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Abstract. We discuss a quantum mechanical indirect measure-
ment method to recover a position dependent Hamilton matrix
from time evolution of coherent quantum mechanical states through
an object. A mathematical formulation of this inverse problem
leads to weighted X-ray transforms where the weight is a matrix.
We show that such X-ray transforms are injective with very rough
weights. Consequently, we can solve our quantum mechanical in-
verse problem in several settings, but many physically relevant
problems we pose also remain open. We discuss the physical back-
ground of the proposed imaging method in detail. We give a rig-
orous mathematical treatment of a neutrino tomography method
that has been previously described in the physical literature.

1. Introduction

We present a new imaging modality which we call coherent quan-
tum tomography. The reason for this name will be discussed in sec-
tion 3. Our goal is to model and solve the following problem: An object
Ω ⊂ Rn is to be imaged nondestructively. Properties of the object are
described by a (hermitean) matrix valued function H on Ω, a quantum
mechanical Hamiltonian. Particles are fired through Ω and they expe-
rience time evolution due to the Hamiltonian H and the final state of
the particle is measured. How much about the function H can we infer
from this data?

Of course, much depends on what initial states in the state space are
possible and what kinds of measurements are made. We will mainly
focus on two kinds of situations, a general case with ideal data and
a more realistic one with neutrino oscillations, but the discussion of
section 2 is valid for any data. These problems will be described in
more detail below.

The imaging modality we discuss is a quantum mechanical one and
relies on coherence between states in a multiple dimensional state space.
We restrict our attention to finite dimensional state spaces, but many
practically interesting systems are indeed finite dimensional. The prac-
tical setting resembles that of X-ray tomography (sending rays through
an object and measuring what happens to them) but the physical
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phenomena behind the measurement and the mathematical model are
rather different. Our analysis does, however, lead to a certain type of
X-ray transform.

The application we have in mind is imaging the Earth with neutri-
nos. The idea is to produce neutrinos somewhere at the surface (in
a nuclear reactor or a particle accelerator) and measure neutrinos of
different flavours coming from this source. Neutrinos come in three
flavours, electron, muon and tau neutrinos (νe, νµ, ντ ) and typical nu-
clear reactions produce electron neutrinos or electron antineutrinos.
These neutrino flavours will oscillate — turn into each other while
propagating — and details of this oscillation depend on the medium
they traverse. The problem is then to recover properties of the medium
from neutrino oscillation data. For basics of neutrino physics, we refer
to the book [15] and section 3.1.

Neutrino tomography of the Earth is not a new idea. Tomography of
our planet using neutrino absorption has been discussed in [46, 22, 45]
and using matter effects in neutrino oscillations in [35, 28, 25]. A dis-
cussion and comparison of these two methods can be found in [66].
It has also been proposed that geoneutrinos produced in nuclear de-
cays in the Earth could be used for imaging the Earth [8] and that
neutrino tomography could be used as a means of earthquake predic-
tion [64]. A spectrometric approach to using neutrinos in imaging the
Earth was recently proposed in [47]. We aim to bridge the gap be-
tween the physical literature of the idea of neutrino tomography and
the mathematical literature of inverse problems and imaging by pro-
viding a physically meaningful and mathematically rigorous discussion
of the neutrino oscillation tomography problem.

Due to the quantum mechanical nature of the problem, our data is
phaseless. For some other results concerning phaseless data, we refer
to [38, 65, 21].

Problems considered in this paper can also be posed on manifolds, re-
placing Ω̄ by a compact Riemannian manifold with boundary and lines
by geodesics. Euclidean geometry is most relevant for many physical
applications, so for the sake of simplicity we restrict our attention to
it. A reader familiar with differential geometry will observe that many
arguments carry over to Riemannian manifolds. We end up introducing
some new ray transform problems (see problems 5.1 and 3.1), which
can also be asked on Riemannian manifolds. We provide a partial so-
lution in the Euclidean setting in theorems 7.2 and 7.3. See section 7
for more details on ray transforms.

1.1. Outline. We will introduce the quantum mechanical problem in
detail in section 2, and then we will have the language to state our
main results in section 2.1. We will overview the physical aspects of
the proposed indirect measurement in section 3. Section 4 is devoted
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to converting our phase free data to a more useful form. In section 5
we will prove some of our main results using a pseudolinearization
argument. This will involve some weighted X-ray transforms where the
weight is a matrix; these are introduced in section 5.1. In section 5.2
we will reduce our quantum mechanical problem to a ray transform
problem. We will also discuss the linearized problem in section 5.3. Our
quantum mechanical problem involves a time ordered exponential, and
we investigate the same problem without time ordering in section 6. In
section 7 we will show that some of our new weighted X-ray transforms
are injective with very rough weights.

2. The quantum mechanical problem

We will use natural units: c = ~ = 1. Consider a point particle mov-
ing in n-dimensional Euclidean space, with position at a time t given
by γ(t) = x0 + tv ∈ Rn, where |v| = 1. The particle is ultrarelativistic
— its speed is practically the speed of light — and it is assumed not
to scatter or be absorbed.

Besides moving in space, the particle has a state in a quantum me-
chanical state space CN where time evolution is given by the Schrödinger
equation. Vectors in the state space CN will be referred to as states.

Note that the dimension n of the ambient space and the dimension of
the state space N need not have anything to do with each other. The
dimension N need not be high to accommodate interesting physical sys-
tems. The case N = 1 is in a sense empty, but two state systems (such
as spin) provide an example where N = 2 and for neutrino oscillations
N = 3 is relevant (excluding possible sterile neutrinos).

Suppose that the Hamiltonian governing the time evolution in the
quantum mechanical state space CN is a hermitean N×N matrix H(x)
depending on the position of the particle in Rn. In this case the
Schrödinger equation for the state Ψ(t) ∈ CN is

i∂tΨ(t) = H(γ(t))Ψ(t).

For notational simplicity, let us drop the line γ and consider H a func-
tion of time. Let UH(t2, t1) be the time evolution operator (solution
operator) for which Ψ(t) = UH(t, t0)Ψ0 is the unique solution to{

iΨ′(t) = H(t)Ψ(t)

Ψ(t0) = Ψ0.

Formally, we may write UH as a time ordered exponential1

UH(t2, t1) = T exp

(
−i
∫ t2

t1

H(γ(t))dt

)
.

1For a discussion of the time evolution operator as a time ordered exponential,
see textbooks in quantum mechanics, such as [49]. The time ordered exponential
has a series representation known as the Dyson series.
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If [H(t), H(s)] = 0 for all t, s ∈ [t1, t2], then this is just the matrix
exponential. We will consider unordered time evolution, where T exp
is replaced by exp, in section 6.

Consider the time evolution from creation of a particle at t = 0 to
observation at t = T . Suppose there is a set I ⊂ CN of possible initial
states Ψ(0) and a set F ⊂ CN of observable final states. We assume
that we can prepare the particle to any initial state in I at will. If
the final state Ψ(T ) = UH(T, 0)Ψ(0) is measured via an operator A, we
can observe (from the statistics of a large number of measurements) the
norms of the projections of Ψ(T ) to eigenspaces of A. If the spectrum
of A is nondegenerate, we can measure |a∗Ψ(T )|2 for all eigenvectors
(eigenstates) a of A. The set F consists of all nondegenerate eigenvec-
tors of all observables that can be used for measurements.

Consider a domain Ω ⊂ Rn which we cannot enter but through
which we can fire particles. Our aim is to obtain information about
the Hamiltonian H in Ω from measurements of particles sent through it.
This is a nondestructive measurement problem or an inverse problem.

We assumed the particle to be ultrarelativistic (|v| = 1) and also
scattering and absorption to be negligible. This means essentially that
the medium only affects the particle in its time evolution in the state
space CN . As mentioned in section 1, the main example we have in
mind is neutrinos travelling through the Earth, the objective being to
recover the inner structure of the planet from neutrino oscillation mea-
surements. Information from such measurements should, of course, be
combined with similar measurements by other methods (most impor-
tantly seismic imaging), but here we focus on the quantum mechanical
tomography problem.

We adopt the following notation: For a line segment γ : [0, T ] → Ω̄
we denote Uγ

H := Uγ
H(T, 0), the time evolution operator over the entire

length of the line.
The problem is now this:

Problem 2.1. For every line segment γ : [0, T ] → Ω̄ with endpoints
on ∂Ω we measure |Φ∗Uγ

HΨ| for all Ψ ∈ I and Φ ∈ F . How much
can we infer about the Hamiltonian H : Ω→ CN×N from this data?

We will assume throughout that the Hamiltonian only depends on
the position. It is also possible (and physically relevant, see section 3.2)
that the Hamiltonian depends on the direction v. If the dependence
on v is polynomial, the X-ray tomography problems that arise below
will have to be generalized to tensor tomography problems. Recovering
a tensor field from its integrals over all lines (or geodesics) can only be
possible up to potential tensors. This natural gauge condition is the
only obstruction in many situations; see for example [53, 54, 40, 41].
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Definition 2.2. We say that the pair of subsets I ,F ⊂ CN gives ideal
data if for any two unitary matrices U and V the condition |a∗Ub| =
|a∗V b| for all a ∈ F and b ∈ I implies U = eiϕV for some ϕ ∈ R.

We also assume perfect data in the sense that the measurements are
done over every line through the domain. Partial data problems with
restricted sets of lines are also physically relevant, but we do not pursue
them here.

The first problem is inferring as much as possible about Uγ
H from the

data. It follows from lemma 4.1 below that in the case of ideal data we
can recover the matrix Uγ

H up to a phase factor. This implies that if we
add a position dependent scalar multiple of the identity matrix, f(x)I,
to H(x), the data is not changed. We are therefore completely blind
to multiples of the identity in H, and the true problem is whether this
is the only obstruction to recovering H.

2.1. Results. We will show in theorem 5.2 that ideal data (in the sense
of definition 2.2 above) is enough to determine the trace free part of
the Hamiltonian matrix H everywhere, provided that certain weighted
X-ray transforms are injective.

Theorem 5.2: Let Ω ⊂ Rn, n ≥ 2, be a convex
bounded smooth domain and write M = Ω̄. Suppose
the sets I ,F ⊂ CN , N ≥ 2, give ideal data. Let
H : M → CN×N be continuous and pointwise hermitean.
Assume that we know |a∗Uγ

Hb| for all a ∈ F , b ∈ I and
every line γ : [0, T ] → Ω̄ through Ω. If IW is injective
for any continuous weight W : SM → SU(N2), then the
data uniquely determines the trace free part of H.

Here IW is the X-ray transform with weight W (see section 5.1 for
a definition) and SM = M × Sn−1 denotes the sphere bundle of M .

In theorem 5.4 we will consider the special case where H(x) =
H0(x)+f(x)G(x), where H0 and G are known matrix functions and f is
an unknown scalar function; the result is that ideal data determines f ,
provided that G is nowhere a multiple of the identity.

Theorem 5.4: Let Ω ⊂ Rn, n ≥ 3, be a strictly convex
bounded smooth domain and writeM = Ω̄. Suppose the
sets I ,F ⊂ CN , N ≥ 2, give ideal data. Fix any α > 0.
Let H0, G : M → CN×N be C1,α-smooth and pointwise
hermitean. Let H(x) = H0(x)+f(x)G(x) for a function
f ∈ C1,α(M). Assume that we know |a∗Uγ

Hb| for all
a ∈ F , b ∈ I and every line γ : [0, T ] → Ω̄ through Ω.
If H0 and G are known and G is nowhere a multiple
of the identity, then the data uniquely determines the
function f .

We will discuss the linearized problem in section 5.3.
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In section 6 we will introduce an unordered version of our main
problem 2.1. We emphasize that the unordered problem 6.1 is neither
a generalization nor a specialization of problem 2.1. For this prob-
lem we will only be able to solve a linearized version; the solution of
the unordered problem linearized at a constant background is given in
theorem 6.13.

Theorem 6.13: Let Ω ⊂ Rn, n ≥ 2, be a bounded
domain. Let H ∈ C(Ω̄,CN×N) take values in hermitean
matrices and let H0 be a fixed hermitean matrix. Sup-
pose that for every line γ : [0, T ] → Ω̄ with endpoints
on ∂Ω we know

eiTH0d exp−iTH0
i

∫ T

0

H(γ(t))dt

up to an unknown multiple of the identity matrix. Then
we can recover the trace free part of H(x) for every
x ∈ Ω.

Finally, we will analyze the X-ray transform problem with matrix
weights that arises in theorem 5.2. We will show in theorem 7.2
that in Euclidean domains of dimension three or higher a continu-
ous CN -valued function is determined by its weighted integrals over
all lines when the weight is an invertible CN×N matrix depending on
position and direction in a sufficiently continuous way. In fact, we will
prove a local injectivity result for this weighted transform; this is stated
separately in theorem 7.3.

Theorem 7.2: Let M be the closure of a bounded
convex domain in Rn, n ≥ 3, and let β > 0. Let
W ∈ Cβ(M,Lip(Sn−1,CN×N)) be invertible at every
point on SM = M × Sn−1. (This regularity assump-
tion is true, in particular, if W ∈ C1,β(SM,CN×N).) If
f ∈ C(M,CN) satisfies IWf = 0, then f = 0.

Combining theorems 5.2 and 7.2, we obtain the following theorem
which is our main answer to problem 2.1.

Theorem 2.3. Let Ω be a bounded convex domain in Rn, n ≥ 3, and let
β > 0. Suppose H, H̃ ∈ C1,β(Ω̄,CN×N). Suppose the sets I ,F ⊂ CN ,
N ≥ 2, give ideal data. The two Hamiltonians H and H̃ give the same
data in the sense of problem 2.1 if and only if H̃ = H + ϕI for some
scalar function ϕ : Ω→ R.

3. Physical discussion

More detailed physical remarks and background in addition to sec-
tion 2 are in order, and we give them in this section. A reader who is
interested in solving the mathematical problem posed above instead of
justifying it physically may wish to skip this section.
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In our model a quantum mechanical particle has well defined posi-
tion and momentum at all times. This situation is in fact forbidden
by the uncertainty principle but it is an excellent approximation. In a
more careful model particles would have to be modeled by wave pack-
ets which are nontrivially distributed in position and momentum. We
have (implicitly) assumed that uncertainty in momentum is very small
in comparison to the mean value of momentum. Therefore momentum
of a particle as a single vector is a relatively well defined concept, and
if momentum is large, even very small relative uncertainty allows for
substantial absolute uncertainty. The necessary amount of uncertainty
in position may be so small that a particle can essentially be consid-
ered point-like. Well defined position and momentum (which could
also be informally described as a plane wave supported at a point)
are a fairly good approximation if momentum is large and the back-
ground medium does not have features on shorter length scales than
position uncertainty. When the Earth is imaged by neutrinos, these as-
sumptions are easily met. (We will also discuss momentum dependent
Hamiltonians in section 3.2.)

Our mathematical model is only relevant in physical settings where
the particles are ultrarelativistic and experience very little scattering or
absorption. Such particles can be reasonably approximated by point-
like particles with a quantum mechanical state as modeled in section 2.
This is a common leading order approximation in particle physics.

The original motivation behind this article — to which the model
is not restricted — is to image the Earth by sending rays through it.
Most particles experience so much absorption or scattering that prac-
tically no signal makes it through the planet. For neutrinos, however,
absorption and scattering are very weak and quite difficult to measure.
Intensity of a neutrino beam is not very sensitive to medium properties,
so X-ray type imaging is difficult. On the other hand, a quantum me-
chanical phenomenon called neutrino oscillation is sensitive to electron
density in the medium. This calls for quantum mechanical measure-
ments of the type described in section 2. The fact that quantum me-
chanical evolution is sensitive to something but intensity is not shows
that the underlying physical phenomenon is quantum mechanical inter-
ference. Such interference is only possible for a coherent superposition
of quantum states, whence the term “coherent quantum tomography”.
Neutrino oscillation will be discussed in much more detail in section 3.1
below.

The observation that we could — in principle at least — see more
things with neutrinos than other particles due to the weakness of their
interactions is not a new one. The Universe became transparent to
photons at the age of about 380000 years and optical observations do
not allow to see a younger Universe directly. For neutrinos the corre-
sponding age of the Universe is about one second, whence neutrinos
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“see” significantly older structures than photons do. The problem is
that neutrinos are much, much more difficult to measure than photons;
more information is available but it is in a form difficult to measure.
For more about neutrino astrophysics, see [15, 26, 61]. This is the case
for imaging the Earth with neutrinos, too: current technology is in-
sufficient for very precise measurements but there is no fundamental
physical obstruction to seeing new things with neutrinos.

The usual computerized X-ray tomography is based on measuring
attenuation of photon intensity. Photons can be replaced with neutri-
nos as mentioned in the introduction, and computerized tomography
with muons has been proposed in [58]. We emphasize that neutrino
absorption tomography (as discussed in [46, 22, 45, 66]) is significantly
different from neutrino oscillation tomography discussed in this arti-
cle. For physical articles on neutrino oscillation tomography, we refer
to [35, 28, 25, 66]. Neutrino tomography could complement existing
geophysical imaging methods as discussed in the cited articles.

Of other existing imaging methods based on coherence we mention
optical coherence tomography [51] and quantum optical coherence to-
mography [60]. There are also other kinds of inherently quantum me-
chanical imaging modalities which often go by the name quantum to-
mography (see eg. [52, 16, 30]).

Our imaging method is also related — from a physical point of view
— to inverse scattering problems for the Schrödinger equation (see
eg. [34, 9]). We study quantum mechanical particles that obey the
Schrödinger equation, but scattering is not a very significant phenome-
non for the present imaging problem. Moreover, in our problem quan-
tum mechanical time evolution takes place in a finite dimensional state
space instead of a Hilbert space of functions.

3.1. Neutrino oscillation. For an introduction to neutrino physics
and in neutrino oscillation, we refer to [15, 14, 23, 20, 59, 1, 29, 2].
We restrict our attention mostly to a quantum mechanical description
of neutrino oscillation; quantum field theoretical descriptions can be
found, for example, in [15, 1].

There are three kinds of neutrinos (νe, νµ, ντ ) and the state space
(excluding motion) of a neutrino is thus a three dimensional complex
space. We think of this space as C3 and identify the aforementioned
neutrino types with the standard basis vectors e1, e2, e3. This is the
so-called flavour basis, and the corresponding basis states (νe, νµ, ντ )
are known as flavour neutrinos. A neutrino state is a superposition of
different flavour neutrinos.

Neutrinos are typically produced as flavour neutrinos, so in our quan-
tum mechanical model I ⊂ {e1, e2, e3}. Neutrinos are typically also
observed as flavour neutrinos; if all flavours can be measured, we have
F = {e1, e2, e3}. Flavour basis is the natural choice if we only consider
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creation and annihilation in weak charged current reactions (mediated
by W± bosons); if weak neutral current processes are included, the
picture is more complicated.

It is sometimes convenient to study neutrino physics in a two-flavour
model and it is possible that there are more than three neutrino flavours
(the additional ones are known as sterile neutrinos). If there are sterile
neutrinos, they cannot be produced or observed directly, so the basis
vectors e4, e5, . . . will not appear in I and F .

Let us then discuss the Hamiltonian related to neutrinos. There is
a hermitean 3 × 3 matrix M describing neutrino masses. There is a
matrix U diagonalizing M , so that

U∗MU =

m1 0 0
0 m2 0
0 0 m3

 ,

where m1,m2,m3 are the neutrino masses. The eigenstates of the ma-
trix M are known as mass states. It is of crucial importance in neutrino
physics that the mass states are not the same as the flavour states. The
flavour neutrinos do not have well-defined masses, but suitable linear
combinations of them (the mass states) do. The relation of flavour and
mass states is expressed by the lepton mixing matrix, the Pontecorvo–
Maki–Nakagawa–Sakata matrix U .

Suppose the neutrino is created at a momentum2 p > 0 which is
much larger than any of the masses. If the neutrino had mass m ∈ R,
then its energy would be E =

√
p2 +m2 ≈ p + m2

2p
. Thus in a good

approximation we may write the Hamiltonian matrix (recall that the
Hamiltonian is the energy operator in quantum mechanics) as H = pI+
1
2p
M2, where M is the mass matrix introduced above. Since multiples

of the identity are irrelevant for the time evolution (they only introduce
a total phase), we can consider the Hamiltonian

(1) H0 =
1

2p
U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U∗.

This simple Hamiltonian gives rise to a remarkable physical phenome-
non: neutrino oscillation. If a neutrino is produced in a flavour state,
the probability that it is observed in another flavour state (known as
transition probability) oscillates in time. It is evident from equation (1)
that the key parameters for neutrino oscillations are the PMNS ma-
trix U and the differences of the squared neutrino masses. The momen-
tum p in (1) can be replaced with the energy E, as these are almost
the same for ultrarelativistic particles.

2One can also assume equal energies instead of equal momenta for the mass
states. These assumptions are different, but lead to the same results. For a discus-
sion of the assumptions on the initial state, see [20, 1].
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This oscillation is produced by quantum mechanical interference of
different neutrino mass states. Interference is only possible if the differ-
ent mass states are coherent and in the same place. Different masses
give rise to slightly different speeds, and different mass states drift
apart slowly, whence coherence is lost and neutrino oscillation comes
to an end. Transition probabilities stop oscillating, but the asymptotic
probabilities are not trivial (not only zero or one). For coherence and
decoherence in neutrino oscillations, we refer to [20, Section 4]. (We
wish to point out that lost coherence can be recovered at detection;
see [1, Section 5.4].)

Neutrino oscillation is a kinematic effect; it requires no interactions.
The neutrino oscillation described hitherto is the kind that takes place
in vacuum. Interactions with the medium change the Hamiltonian
of (1) and also the oscillation. It is via these changes that we hope to
determine properties of the medium using neutrino oscillation.

If the neutrinos propagate in matter with electron number den-
sity Ne, we have to add the potential term

(2) 2
√

2EGFNe

1 0 0
0 0 0
0 0 0


(with a minus sign for antineutrinos) to the Hamiltonian of (1), ne-
glecting again multiples of the identity matrix. Here E is the neutrino
energy and GF is the Fermi constant. This particular form of the po-
tential is due to only electron neutrinos interacting with electrons in
the medium via weak charged current; the neutral current potentials
of electrons and protons cancel each other and the one of neutrons is
a multiple of identity. For details of neutrino oscillation in matter, we
refer to [15, Section 9.2].

Because of the form of the potential in (2), neutrino oscillations
provide a means of measuring electron density as a function of position.
Replacing momentum with energy, we arrive at the total Hamiltonian

H(x) =
1

2E
U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U∗ + Ef(x)

1 0 0
0 0 0
0 0 0

 ,

where f is a scaled electron density. The problem is to recover the
function f from the data described in section 2, possibly with mea-
surements for several energies E. We emphasize that ideal data is not
available, so theorem 5.4 is not applicable.

3.2. Tensor Hamiltonians. So far we have only considered Hamilto-
nians H(x) as functions of x ∈ M . It may happen, however, that the
Hamiltonian also depends on direction, so that H(x, v) is a function
of (x, v) ∈ SM . If there is no a priori knowledge on how H depends
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on v, problem 2.1 is hopeless, as the time evolution operators along
intersecting lines have nothing to do with each other.

A natural assumption is that H(x, v) is a polynomial in v. From the
point of view of integral geometry, this corresponds to replacing scalar
fields by (sums of) tensor fields, the order of the polynomial being the
order of the tensor field. A particularly simple case to analyze is a
first order polynomial (corresponding to a sum of a function and a
one-form). For more details on tensor tomography, we refer to [40, 53].

The polynomial assumption is also natural physically, and we illus-
trate this with examples related to particles in an electromagnetic field.
The Dirac equation in R3 for a fermion of charge q and mass m can be
written as i∂tΨ = HΨ with the Hamiltonian3

(3) H(x, p) = qϕ(x)I +mγ0 + (p− qA(x)) · α.

The state Ψ ∈ C4 is the Dirac spinor. For a vector V ∈ R3, V · α =
V1α

1 + V2α
2 + V3α

3, the 4 × 4 matrices α1, α2, α3 are related to the
Dirac gamma matrices by αi = γ0γi, A is the magnetic vector potential
and ϕ is the electric scalar potential. The Hamiltonian depends on the
momentum p, which can be turned into dependence on direction and
energy using the identity p = Ev. The nonrelativistic counterpart of
the Dirac equation is the Pauli equation with the Hamiltonian

(4) H(x, p) =

(
1

2m
(p− qA(x))2 + qϕ(x)

)
I +

q

2m
B(x) · σ

acting on a spinor Ψ ∈ C2, where B = ∇ × A is the magnetic field,
B · σ = B1σ1 +B2σ2 +B3σ3 and the σs are the Pauli matrices.

There are several possible choices for the matrices appearing in (3)
and (4). For completeness, we give one here:

σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
,

σ3 =

(
1 0
0 −1

)
,

γ0 = σ3 ⊗ I2 and

γi =

(
0 1
−1 0

)
⊗ σi for i = 1, 2, 3,

where I2 is the 2 × 2 identity matrix. The mathematically oriented
reader can neglect positioning of indices (upper or lower); we used

3This form can be obtained from the standard Dirac equation by describing the
coupling to the photon field by the gauge covariant four-gradient ∂µ + iqAµ and
then solving for the time derivative.
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some upper indices with the Dirac equation and Dirac matrices to be
consistent with notation in particle physics.

The natural problem related to these equations is to recover the elec-
tromagnetic potentials ϕ and A from the data described in section 2.
The weighted ray transform described in section 5.1 has to be gen-
eralized further: we have to consider matrix valued tensor fields, or
functions SM → CN×N that are polynomial in the fiber variable v.
As with all tensor tomography problems, we expect that there is some
gauge freedom. But this is to be expected on physical grounds as well,
since one can only ever measure a (magnetic or other) potential up to
gauge.

We state this tensor tomography problem separately:

Problem 3.1. What happens in problem 5.1 if the unknown functions
are assumed to be matrix valued tensor fields on SM? What if we
assume the weight to satisfy XW = iWQ for a matrix valued tensor
field Q (cf. remark 5.3)?

4. Gauge conditions for measurements

Given I ,F ⊂ CN , how much about U ∈ U(N) can be inferred from
the knowledge of |a∗Ub| for all a ∈ F and b ∈ I ? The best we can
hope for is knowing U up to a factor eiϕ, ϕ ∈ R, which means ideal
data.

Lemma 4.1. If I and F are both the unit sphere in CN , they give
ideal data.

Proof. We need to show that if for two matrices U, V ∈ U(N) we have
|a∗Ub| = |a∗V b| for all a, b ∈ CN with |a| = |b| = 1, then U = λV
for some λ ∈ C, |λ| = 1. By a scaling argument we can drop the
assumption |a| = |b| = 1.

It follows from the condition that for any a ∈ CN a vector is orthog-
onal to Ua if and only if it is orthogonal to V a. Therefore there is
λa ∈ C so that V a = λaUa. We wish to show that all the constants λa,
a ∈ CN \ {0}, are in fact equal.

If a, b ∈ CN are linearly dependent, then by linearity λa = λb. If
a, b ∈ CN are linearly independent, then

λaUa+λbUb = V a+V b = V (a+b) = λa+bU(a+b) = λa+bUa+λa+bUb,

from which we get

(λa+b − λa)Ua = (λb − λa+b)Ub.

Since Ua and Ub are linearly independent, we have λa = λa+b = λb. �

Problem 4.2. How large do the sets I ,F ⊂ CN have to be to give
ideal data? The assumption of the previous lemma looks like an overkill.
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The following lemma shows that if we assume the Hamiltonian to
be trace free (the trace is invisible from the data anyway), then in
the case of ideal data we can recover the time evolution operator Uγ

H

for every line γ without any gauge ambiguity. After this reduction we
may restrict ourselves to trace free Hamiltonians, special unitary time
evolution and most importantly an inverse problem with no obvious
gauge invariance.

Lemma 4.3. Let Ω ⊂ Rn, n ≥ 2, be a convex, bounded domain and
let M denote the space of continuous hermitean matrix valued functions
Ω̄→ CN×N . Fix the sets I ,F ⊂ CN so that they give ideal data. The
following are equivalent:

(1) From the knowledge of |a∗Uγ
Hb| for all states a ∈ F , b ∈ I and

every line γ : [0, T ] → Ω̄ through Ω one can recover the func-
tion H ∈ M up to a function f(x)I for a continuous function
f : Ω̄→ R.

(2) From the knowledge of Uγ
H for every line γ : [0, T ]→ Ω̄ through Ω

one can recover the trace free function H ∈M .

Proof. 1 =⇒ 2: If we know Uγ
H = Uγ

H(T, 0) for every line γ : [0, T ]→ Ω̄,
then by assumption we can recover H up to multiples of the identity.
But since we know that H is trace free, there is no ambiguity.

2 =⇒ 1: We write H(x) = A(x) + f(x)I, where tr(A(x)) = 0 for
every x ∈ Ω̄. Now for any line γ : [0, T ]→ Ω̄,

Uγ
H = exp

(
−i
∫ T

0

f(γ(t))dt

)
Uγ
A.

Since we have ideal data, we know Uγ
H up to phase (by lemma 4.1),

and since A is traceless, the matrix Uγ
A is special unitary. Therefore we

know the matrix Uγ
A up to multiplication by an element of the group

GN ⊂ U(1) of Nth roots of unity.
We know that for very short lines γ the matrix Uγ

A is very close
to the identity, so by finiteness of GN we can recover the matrix Uγ

A

itself (without any gauge ambiguity) for sufficiently short lines. By
convexity of the domain every line with endpoints on the boundary
can be continuously deformed into an arbitrarily short one; it then
follows from continuity of H and finiteness of GN that we can in fact
recover Uγ

A for all γ. By assumption, this information is enough to
determine A, the trace free part of H. �

The argument in the proof of the lemma above should also work with
piecewise continuity, but we refrain from pursuing optimal regularity.

It is a simple exercise to show that if the sets I ,F ⊂ CN give ideal
data and U, V ∈ U(N), then also the pair (UI , VF ) gives ideal data.
From this it follows that if the tomography problem can be solved on
a domain ω ⊂ Rn and the trace free part of the Hamiltonian is known
in Ω \ ω for some larger set Ω ⊂ Rn, then the problem can also be
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solved in Ω. If the particle travels on a concatenation of several curves,
the total time evolution operator is simply the composition of time
evolution operators over each segment. Without ideal data there is
more gauge freedom than a simple phase, and it is less obvious to find
such layer stripping results.

Lemma 4.4. Suppose N = 2 and let e1 and e2 be the basis vectors
of C2. If I = {e1} and F = {e1, e2} (or vice versa), then the following
are equivalent for two matrices U, V ∈ U(2):

(1) |a∗Ub| = |a∗V b| for all a ∈ F and b ∈ I .
(2) There are angles α, β, θ ∈ R so that

V = eiθ
(
eiα 0
0 e−iα

)
U

(
eiβ 0
0 e−iβ

)
.

Proof. 2 =⇒ 1: Follows from a simple calculation.
1 =⇒ 2: Suppose |a∗Ue1| = |a∗V e1| for both a ∈ {e1, e2}. Since the

columns of U and those of V are orthonormal and the dimension is
two, we have also |a∗Ue2| = |a∗V e2| for both a ∈ {e1, e2}. Let

U =

(
a b
c d

)
and

V =

(
κa λb
µc νd

)
for complex numbers κ, λ, µ, ν of unit norm.

If c = 0, then b = 0 and |a| = |d| = 1 and the claim is obvious.
Similarly, if a = 0 (and thus d = 0), the claim follows easily.

Suppose then that a, b, c, d 6= 0. From the orthogonality relations{
ac̄+ bd̄ = 0

κµ̄ac̄+ λν̄bd̄ = 0

we obtain λµ = κν. We want to choose the angles α, β, θ so that

κ = ei(θ+α+β),

λ = ei(θ+α−β),

µ = ei(θ−α+β) and

ν = ei(θ−α−β).

It is easy to verify that this is indeed possible due to the constraint
λµ = κν. �

Remark 4.5. It is natural to ask if lemma 4.4 holds for N > 2 assuming
I = F = {e1, . . . , eN}. The analogue of implication 2 =⇒ 1 is easy
to verify, but the converse is false. Condition 2 of the lemma describes
a symmetry group (that fixes norms of matrix elements) of dimension
2N − 1.
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We may linearize (w.r.t. the phase of each matrix element) to find the
dimension of the tangent space of the full symmetry group and thus
the dimension of that group. To simplify matters, we assume each
matrix element to be nonzero. Experiments show that the group of
symmetries preserving the norms of elements of a generic 3× 3 unitary
matrix has dimension 6, not 5. We have been unable to identify the
group itself in a spirit similar to condition 2 of lemma 4.4.

The following problem needs to be solved before one can study our
main problem for N ≥ 3 with I = F = {e1, . . . , eN} the standard ba-
sis of CN . This problem with N = 3 is relevant for neutrino oscillations,
see section 3.1.

Problem 4.6. Given a unitary matrix U ∈ U(N), N ≥ 3, describe the
set

{V ∈ U(N); |Vij| = |Uij| for all i, j}.
Is there a description as simple as that of lemma 4.4 for N = 2?

5. Pseudolinearization

Here we introduce a so-called pseudolinearization that reduces our
nonlinear problem to a linear one with unknown parameters. It is
enough to know some general characteristics of these parameters (cer-
tain weight functions) to show injectivity of the linear problem. It also
gives rise to an iterative reconstruction scheme which we shall discuss
after theorem 5.2. A similar idea has been previously used for rigidity
problems [56, 57].

We will phrase our results in the setting of continuous unknown
functions. If we assume more regularity, we can assume more regularity
in the weights of the corresponding ray transform problems.

5.1. Matrix-weighted X-ray transform. Let Ω ⊂ Rn, n ≥ 2, be
a bounded smooth domain, and denote M = Ω̄. Denote by SM =
Sn−1 ×M the unit sphere bundle of M . Fix an integer N ≥ 2 and
a continuous function W : SM → SU(N). For a continuous function
f : M → CN , define the W -weighted X-ray transform IWf of f by
letting

IWf(γ) =

∫ T

0

W (γ(t), γ̇(t))f(t)dt

for every unit speed line γ : [0, T ]→M with endpoints on ∂M .
As it will shortly turn out, pseudolinearization leads to this integral

transform. Weighted and especially attenuated X-ray transforms have
been studied before (see eg. [12, 27, 3, 50, 48, 4, 31, 32, 63]), but our
results about X-ray transforms with matrix weights are new to the best
of our knowledge. The matrix weight is, in a sense, an exponential,
and could therefore be regarded as an attenuation (see remark 5.3).
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The attenuated X-ray transform with matrix attenuation is related to
recovering a matrix valued connection from is parallel transport; for
results about connection problems, see [10, 17, 39, 36].

The (scalar) weights that arise in the proof of theorem 5.4 are not
attenuations. We have results for more general weights in section 7 and
we do not wish to pursue optimal regularity at the expense of clarity,
so we will not study the attenuated case further here.

Problem 5.1. Is the transform IW injective on continuous (CN -valued)
functions whenever n,N > 1? What if we assume the weight W and
the function f to be smooth? What if M is replaced with a compact
Riemannian manifold with boundary?

5.2. Ideal data. We are now ready to pseudolinearize our problem.
We assume ideal data in the sense of definition 2.2.

Theorem 5.2. Let Ω ⊂ Rn, n ≥ 2, be a convex bounded smooth domain
and write M = Ω̄. Suppose the sets I ,F ⊂ CN , N ≥ 2, give ideal
data. Let H : M → CN×N be continuous and pointwise hermitean.
Assume that we know |a∗Uγ

Hb| for all a ∈ F , b ∈ I and every line
γ : [0, T ] → Ω̄ through Ω. If IW is injective for any continuous weight
W : SM → SU(N2), then the data uniquely determines the trace free
part of H.

Proof. By lemma 4.3 we can assume that H is trace free and we
know Uγ

H for every line γ. We have replaced H with its trace free part,
so we aim to recover the function H without any gauge restrictions.

Suppose that for continuous, hermitean, trace free matrix functions
H, H̃ : SM → CN×N we have Uγ

H = Uγ

H̃
for every line γ through M .

We wish to show that H = H̃.
Fix any line γ : [0, T ]→M with endpoints on ∂M . Define V : [0, T ]→

SU(N) by

V (t) = Uγ
H(T, t)Uγ

H̃
(t, 0).

Since tr(H) = tr(H̃) ≡ 0, all time evolution operators are in fact special
unitary.

Since

d

dt
Uγ
H(T, t) = iUγ

H(T, t)H(γ(t)) and

d

dt
Uγ

H̃
(t, 0) = −iH̃(γ(t))Uγ

H̃
(t, 0),

(5)
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we have

0 = Uγ

H̃
(T, 0)− Uγ

H(T, 0)

= V (T )− V (0)

=

∫ T

0

d

dt
V (t)dt

= i

∫ T

0

Uγ
H(T, t)(H(γ(t))− H̃(γ(t)))Uγ

H̃
(t, 0)dt.

(6)

For every (x, v) ∈ SM , let γx,v : [0, Tx,v]→M be the unique maximal
line passing through point x in direction v. Let tx,v ∈ [0, Tx,v] be such
that γx,v(tx,v) = x. Define A,B : SM → SU(N) by

A(x, v) = U
γx,v
H (Tx,v, tx,v) and

B(x, v) = U
γx,v

H̃
(tx,v, 0).

(7)

These functions are continuous. Define f : M → CN×N by f(x) =
H(x)− H̃(x) and let W : SM → GL(CN×N) be defined by

W (x, v)(Z) = A(x, v)ZB(x, v)

for every matrix Z ∈ CN×N . If we endow CN×N with the standard
inner product, then the linear transformation Z 7→ A(x, v)ZB(x, v) is
a special unitary one since the matrices A(x, v) and B(x, v) are special
unitary. (We may think of CN×N as the tensor product CN⊗CN with A
acting on the first component and B acting on the second one. The
tensor product of special unitary matrices is again special unitary.)

Now we have a continuous function f : M → CN2
and a continuous

weight W : SM → SU(N2). Equation (6) reads now IWf = 0. Since
such transforms were assumed to be injective, we have f = 0 and thus
H = H̃. �

Pseudolinearization can also be used for reconstruction. One first
starts with an initial guess H0. The data for H0 and the true Hamilton-
ian H∞ determines an X-ray transform of H0−H∞ with weights given
by H0 and H∞; cf. (6). One can then approximate H0−H∞ by inverting
this transform with weights given by H0 and H0. (This means treating
the pseudolinearization as if it were the linearization; cf. section 5.3.)
This gives rise to an improved guess H1 for H∞, and one may proceed
iteratively to find successive approximations H2, H3, H4, . . . using the
same method. Then hopefully Hk → H∞ as k → ∞ in a suitable
sense. This idea been used to solve inverse problems numerically via
pseudolinearization in [6, 5].

Remark 5.3. The weight that arose in the proof of theorem 5.2 is of a
special kind. Identifying CN×N with CN⊗CN , the weight is W (x, v) =
A(x, v) ⊗ B(x, v)∗. Let us define the differential operator X = v · ∇x

acting on functions on SM ; this operator is known as the geodesic
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vector field and it generates the geodesic flow. Comparing equations (7)
and (5), we observe that XA = iAH and XB = −iBH̃, whence XW =
iWQ, where Q = H ⊗ I + I ⊗ H̃ (which is hermitean). The weight can
therefore be regarded as an attenuation. We will prove an injectivity
result for weighted X-ray transforms even for very rough weights in
section 7, and we need not assume that the weight is an attenuation.
A more detailed discussion of X-ray transforms is given in section 7.

The following result is based on weighted X-ray transforms with
scalar weights. We present the theorem in the amount of generality al-
lowed for by our result on local weighted X-ray transforms, theorem 7.3.
Results for such transforms are known also on manifolds [13, 57], so
the result can be easily generalized.

Theorem 5.4. Let Ω ⊂ Rn, n ≥ 3, be a strictly convex bounded smooth
domain and write M = Ω̄. Suppose the sets I ,F ⊂ CN , N ≥ 2, give
ideal data. Fix any α > 0. Let H0, G : M → CN×N be C1,α-smooth
and pointwise hermitean. Let H(x) = H0(x) + f(x)G(x) for a function
f ∈ C1,α(M). Assume that we know |a∗Uγ

Hb| for all a ∈ F , b ∈ I and
every line γ : [0, T ] → Ω̄ through Ω. If H0 and G are known and G is
nowhere a multiple of the identity, then the data uniquely determines
the function f .

Proof. By lemma 4.3 we can assume H0 and G to be trace free. The
trace free part of G does not vanish anywhere.

Suppose two functions f, f̃ ∈ C1,α(M) give the same data. As in (6),
we get

(8)

∫ T

0

(f(γ(t))− f̃(γ(t)))Uγ
H(T, t)G(γ(t))Uγ

H̃
(t, 0)dt = 0

for all lines γ : [0, T ] → M with endpoints on ∂M . If the line goes
through x ∈M and has direction v ∈ Sn−1 at time t, let us denote

wij(x, v) = [Uγ
H(T, t)G(γ(t))Uγ

H̃
(t, 0)]ij

for all indices 1 ≤ i, j ≤ N . In this way we can define wij(x, v) for all
(x, v) ∈ SM .

By (8) know that the scalar function g = f−f̃ has vanishing weighted
X-ray transform for each of the weights wij. Since the matrix whose
coefficients are wij is nonzero, the weights cannot vanish simultane-
ously. The weights are also C1,α on SM , so every point (x, v) ∈ SM
has a neighborhood where one of the weights wij is bounded away from
zero. In particular, if x ∈ ∂M and v is tangent to ∂M , there is such a
neighborhood. Furthermore, since g is real valued, its weighted X-ray
transform vanishes also with the weight Re(λwij) for any λ ∈ C; we
can thus always locally find a strictly positive real weight for the X-ray
transform.
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Now, using theorem 7.3 with N = 1, we observe that f − f̃ = 0 in
some neighborhood of x. We may iterate this argument (a similar layer

stripping method was presented in [62]) to show that f − f̃ = 0 in all
of M . The method presented in [62] requires a foliation condition that
is satisfied by a strictly convex Euclidean domain. (Instead of iteration,
one can also argue by contradiction as in the proof of theorem 7.2.) �

5.3. Linearization. Since we have been able to give some answers to
the full nonlinear problem 2.1, we will only briefly discuss its lineariza-
tion.

The linearized problem will lead to a similar weighted X-ray trans-
form problem that arose in the proof of theorem 5.2. The difference is
that the weight will be known (dependent on the reference Hamiltonian
at which we linearize) and therefore easier to invert. For completeness,
we prove below that this is indeed the correct linearization. Lineariza-
tion may be a relevant approach when the Hamiltonian is known to be
close to a known Hamiltonian or when one wishes to track (slow) time
dependence of the Hamiltonian.

Proposition 5.5. Let Hs be a family of smooth Hamiltonians in a
domain Ω ⊂ Rn parameterized smoothly by s ∈ (−ε, ε) for some ε > 0.
Let γ : [0, T ]→ Ω̄ be a line. Then

d

ds
Uγ
Hs
|s=0 = i

∫ T

0

Uγ
H0

(T, t)
d

ds
Hs(γ(t))|s=0U

γ
H0

(t, 0)dt.

Proof. We can see from equation (6) that for any s we have

(9) Uγ
Hs
− Uγ

H0
= i

∫ T

0

Uγ
H0

(T, t)(H0(γ(t))−Hs(γ(t)))Uγ
Hs

(t, 0)dt.

Let us denote H ′(x) = d
ds
Hs(x)|s=0. Since H0(γ(t)) − Hs(γ(t)) =

sH ′(γ(t)) + o(s) and Uγ
Hs

(t, 0) = Uγ
H0

(t, 0) + o(1) as s → 0 (follows
from (9)), we have

Uγ
Hs
− Uγ

H0
= is

∫ T

0

Uγ
H0

(T, t)H ′(γ(t))Uγ
H0

(t, 0)dt+ o(s)

as claimed. �

6. Unordered time evolution

In section 2 we introduced the time evolution operator and mentioned
that it could be expressed as a time ordered exponential. We will now
investigate what happens if we replace the time ordered exponential
with the usual matrix exponential. This problem is no longer quantum
mechanically relevant, but it makes an interesting mathematical inverse
problem all the same.

If the Hamiltonian H satisfies [H(x), H(y)] = 0 for all x, y ∈ Ω, then
the time ordered and the usual unordered exponentials of all integrals
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of H coincide. We do not assume this commutator property in this
section, and therefore the time ordered and regular matrix exponentials
are different.

We have a set of initial states I ⊂ CN and a set of final states
F ⊂ CN and for all lines γ : (0, T ) → Ω with endpoints on ∂Ω we
know the inner products∣∣∣∣Φ∗ exp

(
−i
∫ T

0

H(γ(t))dt

)
Ψ

∣∣∣∣
for all Φ ∈ F and Ψ ∈ F . The only difference to problem 2.1 is
that T exp is replaced with exp.

In the case of ideal data this means that the matrix

(10) exp

(
−i
∫ T

0

H(γ(t))dt

)
can be recovered up to a phase. For ideal data, the unordered problem
is now this:

Problem 6.1. Let Ω ⊂ Rn be a domain. If for all line segments
γ : [0, T ] → Ω̄ with endpoints on ∂Ω we know the matrix (10), how
much can we infer about the Hamiltonian H?

This problem quickly leads to this auxiliary problem:

Problem 6.2. Let A,B be two hermitean N ×N matrices. When do
we have eiA = eiB? Can we classify the pairs of matrices that have the
same exponential?

We give a solution to this problem in proposition 6.3 below, but,
unfortunately, this result is difficult to work with. Therefore instead
of the full problem we treat the linearization. Dropping time ordering
from the exponential makes a huge difference in the linearization, as we
shall see below. The answer to problem 6.1, linearized at any constant
Hamiltonian, is given in theorem 6.13 below.

6.1. When do two matrices have the same exponential? Fix
some integer N ≥ 1. For an N × N matrix A, let us denote its
eigenspace corresponding to the eigenvalue λ ∈ C by

EA
λ = ker(A− λI).

Let us also define the “periodic eigenspaces”

FA
λ =

⊕
k∈Z

EA
λ+2πk.

With these spaces we can formulate a simple answer to problem 6.2.

Proposition 6.3. Let N ≥ 1 be an integer and A and B two her-
mitean N ×N matrices. Then the following are equivalent:

(1) eiA = eiB,
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(2) FA
λ = FB

λ for all λ ∈ R.

Proof. 2 =⇒ 1: Let 0 ≤ λ1 < λ2 < · · · < λn < 2π be the numbers
for which dim(FA

λk
) > 0 and denote the corresponding spaces by Sk =

FA
λk

= FB
λk

. Now CN is an orthogonal direct sum of the spaces S1, . . . , Sn
and the matrices A and B are block diagonal in this decomposition
(that is, A(Sk), B(Sk) ⊂ Sk for all k). Let Ak, 1 ≤ k ≤ n, denote the
corresponding block of A, and similarly Bk, Uk and Vk for B, U = eiA

and V = eiB.
Considering kth block only, we have eiAk = Uk and eiBk = Vk. All

eigenvalues of Ak are in λk + 2πZ, so the only eigenvalue of Uk is eiλk .
Similarly, the only eigenvalue of Vk is also eiλk , so Uk = eiλkI = Vk.
Since Uk = Vk holds for each k, we have arrived at U = V .

1 =⇒ 2: Let us show that FA
λ = EeiA

eiλ
for all λ ∈ R. The desired

conclusion follows from this claim.
The inclusion FA

λ ⊂ EeiA

eiλ
is elementary and holds also in the case

EeiA

eiλ
= 0. But∑

0≤λ<2π

dim(FA
λ ) =

∑
λ∈R

dim(EA
λ ) = N =

∑
0≤λ<2π

dim(EeiA

eiλ ),

so we must have dim(FA
λ ) = dim(EeiA

eiλ
). This concludes the proof of

the claim. �

Remark 6.4. The matrix exponential map is not a homomorphism (cf.
the Baker–Campbell–Hausdorff formula), so finding which matrices
have the same exponential cannot be simply reduced to finding the
kernel of the exponential map. In the simple case where [A,B] = 0 it
can be checked that eiA = eiB if and only if the spectrum of A− B is
contained in 2πZ, but neither direction of this result remains true if we
assume no commutativity.

6.2. Preparations for linearization. Let us fix an integer N ≥ 1 as
before. Let SH and U denote the sets of skew-hermitean and unitary
matrices of dimension N . We define the exponential map exp: SH →
U by exp(A) = eA =

∑∞
k=0

1
k!
Ak. For A ∈ SH, we define the adjoint

map adA : SH → SH by adAB = [A,B]. We also define the adjoint
map AdU : SH → SH by AdU A = UAU−1 for U ∈ U .

Let ϕ(z) = z−1(1− e−z) =
∑

k=0
(−1)k
(k+1)!

zk. Using this power series we

can also define the operator ϕ(adA) : SH → SH.
The solution of problem 6.2 given by proposition 6.3 is difficult to

work with, so we linearize the problem. For this we will need the de-
rivative of the exponential. The following two lemmas are well known,
but we record them explicitly for the sake of an easy reference. The rest
of this section is devoted to lemmas which we will need in section 6.3.

Lemma 6.5. The derivative of the exponential map is d expA = eAϕ(adA).
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Lemma 6.6. Adexp(A) = eadA for any A ∈ SH.

Lemma 6.7. For any A ∈ SH we have SH = ker adA⊕ im adA.

Proof. We can assume A to be diagonal. We fix a basis so that we can
write A in the block form

(11) A = i


λ1Ik1

λ2Ik2
. . .

λmIkm


where λ1 < λ2 < · · · < λm are the distinct eigenvalues of −iA and Ik
is the k × k identity matrix.

The kernel ker adA consists of block diagonal matrices whose blocks
are of size k1 × k1, k2 × k2, . . . , km × km (ie. with block structure cor-
responding to that of A). For a complex k1 × k2 matrix C, let us
denote

(12) BC = i


0 C
C∗ 0

. . .
0

 .

It now suffices to show that the matrix BC , for any C, is in the image
of adA; all other matrices with zero block diagonal (corresponding to
the block structure of A) can be expressed as sums of matrices of this
form. Now a simple calculation shows that [A,BC ] = (λ1 − λ2)BiC .
Therefore BC = [A, (λ1 − λ2)−1B−iC ] ∈ im adA. �

Lemma 6.8. For A ∈ SH define FA : SH → SH by FA = id−Ade−A.
We always have ker adA ∩ imFA = {0}. Furthermore, SH = ker adA⊕ imFA
if and only if no two eigenvalues of −iA differ by a number in 2πZ\{0}.

Proof. Let us writeA again in the block form (11). It is clear that ker adA
consists of block diagonal matrices (with block structure corresponding
to that of A). Let us see why such matrices are not contained in the
image of FA.

Let BC denote the off-diagonal matrix of (12) as in lemma 6.7.
(Again we can without loss of generality only consider the first two
eigenvalues; other pairs can be dealt with similarly.) Now a calculation
shows that

(13) FABC = B(1−eiλ2−iλ1 )C .

Hence imFA contains only matrices with zero diagonal, and ker adA ∩ imFA =
{0}.

Let us then suppose that the condition on eigenvalues of −iA holds.
Then 1− eiλ2−iλ1 6= 0, so BC = FA(1− eiλ2−iλ1)−1BC ∈ imFA for all C.
This implies that SH = ker adA⊕ imFA.
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Suppose then that SH = ker adA⊕ imFA. This implies that for
each k1 × k2 matrix D there is a matrix C of the same dimensions
so that FABC = BD. Due to the identity (13) this is requires that
eiλ2−iλ1 6= 1, so λ1 − λ2 /∈ 2πZ. �

Lemma 6.9. We have

d expA(B + C) = eAB + [eA, D]

for any A ∈ SH, B ∈ ker adA and C = adAD ∈ im adA.

Proof. Using lemma 6.5 we have

d expA(B + C) = eAϕ(adA)(B + C).

Now adAB = 0 so ϕ(adA)B = B. By lemma 6.6 we have

ϕ(adA)C = ϕ(adA) adAD

= (1− e− adA)D

= D − Adexp(−A)D
= D − e−ADeA.

Combining these gives the claimed equation. �

Lemma 6.10. For any A ∈ SH the following are equivalent:

(1) The derivative d expA is a bijection.
(2) All matrices that commute with eA commute with A.
(3) For any distinct eigenvalues iλ and iµ of A we have µ−λ /∈ 2πZ.

Proof. 1 ⇐⇒ 3: By lemma 6.7 we have SH = ker adA⊕ im adA. Let
B ∈ ker adA and C ∈ SH. By lemma 6.9 e−Ad expA(B + adAC) =
B +C − e−ACeA. Thus by lemma 6.8 d expA is bijective if and only if
condition 3 holds.

2⇐⇒ 3: Let us change the basis so that A comes to the block form

A = i


λ1Ik1

λ2Ik2
. . .

λmIkm


where λ1 < λ2 < · · · < λm are the eigenvalues of −iA and Ik is the k×k
identity matrix. Then

eA =


eiλ1Ik1

eiλ2Ik2
. . .

eiλmIkm

 .

Now it is clear that there are matrices that commute with eA but not A
if and only if eiλi = eiλj for some i 6= j. But this is equivalent with
λi − λj ∈ 2πZ. �
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Lemma 6.11. For any A ∈ SH the set

SA = {t ∈ R; d exptA is not bijective}
is countable and discrete.

Proof. Let σ ⊂ R be the set of eigenvalues of iA. Then by lemma 6.10

SA = {2πz/(λ− µ); z ∈ Z \ {0}, λ, µ ∈ σ, λ 6= µ}.
This set is clearly countable and discrete. �

6.3. Solution of the linearized problem. We are now ready to solve
a linearized version of our problem. Physically linearization amounts
to assuming the Hamiltonian to be very close to some known Hamil-
tonian H0. We make the additional assumption that H0 is a constant
matrix, independent of the position x ∈ Ω. We believe that the lin-
earized problem can be solved in a similar way even for nonconstant H0

(at least generically if not for every H0 in every domain).
Denoting by H the small deviation from H0, we see from equa-

tion (10) that the linearized problem is to recoverH from the knowledge
of

d exp−iTH0
i

∫ T

0

H(γ(t))dt

up to a multiple of e−iTH0 . We will need a little geometrical lemma to
solve this problem.

Lemma 6.12. Let Ω ⊂ Rn be a domain. Then for every r ∈ R the set
Ar = {(x, y) ∈ ∂Ω× ∂Ω; d(x, y) = r} ⊂ ∂Ω× ∂Ω is closed and has no
interior points.

Proof. Closedness follows from the continuity of the distance function
d : ∂Ω × ∂Ω → R. Since Ar = ∅ for r < 0 and A0 is the (closed)
diagonal of ∂Ω× ∂Ω, it remains to consider r > 0.

Suppose (x, y) is an interior point of Ar for some r > 0. Then there is
δ > 0 so that d(z, w) = r for all z ∈ B(x, δ)∩∂Ω and w ∈ B(y, δ)∩∂Ω.
Fixing z = x shows that near y the boundary ∂Ω is a sphere centered
at x; and similarly near x it is a sphere centered at y. Let L be
the line containing x and y. Let L′ be a line parallel to L with a
distance less than δ to it. Let z be the unique point in the intersection
L′ ∩ B(x, δ) ∩ ∂Ω and similarly w ∈ L′ ∩ B(y, δ) ∩ ∂Ω. Then clearly
d(z, w) < r, a contradiction. �

Theorem 6.13. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain. Let
H ∈ C(Ω̄,CN×N) take values in hermitean matrices and let H0 be a
fixed hermitean matrix. Suppose that for every line γ : [0, T ]→ Ω̄ with
endpoints on ∂Ω we know

eiTH0d exp−iTH0
i

∫ T

0

H(γ(t))dt
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up to an unknown multiple of the identity matrix. Then we can recover
the trace free part of H(x) for every x ∈ Ω.

Proof. Let us denote by A the space of trace free hermitean N×N ma-
trices. We can then decompose the unknown matrix function uniquely
as H(x) = A(x) +h(x)I where A(x) ∈ A and h(x) ∈ R. Both A and h
are continuous functions.

By lemmas 6.11 and 6.12 we know that d expd(x,y)H0
is injective for

a dense set of pairs (x, y) ∈ ∂Ω × ∂Ω. By continuity and density, we
can recover the integral ∫ T

0

A(γ(t))dt

for every line γ : [0, T ]→ Ω̄. (Note that by lemma 6.9 eiTH0d exp−iTH0

maps multiples of identity to multiples of identity.) By injectivity of
the X-ray transform in Euclidean domains (see eg. [19, 33, 44, 7]), we
can recover A everywhere in Ω. �

There may be lines for which the corresponding derivative of the
exponential is not injective. The set of singular lines has no interior
points so we were able to use a density argument, but we suspect
that this renders recovery somewhat unstable. A stability result for
the linearized problem would give a local uniqueness result for the full
problem.

7. X-ray transforms with matrix weights

Let M be the closure of a compact, smooth domain in Rn. Let
SM = M × Sn−1 denote the unit sphere bundle on M and L the
manifold of maximal directed lines in M , which is the quotient of SM
by the geodesic flow. Let πM : SM → M and πL : SM → L be the
projection and the quotient map.

Let W : SM → CN×N be a continuous matrix function. We define
the weighted X-ray transform IWf : L→ CN of a continuous function
f : M → CN by

IWf(γ) =

∫ T

0

W (γ(t), γ̇(t))f(γ(t))dt

for any line γ : [0, T ]→M .
We will first restrict our attention to the case n = 2 and later use

results from this case for higher dimensions.
For any p ∈M such that W (p, v) is invertible for all v ∈ Sn−1 there

is a continuous function Qp
W : L → CN×N so that (π∗LQ

p
W )W = I on

the fiber SpM = {p} × Sn−1. This will allow us to make the weight
trivial at any single chosen point p ∈M in all directions.
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Let Iα denote the Riesz potential

Iαf(x) = cα

∫
R2

1

|y|2−α
f(x+ y)dy.

The size of the constant cα is irrelevant for us, but we remark that
c1 = 1/2π. Let P be the back projection operator defined on functions
g : L→ CN by Pg : M → CN ,

Pg(x) =
1

2π

∫
S1

π∗Lg(x, v)dv.

We will invert IW for suitable weights W by freezing the weight at
a point near the boundary and using the identity PIIf = I1f and
injectivity of the Riesz potential in suitable spaces. This gives a proof
of injectivity in two dimensions in a sufficiently small domain (where
the weight is close enough to the identity matrix), which in turn gives
a more general injectivity results in dimension three or higher. (Injec-
tivity in small domains was proved for the attenuated X-ray transform
in [11] with smooth scalar attenuations.) Our proof is based on the
ideas of [27], but we improve it in two important ways. We allow
rougher weights; in particular, we need not assume that the weight has
even a first derivative. Most importantly — from the point of view of
problem 5.1 at least — we allow the weight to be any invertible matrix.
A similar problem for X-ray transforms with matrix weights has been
studied before by several authors [36, 18, 24, 37, 63]. There is also
a recent preprint [42] with very general results for matrix weights on
manifolds.

Injectivity of IW requires that the weight W is sufficiently regular.
Our regularity assumption is quite relaxed, as we do not require dif-
ferentiability. Assumptions on the weight are less stringent in dimen-
sion three and higher because the problem is formally overdetermined.
There are counterexamples to injectivity if the weight is not regular
enough; see [27, 3].

Lemma 7.1. Suppose 0 ∈ M ⊂ R2. Take any β > 0 and consider a
weight W which satisfies W ∈ Cβ(M,Lip(S1,CN×N)) and W (0, v) = 0
for all v ∈ S1. There are p ∈ (1,∞) and ε > 0 so that for any δ > 0
we have for any f ∈ Lp(B(0, δ) ∩M,CN)

‖∇PIWf‖p ≤ Cpδ
ε ‖W‖Cβ(M,Lip(S1,CN×N )) ‖f‖p ,

where Cp is a constant depending only on p.

Proof. Let us denote by . inequalities including constants that only
depend on the exponents. Let us assume that f is supported in B(0, δ).
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Let i ∈ {1, 2} and j = 3− i. A calculation gives

∂iPIWf(x) =
1

2π
∂i

∫
R2

1

|y|
W (x+ y, y/ |y|)f(x+ y)dy

=
1

2π

∫
R2

1

|y|
[∂iW (x+ y, y/ |y|)f(x+ y)

+W (x+ y, y/ |y|)∂if(x+ y)]dy

=
1

2π

∫
R2

[
yi
|y|
W (x+ y, y/ |y|)

− (−1)i
yj
|y|
∂vW (x+ y, y/ |y|)

]
1

|y|
f(x+ y)dy.

(We may use a simple approximation argument to justify the above
calculation with the assumed regularity of W and f .) Therefore, if
K(x) = 1

|x| supv∈S1(|W (x, v)|+ |∂vW (x, v)|), we have

|∇PIWf(x)| .
∫
B(−x,δ)

K(x+ y)
1

|y|
|f(x+ y)| dy.

By Hölder’s inequality,

|∇PIWf(x)| . ‖K‖Lk′ (B(0,δ)) (I2−k |f |k (x))1/k

for any k ∈ [1, 2). (The proof given in [27] uses this estimate for k = 1
only, which leads to a more restricting regularity assumption.) By the
Hardy–Littlewood–Sobolev inequality

‖Iαg‖s . ‖g‖q ,

where α ∈ (0, 2), q = 2s/(2 + αs) and s ∈ [1,∞). (The requirement
q < 2/α is always satisfied.)

Combining our estimates with s = p/k and α = 2− k, we have

‖∇PIWf(x)‖Lp(R2) . ‖K‖Lk′ (B(0,δ))

∥∥∥I2−k |f |k∥∥∥1/k
Lp/k(R2)

. ‖K‖Lk′ (B(0,δ))

∥∥∥|f |k∥∥∥1/k
Lq(R2)

= ‖K‖Lk′ (B(0,δ)) ‖f‖Lkq(B(0,δ)) .

Assuming kq < p (or equivalently 2 < (2+p)(2−k)) Hölder’s inequality
gives

‖f‖Lkq(B(0,δ)) . δ
2+2p−kp−2k

kp ‖f‖Lp(B(0,δ)) .

If k < 2, the condition 2 < (2 + p)(2 − k) is satisfied for sufficiently
large p, so that

(14) ‖∇PIWf(x)‖Lp(R2) . ‖K‖Lk′ (B(0,δ)) δ
2+2p−kp−2k

kp ‖f‖Lp(B(0,δ)) .

We therefore want to have K ∈ Ls(M) for some s > 2.
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Since W ∈ Cβ(M,Lip(S1,CN×N)) and W (0, v) = 0 for all v, we have

K(x) . |x|β−1. If we choose s ∈ (2, 2/(1− β)), we get K ∈ Ls(M). It
remains to choose p so that 2 < (2 + p)(2− s′). Inequality (14) is now
the desired estimate. �

We are now ready to give an answer to problem 5.1. Using theo-
rem 5.2, we can determine the trace free part of the Hamiltonian H
from our quantum measurements, provided that H ∈ C1,β for some
β > 0. This was stated as theorem 2.3.

Theorem 7.2. Let M be the closure of a bounded convex domain in Rn,
n ≥ 3, and let β > 0. Let W ∈ Cβ(M,Lip(Sn−1,CN×N)) be invertible
at every point on SM = M×Sn−1. (This regularity assumption is true,
in particular, if W ∈ C1,β(SM,CN×N).) If f ∈ C(M,CN) satisfies
IWf = 0, then f = 0.

Proof. Suppose f 6= 0 but IWf = 0. Take p in the intersection of spt(f)
and the boundary of its convex hull so that there is a subtangent plane
of the convex hull at p touching the support only at p. We shrink M
to be this convex hull. Let ν ∈ Sn−1 a vector pointing inward from p.

For t > 0 denote xt = p + tν and suppose t is so small that xt ∈
intM . Let G be the set of two dimensional subspaces of the chosen
tangent plane at p. Denote MT

t = (xt + T ) ∩M for t > 0 and T ∈
G. Let δt be the maximum of diameters of MT

t , T ∈ G. We will
consider the weighted X-ray transform of f on each MT

t , and for the
sake of simplicity we will consider T ∈ G fixed and suppress it from
the notation. To that end, let us denote the restrictions of f and W
to Mt by ft and Wt, respectively, and the set of lines on Mt by Lt.

Define Qt : S
1 → CN×N by Qt(v) = Wt(xt, v)−1. This is a Lips-

chitz function, and we may define another Lipschitz function Q̃t : Lt →
CN×N by letting Q̃t(`) = Qt(v`), where v` ∈ S1 is the direction of the
directed line `. The Lipschitz constant of Q̃t is uniformly bounded in t.

Since IWtft = 0, we have I(π∗LtQ̃t)Wt
ft = Q̃tIWtft = 0. Let us denote

W̃t = (π∗LtQ̃t)Wt. The function π∗LtQ̃t : Mt × S1 → CN×N is Lips-
chitz (uniformly in t) and only depends on the direction, so we have∥∥∥W̃t

∥∥∥
Cβ(M,Lip(S1,CN×N ))

. 1 uniformly in t and W̃t(xt, v) = I for all

v ∈ S1. Using lemma 7.1 we have

C ‖ft‖p ≤ ‖∇I1ft‖p
= ‖∇PIIft‖p
=
∥∥∇PIW̃t

ft +∇PII−W̃t
ft
∥∥
p

≤
∥∥∇PIW̃t

ft
∥∥
p

+
∥∥∇PII−W̃t

ft
∥∥
p

≤
∥∥∇PIW̃t

ft
∥∥
p

+ cδεt ‖ft‖p
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for a sufficiently large fixed p and some constants C, c, ε > 0. Note
that this estimate is uniform in T ∈ G. Since δt → 0 as t→ 0, there is
t0 > 0 is such that cδεt < C/2 for all t < t0. For t < t0 we get thus

(15)
C

2
‖ft‖p ≤

∥∥∇PIW̃t
ft
∥∥
p
.

But IW̃t
ft = 0 so ft = 0 for t < t0. This means that f = 0 in⋃

0≤t<t0
⋃
T∈GM

T
t , which is a neighborhood of p. Due to our choice of p,

this is impossible. Therefore IWf = 0 is only possible if f = 0. �

It is not actually necessary that W (x, v) is invertible for all (x, v) ∈
SM . The proof above only used invertible for v in a subspace home-
omorphic to Sn−2 of Sn−1, given x. If one wants to recover a function
from its integrals over some set of lines L′ ⊂ L, it can only be done
stably if the normal bundle of L′ covers SM (see eg. [43, 55, 13]).

Inspecting the proof of theorem 7.2, we see that we have in fact also
proven the following local result. A similar result on manifolds (with
n ≥ 3, N = 1 and W ∈ C∞) was shown by Stefanov, Uhlmann and
Vasy [57, Corollary 3.2]. As mentioned above, an earlier Euclidean
version can be found in [27] (for C2 scalar weights) and in [55] (for C∞

scalar weights using microlocal tools).

Theorem 7.3. Let M be the closure of a bounded convex C1 domain
in Rn, n ≥ 3, and let β > 0. Let W ∈ Cβ(M,Lip(Sn−1,CN×N)) be a
weight. Fix p ∈ ∂M . Suppose p has a neighborhood U so that W (x, v) is
invertible for all x ∈ U and v in a neighborhood of tangential directions
at p. Suppose for f ∈ C(U,CN) we have IWf(γ) = 0 for all lines γ
that stay in U . Then there is a possibly smaller neighborhood U ′ ⊂ U
of p so that f |U ′ = 0.

The proof also gives a stability estimate for the local problem; cf. (15).
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E-mail address: joonas.ilmavirta@jyu.fi

http://arxiv.org/abs/1210.2084

	1. Introduction
	1.1. Outline

	2. The quantum mechanical problem
	2.1. Results

	3. Physical discussion
	3.1. Neutrino oscillation
	3.2. Tensor Hamiltonians

	4. Gauge conditions for measurements
	5. Pseudolinearization
	5.1. Matrix-weighted X-ray transform
	5.2. Ideal data
	5.3. Linearization

	6. Unordered time evolution
	6.1. When do two matrices have the same exponential?
	6.2. Preparations for linearization
	6.3. Solution of the linearized problem

	7. X-ray transforms with matrix weights
	Acknowledgements
	References

