ∇p in U , which is an
consequence of Poincaré lemma for de Rham cohomology groups. For any dimension n ≥ 2,
one can use [Sha94, Theorem 2.17.2] to conclude the same result.

Proof of Theorem 5.5. Combining (2.14b) and (5.2), one see that there exists a constant
c′n 6= 0 such that

(−∆)
1
2
(
curl (N0|S1f)

)
= c′ncurl (f) in R

n. (5.3)

Now curl (f)|U = 0 entails that (−∆)
1
2

(
curl (N0|S1f)

)
∣
∣
∣
U
= 0. Since curl (N0|S1f)

∣
∣
E
= 0,

by applying Lemma 5.3 (with s = 1
2 , u = curl (N0|S1f) and q = 0), this implies that

curl (N0|S1f) = 0 in R
n. Combining this with (5.3), we conclude our theorem. �

5.3. Generalization of momentum ray transform: Fractional momentum ray

transform. The main theme of this section is to generalize the momentum ray trans-
form to a more general weighted ray transform, and explain the connection with fractional
elliptic operators.

Let n ≥ 2 be an integer. For each real number 0 < s < n
2 , we consider the fractional

momentum ray transform Xs : S(Rn) → C∞(Rn × S
n−1) defined by

(
Xsf

)
(x, ξ) :=

(
I2s−1f

)
(x, ξ) ≡

∞∫

0

τ2s−1f(x+ τξ) dτ for all f ∈ S(Rn) (5.4)

and for all (x, ξ) ∈ R
n× S

n−1. Rather than the normal operator N2s−1, here we alternative
consider the average As : S(Rn) → C∞(Rn) over the sphere S

n−1 is defined by

(
Asf

)
(x) := c(n,−s)

∫

Sn−1

(
Xsf

)
(x, ξ) dSξ,

where c(n, s) :=
22sΓ(n+2s

2
)

πn/2|Γ(−s)| . We compute that

(Asf)(x) = c(n,−s)
∫

Sn−1

∞∫

0

τ2s−1f(x+ τξ) dτ dSξ

= c(n,−s)
∫

Sn−1

∞∫

0

τ2s−nf(x+ τξ)
(
τn−1dτ dSξ

)

= c(n,−s)
∫

Rn

|y|2s−nf(x+ y) dy,
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In other words, we observe that As : S(Rn) → C∞(Rn) is simply the Riesz potential, and
in particular from [Sti19, Theorem 5] for each f ∈ S(Rn) we have

(−∆)−sf(x) =
1

Γ(s)

∞∫

0

et∆f(x)
dt

t1−s
= (Asf)(x) for all x ∈ R

n, (5.5)

where (−∆)−s is the negative power of the Laplacian and {et∆}t≥0 is the classical heat
diffusion semigroup, see also [Kwa17, Definition 2.3]. This corresponds to the numerical
identity

λ−s =
1

Γ(s)

∞∫

0

e−tλ
dt

t1−s
for all λ > 0,

see e.g. [Kwa17, Section 2.7]. For each p ∈ [1, n2s), by utilizing weak Young’s inequality, one
can show that

As : L
p(Rn) → Lq(Rn) is bounded provided

1

q
=

1

p
− 2s

n
, (5.6)

see also e.g. [Kwa17, Section 2.7]. Using convolution theorem we observe that ∂α(Asf) =
As(∂

αf), then in particular

As : W
m,p(Rn) → Wm,q(Rn) is bounded provided

1

q
=

1

p
− 2s

n
, (5.7)

for all non-negative integer m. We are interested in the following particular case:

Lemma 5.7. Let n ≥ 2 be an integer and let 0 < s ≤ n
4 , then for each non-negative integer

m we know that

As :W
m, 2n

n+4s (Rn) →Wm,2(Rn) ≡ Hm(Rn) is bounded,

and (−∆)sAsf = f for all f ∈ Wm, 2n
n+4s (Rn). Here, (−∆)s is the usual Fourier fractional

Laplacian2.

Remark 5.8 (Critical case). When s = n
2 , we define the weighted ray transform Xn

2
:

S(Rn) → C∞(Rn × S
n−1) by

(
Xn

2
f
)
(x, ξ) :=

∫ ∞

0
(−2 log τ − γEM)f(x+ τξ) dτ for all (x, ξ) ∈ R

n × S
n−1,

where the Euler-Mascheroni constant γEM is given by γEM := −
∫∞
0 e−t log t dt ≈ 0.577215.

The the average operator An
2
: S(Rn) → C∞(Rn) is then given by

(
An

2
f
)
(x) :=

1

Γ(n2 )(4π)
n
2

∫

Sn−1

(
Xn

2
f
)
(x, ξ) dSξ.

2See also e.g. [Sti19, Definition 1] for definition of fractional Laplacian in some suitable distribution sense



UNIQUE CONTINUATION FOR THE MOMENTUM RAY TRANSFORM 19

We compute that

(An
2
f)(x) =

1

Γ(n2 )(4π)
n
2

∫

Sn−1

∞∫

0

(−2 log τ − γEM)f(x+ τξ) dτ dSξ

=
1

Γ(n2 )(4π)
n
2

∫

Sn−1

∞∫

0

(−2 log τ − γEM)f(x+ τξ)
(
τn−1dτ dSξ

)

=
1

Γ(n2 )(4π)
n
2

∫

Rn

(−2 log |y| − γEM)f(x+ y) dy.

Since |ξ|−n is not a tempered distribution, then it is interesting to mention that [Sti19,
Theorem 5] showed that

((−∆)−
n
2 f)(x) = (An

2
f)(x) for all x ∈ R

n

for all f ∈ S(Rn) with
∫

Rn

f(x) dx = 0.

For 0 < s < n
2 , we now express the weighted ray transform (5.4) in terms of (Gauss-

Weierstrass) heat kernel

kt(x, y) :=
1

(4πt)
n
2

e−
|x−y|2

4t .

It is know that

(et∆f)(x) =

∫

Rn

kt(x, y)f(y) dy for all x ∈ R
n

and (et∆f)∧(x) = e−t|ξ|
2
f̂(ξ) for all f ∈ S(Rn). In addition, from [Kwa17, Section 2.7] we

have

1

Γ(s)

∞∫

0

kt(x, y)
dt

t1−s
= c(n,−s)|x− y|2s−n.

Accordingly, we observe that

|x− y|2s−1 =
1

Γ(s)c(n,−s) |x− y|n−1

∞∫

0

kt(x, y)
dt

t1−s
for all x 6= y ∈ R

n.

Therefore the X-ray transform (5.4) and the corresponding averaging operator can be
rephrase as

(Xsf)(x, ξ) =
1

Γ(s)c(n,−s)

∞∫

0

τn−1

( ∞∫

0

kt(x, x+ τξ)
dt

t1−s

)

f(x+ τξ) dτ

(
(−∆)−sf

)
(x) ≡ (Asf)(x) =

1

Γ(s)

∫

Rn

( ∞∫

0

kt(x, y)
dt

t1−s

)

f(y) dy

(5.8)
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for all f ∈ S(Rn). Based on the above observation, it is possible to definine negative power
of elliptic operators with some suitable domain, see Appendix A for more details.

Remark 5.9. We have defined fractional MRT in (5.4) by taking integration over half
lines. However one can define fractional MRT by taking integration over whole lines in the
following way:

Jsf(x, ξ) :=

∫

R

|t|s f(x+ tξ) dt for f ∈ S(Rn) and −1 < s < 1.

Note that, the weight function we have considered here is not smooth at the origin. But
after taking the average over S

n−1 we see that As =
∫

Sn−1 J
s(x, ξ) dS(ξ) is same as A2s−1

upto a constant. Using this we can study the UCP of As as well as J
s.

5.4. Antilocality property of the weighted ray transform. Using [GFR19, Propo-
sition 1.9] (which is valid for some class of general elliptic operators) and the smoothing
argument as in the proof of [GSU20, Theorem 1.2], we have the following lemma.

Lemma 5.10. Let n ≥ 1 be an integer, s > 0 with s /∈ Z. Let u ∈ Hr(Rn) for some r ∈ R.
If

u = (−∆)su = 0 in some open set in R
n,

then u ≡ 0 in R
n.

Based on Lemma 5.7, we can obtain the antilocality property of the weighted ray trans-
form As using the antilocality property of the fractional Laplacian.

Theorem III. Let n ≥ 2 be an integer, 0 < s ≤ n
4 with s 6= Z and let f ∈ L

2n
n+4s (Rn). If

there exists a non-empty open set U in R
n such that

f = Asf = 0 in U =⇒ f = 0 in R
n,

where (Asf)(x) = c(n,−s)
∫

Sn−1(Xsf)(x, ξ) dS(ξ) with c(n, s) :=
22sΓ(n+2s

2
)

πn/2|Γ(−s)| .

Remark 5.11. If
(
Xsf

)
(x, ξ) = 0 for all x ∈ U and ξ ∈ S

n−1, then Asf = 0 in U .

Proof of Theorem III. Using Lemma 5.7, we know that

g := Asf ∈ L2(Rn), g = (−∆)sg = 0 in U .

From Lemma 5.10 we know that g ≡ 0 in R
n. Consequently, again using Lemma 5.7 we

conclude f ≡ (−∆)sg ≡ 0 in R
n. �

We also have the following interesting observation.

Lemma 5.12 (A support theorem for As). Let n ≥ 2 be an integer, 0 < s < 1 and
let f ∈ W 1,p(Rn) for some max{1, 2n

n+4s} ≤ p < n
2s . If there exists a nonempty bounded

Lipschitz domain Ω such that

Asf = 0 in R
n \ Ω, f = 0 in Ω,

then f ≡ 0 in R
n.
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Proof. Using (5.7), we know that g := Asf ∈W 1,p(Rn) for some p ≥ 2. Since g has compact
support and 0 < s < 1, then g ∈ H1(Rn) ⊂ Hs(Rn). From (5.5) we have

(−∆)sg = 0 in Ω, g = 0 in R
n \Ω.

Since 0 is not an eigenvalue of (−∆)s (a consequence of [LL19, Proposition 3.3] or [RO16,
Corollary 5.2]), then we know that g ≡ 0 in R

n. Consequently, again using Lemma 5.7 we
conclude f ≡ (−∆)sg ≡ 0 in R

n. �

5.5. Antilocality property of the cone transform. This weighted ray transform is
related to the cone transform. Cone transform appears in different imaging approaches,
most notably in the modeling of data provided by the so-called Compton camera, which has
unique applications in domains such as medical and industrial imaging, homeland security,
and gamma ray astronomy, see [KT17]. Let C(u, β, ψ) be the cone with vertex u ∈ R

n,
central axis β ∈ S

n−1 and opening angle ψ ∈ (0, π), that is,

C(u, β, ψ) :=
{
x ∈ R

n (x− u) · β = |x− u| cosψ
}
.

Following [KT17], we next introduce the weighted cone transform.

Definition 5.13. For each −1 < k < n−1 and f ∈ S(Rn), the k-th weighted cone transform
is defined as:

(Ckf)(u, β, ψ) =
∫

C(u,β,ψ)

f(x) |x− u|k−n+2 dSx,

where dS is the surface measure on the cone C(u, β, ψ).

It is worth-mentioning that the cone transform is related to the momentum ray transform
Ik ≡ X k+1

2
, precisely,

π∫

0

(Ckf)(u, β, ψ)h(cos(ψ)) dψ =

∫

Sn−1

(Ikf)(u, σ)h(σ · β) dσ for all f ∈ S(Rn) (5.9)

for all distribution h ∈ D′(R1) which are regular near t = ±1, see [KT17, (19)]. By writing
s = k+1

2 ∈ (0, n2 ) and choosing h ≡ c(n,−s) in (5.9) yields

c(n,−s)
π∫

0

(C2s−1f)(u, β, ψ) dψ = c(n,−s)
∫

Sn−1

(Xsf)(u, σ) dσ = (Asf)(u) for all u ∈ R
n

for all f ∈ S(Rn). Therefore, as a corollary of Theorem III, we immediately obtain the
antilocality property for cone transform.

Corollary 5.14. Let n ≥ 2 be an integer, 0 < s ≤ n
4 with s 6= Z and let f ∈ L

2n
n+4s (Rn).

Suppose that there exists β ∈ S
n−1 and a non-empty open set U in R

n such that f = 0 in
U and

(C2s−1f)(u, β, ψ) = 0 for all (u, ψ) ∈ U × (0, π),

then f ≡ 0 in R
n.
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Appendix A. Negative power of elliptic operator

The main theme of this appendix is to explain the connection between some weighted
x-ray transform with negative power of some class of elliptic operators on some natural
domain. Let A(x) = (aij(x))

n
i,j=1 ∈ (C∞(Rn))n×n such that aij = aji for all i, j = 1, · · · , n.

Suppose that A satisfies the following ellipticity condition: there exists a constant 0 < c < 1
such that

c|ξ|2 ≤ ξ · A(x)ξ ≤ c−1|ξ|2 for all x ∈ R
n. (A.1)

It is known that the operator −∇ · A∇ with domain H2(Rn) is the maximal extension
such that it is self-adjoint3 and densly defined in L2(Rn), see [Gri09, Theorem 4.6]. Using
the spectral theorem for self-adjoint operator in a real Hilbert space as in [Gri09, Appen-
dix A.5.4], there exists a unique spectral resolution (also known as resolution of identity)
{Eλ} in L2(Rn) corresponding to −∇ · A∇ such that

(−∇ ·A∇f, g)L2(Rn) =

∫ ∞

0
λd(Eλf, g)L2(Rn)

for all f ∈ H2(Rn) and g ∈ L2(Rn). The detailed properties of spectral resolution can be
found in [Gri09, Appendix A.5.3], here we only state some of them. Let λ 7→ ϕ(λ) be a
Borel function on R. By utilizing Riesz representation theorem (see also [Gri09, (A.38)]),
one can define the self-adjoint operator ϕ(−∇ ·A∇) by

(ϕ(−∇ ·A∇)f, g)L2(Rn) =

∞∫

0

ϕ(λ) d(Eλf, g)L2(Rn) ≡
( ∞∫

0

ϕ(λ) dEλf, g

)

L2(Rn)

for all g ∈ L2(Rn) and

f ∈ dom (ϕ(−∇ ·A∇)) :=






f ∈ L2(Rn)

∞∫

0

|ϕ(λ)|2 d‖Eλf‖2L2(Rn) <∞






. (A.2)

One may define (−∇ · A∇)−s using the mapping ϕ(λ) = λ−s. But however in general
∇ · A∇ : H2(Rn) → L2(Rn) is not injective, therefore the domain dom((−∇ · A∇)−s) is
somehow artificial. The main theme of this appendix is to define (−∇·A∇)−s on a suitable
domain.

By using [Gri09, (A.32)], we know that dom (et∇·A∇) = L2(Rn) for all t > 0. Based on
this we can define the action of the heat semigroup and of the fractional powers (of order
s > 0) of −∇ · A∇ as

et∇·A∇f :=

∞∫

0

e−tλ dEλf for all f ∈ L2(Rn) and t > 0,

(−∇ ·A∇)sf :=

∞∫

0

λs dEλf for all f ∈ dom ((−∇ ·A∇)s).

3The operator −∇ ·A∇ is not self-adjoint on the domain C
∞
c (Rn).



UNIQUE CONTINUATION FOR THE MOMENTUM RAY TRANSFORM 23

Using [Gri09, Theorems 7.6, 7.7 and 7.13], we know that the bounded operator et∇·A∇

admits a unique symmetric (heat) kernel kAt (x, y): For each 0 < t <∞ and f ∈ L2(Rn), we
have

(
et∇·A∇f

)
(x) =

∫

Rn

kAt (x, y)f(y) dy for all x ∈ R
n,

see also [QX21, Theorem 2]. In addition, there exist positive constants b1, b2, c1, c2 such
that

c1t
−n

2 exp

(

− b1
|x− y|2

t

)

≤ kAt (x, y) = kAt (y, x) ≤ c2t
−n

2 exp

(

− b2
|x− y|2

t

)

, (A.3)

for all t > 0 and x, y ∈ R
n, see [Dav89, Chapter 3]. We refer to [GT12] for the proof of

two-sided estimates for heat kernels kMt on abstract metric measure spaces M , extending
those already known in Riemannian manifolds and in various types of fractals. Moreover,
the heat kernel is also conservative (or stochastically complete)4, that is,

∫

Rn

kAt (x, y) dy = 1 for all t > 0 and x ∈ R
n.

In view of (5.8), now it is natural to consider the following definition.

Definition A.1 (Weighted x-ray transform). Let n ≥ 2 be an integer, and let 0 < s < n
2 .

For each f ∈ S(Rn), we define

(
XA
s f
)
(x, ξ) :=

∞∫

0

w(x, x+ τξ)f(x+ τξ) dτ,

where the weight is given by

w(x, y) :=
1

Γ(s)c(n,−s) |y − x|n−1

∞∫

0

kAt (x, y)
dt

t1−s
for all x 6= y ∈ R

n,

and the average over the sphere S
n−1 is defined by

(
AA
s f
)
(x) := c(n,−s)

∫

Sn−1

(
XA
s f
)
(x, ξ) dSξ ≡

1

Γ(s)

∫

Rn

( ∞∫

0

kAt (x, y)
dt

t1−s

)

f(y) dy. (A.4)

From (5.6) and (A.3), we can easily conclude the following lemma.

Lemma A.2. Let n ≥ 2 be an integer and let 1 ≤ p < n
2s provided 0 < s < n

2 . Let
A(x) = (aij(x))

n
i,j=1 ∈ (C∞(Rn))n×n such that aij = aji for all i, j = 1, · · · , n and satisfies

the ellipticity condition (A.1). Then

AA
s : Lp(Rn) → Lq(Rn) is bounded,

4These terminologies are found in [GHL14, GT12]. We also refer to [Dav89, Theorem 1.4.4] for an abstract
result.
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where 1
q = 1

p − 2s
n . In particular when 0 < s < n

4 , the operators

AA
s : L2(Rn) → L

2n
n−4s (Rn)

AA
s : L

2n
n+4s (Rn) → L2(Rn)

are bounded.

Using the lemma above, we know that

(AA
s |f |)(x) =

1

Γ(s)

∫

Rn

∞∫

0

∣
∣
∣
∣
kAt (x, y)

1

t1−s
f(y)

∣
∣
∣
∣
dt dy <∞ for a.e. x ∈ R

n,

whenever f ∈ Lp(Rn) for some p ∈ [1, n2s). Therefore we can apply Fubini’s theorem on
(A.4) yields

(
AA
s f
)
(x) =

1

Γ(s)

∞∫

0

(∫

Rn

kAt (x, y)f(y)dy

)
dt

t1−s
≡ 1

Γ(s)

∞∫

0

(et∇·A∇f)(x)
dt

t1−s

for all f ∈ Lp(Rn) for some p ∈ [1, n2s). In view of (5.5), then we can define (−∇ · A∇)−s

with a suitable domain rather than the artificial domain dom ((−∇·A∇)−s) given in (A.2).

Definition A.3. Let n ≥ 2 be an integer and let 1 ≤ p < n
2s provided 0 < s < n

2 . Let
A(x) = (aij(x))

n
i,j=1 ∈ (C∞(Rn))n×n such that aij = aji for all i, j = 1, · · · , n and satisfies

the ellipticity condition (A.1). Then the bounded linear operator (−∇ ·A∇)−s : Lp(Rn) →
Lq(Rn) with 1

q = 1
p − 2s

n is defined by

(−∇ ·A∇)−sf := AA
s f

for all f ∈ Lp(Rn).

Remark A.4. The operator (−∇·A∇)−s for s ∈ C with ℜ(s) > 0 also can be defined using
Balakrishnan operator with domain range (Am) where m is the minimum integer such that
m > ℜ(s), see [MCSA01, Definition 7.2.1].
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