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2 E. Iversen et al.

SUMMARY

With a Hamilton-Jacobi equation in Cartesian coordinates as a starting point, it is

common to use a system of ordinary differential equations describing the continua-

tion of first-order phase-space perturbation derivatives along a reference ray. Such

derivatives can be exploited for calculation of geometrical spreading on the reference

ray, and for establishing a framework for second-order extrapolation of traveltime

to points outside the reference ray. The continuation of the first-order phase-space

perturbation derivatives has historically been referred to as dynamic ray tracing.

The reason for this is its importance in the process of calculating amplitudes along

the reference ray. We extend the standard dynamic ray tracing scheme to include

higher orders in the phase-space perturbation derivatives. The main motivation is

to extrapolate and interpolate important amplitude and phase properties of high-

frequency Green’s functions with better accuracy. Principal amplitude coefficients,

geometrical spreading factors, traveltimes, slowness vectors, and curvature matrices

are examples of quantities for which we enhance the computation potential. This,

in turn, has immediate applications in modelling, mapping, and imaging. Numerical

tests for 3D isotropic and anisotropic heterogeneous models yield clearly improved

extrapolation results for traveltime and geometrical spreading. One important con-

clusion is that the extrapolation function for geometrical spreading must be at least

third order to be appropriate at large distances away from the reference ray.

Key words: Numerical approximations and analysis; Numerical modelling; Body

waves; Computational seismology, Seismic anisotropy; Wave propagation

Page 2 of 52Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 3

1 INTRODUCTION

We consider higher-order Hamilton-Jacobi perturbation theory for anisotropic heterogeneous

media. This theory arise from differentiation of the Hamilton system for ray tracing in phase

space (Hamilton 1837). Specifically, we discuss the higher-order perturbations of a Hamilto-

nian flow with respect to its initial conditions in phase space.

The resulting perturbation coefficients can be used for higher-order extrapolation or in-

terpolation of important quantities related to the amplitude and phase of the high-frequency

Green’s function: Traveltime, geometrical spreading, amplitude coefficients, polarization direc-

tions. The methodology has immediate applications in contexts where high-frequency Green’s

functions are used extensively, e.g., in modelling, mapping, and imaging.

The leading-order perturbation yields the linearized or first-order Hamilton-Jacobi per-

turbation system, the integration of which is commonly used, for example, to construct the

geometrical spreading. In solid earth geophysics this process is known as dynamic ray trac-

ing. We focus on integration of higher-order Hamilton-Jacobi perturbation equations — using

point-source and local plane-wave initial conditions — in Cartesian phase-space coordinates.

Ray perturbation has been studied for decades commonly from a paraxial point of view

(Červený 1972; Farra & Madariaga 1987; Bortfeld 1989; Hubral et al. 1992; Klimeš 1994;

Červený 2001; Chapman 2004; Iversen 2004b; Moser & Červený 2007; Červený & Moser 2007;

Iversen & Pšenč́ık 2008; Červený & Pšenč́ık 2010). We note that the leading-order perturba-

tion of traveltime with respect to source and receiver location requires only the propagator

associated with the linearized or first-order Hamilton-Jacobi system (Červený et al. 1984,

2012). Perturbation can be viewed as local extrapolation but can also be exploited for inter-

polation with derivatives. Our main motivation is extrapolating not only traveltime but also

geometrical spreading away from a reference ray, that is, the geometrical spreading along a

neighboring (paraxial) ray obtained by perturbation in phase space. We note that the integra-

tion of the higher-order Hamilton-Jacobi perturbation equations also opens for more accurate

extrapolation of principal amplitude coefficients.

For higher-order derivatives of the traveltime only, in fact, one does not need to consider

higher-order Hamilton-Jacobi perturbation equations (Goldin & Duchkov 2003). Indeed, for

isotropic media Červený (2001) outlines a procedure by which higher-order derivatives of the

traveltime can be obtained by a number of closed-form integrations along the reference ray. To

our knowledge, however, this approach is not yet developed for anisotropic media; moreover, it

will not be sufficient if the objective is also to permit non-trivial extrapolation of geometrical

spreading.
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4 E. Iversen et al.

The developed methodology has the following main applications:

• Fast computation of high-frequency elastic-wave Green’s functions through (Hermite or

spline) interpolation and extrapolation of amplitude and phase with derivatives. Our pro-

cedure holds in generally anisotropic media, leading to systems of equations describing the

propagation of elastic waves, of principal type.

• Fast Generalized Radon Transform (GRT) inversion, where the amplitude and traveltime

of the rays from the image point to the sources and receivers can be extrapolated from two

reference rays (de Hoop et al. 1994; de Hoop & Bleistein 1997; Bleistein et al. 2001; Beylkin &

Burridge 1990; Stolk & de Hoop 2002; Brandsberg-Dahl et al. 2003a,b; Sollid & Ursin 2003;

Ursin 2004; Foss & Ursin 2004; Foss et al. 2004, 2005).

• Extrapolation from the reference rays of map depth migration (Iversen & Gjøystdal

1996; Douma & de Hoop 2006), with the assumption that the scattering is from interfaces.

Asymptotically, one only needs a narrow fan of rays illuminating a reflector.

• True-amplitude time migration, that is, migration in image-ray coordinates and restricted-

angle transform through extrapolation; here, the reference rays are image rays. This is con-

sidered a further development of earlier work on true-amplitude depth migration and time-

to-depth mapping (Hubral 1977, 1983; Schleicher et al. 2007; Tygel et al. 2012; Iversen et al.

2012).

We make the observation that true-amplitude time migration formulated in this way explic-

itly shows that the relevant quantities can be obtained from the generalized Dix procedure

for reconstruction of a Riemannian metric in ray-centred coordinates or Fermi coordinates

(Cameron et al. 2007; Iversen & Tygel 2008; de Hoop et al. 2014, 2015).

• Ray-based extended depth imaging through extrapolation (Stolk & de Hoop 2006; de Hoop

et al. 2009). Here, the reference rays are the ones for map migration.

• Map migration and depth imaging based on isochron rays (Iversen 2004a; Duchkov &

de Hoop 2010).

• Source-receiver continuation and characterization of the range of the single scattering

operator. Here, extrapolation provides the local flow along characteristic strips (de Hoop &

Uhlmann 2006).

• Common-reflection-surface (CRS) processing techniques (e.g., Rabbel et al. 1991; Jäger

et al. 2001). These techniques utilize that coherent local reflection events in the recorded data

constitute a (hyper)surface, typically given in source-receiver coordinates or midpoint-offset

coordinates (Ursin 1982). The CRS time surface is conventionally considered to be a second-
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 5

order approximation. When higher-order coefficients are available from ray theory one could

consider an extension also of the CRS techniques to higher orders.

The paper is organized as follows. First, we describe the basic concepts of Hamilton-Jacobi

theory, followed by a review of conventional dynamic ray tracing in Cartesian coordinates.

Then, we introduce higher-order Hamilton-Jacobi phase-space perturbation equations and the

constraint relations pertaining to them. We also specify initial conditions for the point-source

and plane-wave situations. Assuming that the necessary phase-space perturbation data has

been computed, we formulate approaches for higher-order paraxial extrapolation of traveltime

and geometrical spreading. The Hamiltonian is mostly treated as a “black box” with certain

fundamental properties. As we see it, this widens the number of applications where the theory

can be used. One section is however devoted to specific Hamiltonians. After the theory sections

we show numerical examples for three related 3D heterogeneous models. We also discuss briefly

the connections to differential geometry. For an overview of the main mathematical symbols

used in the paper, see Table 1.

2 HAMILTON-JACOBI EQUATION IN CARTESIAN PHASE SPACE

Consider a Cartesian coordinate system with the position vector x = (xi) and slowness (mo-

mentum) vector p = (pi). We form the phase space w = (wr) = (xi, pj), where all six

components vary freely. In the phase space (wr) we further consider a reference ray Ω given

as a function of the time τ , so that

wr = ŵr(τ). (1)

Equation (1) can be associated with an equation of the Hamilton-Jacobi type,

H (w) = Ĥ , (2)

where the function H (w) is referred to as the Hamiltonian, and Ĥ is a nonzero constant.

The Hamilton-Jacobi equation (2) is a nonlinear first-order partial differential equation for

the time τ along Ω— in the context of wave propagation it is also often called the Eikonal

equation.

One can interpret equation (2) to represent a hypersurface (manifold) in phase space

with five degrees of freedom. This hypersurface is typically not available as a specific, exact,

function; rather, it will be known through derivatives evaluated up to a certain order with

respect to phase-space coordinates at points on Ω.

We assume that H is a homogeneous function of degree two in the slowness components,
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6 E. Iversen et al.

pi. Then, Euler’s theorem for homogeneous functions yields

pi
∂H
∂pi

= 2H . (3)

The specific formulation chosen for the Hamiltonian will determine what will be the indepen-

dent variable along rays. For this variable to be the time τ , the Hamiltonian must satisfy

pi
∂H
∂pi

= 1. (4)

In view of equation (3) the constant in equation (2) is therefore Ĥ = 1/2.

The total temporal derivatives of position and momentum vectors can be computed using

Hamilton’s equations,

dxi
dτ

=
∂H
∂pi

,
dpi
dτ

= −∂H
∂xi

. (5)

Integration of the ordinary differential equations (ODEs) in equation (5) yields the solution

functions x̂i(τ) and p̂i(τ) on Ω, as well as the time derivative of these functions,

vi(τ) =
dx̂i
dτ

(τ), ηi(τ) =
dp̂i
dτ

(τ). (6)

We note that v = (vi) signifies the ray-velocity (group-velocity) vector, while the time deriva-

tive of the slowness vector, η = (ηi), is referred to as just the eta vector. The fundamental

requirement in equation (4) and the first sub-equations of (5)–(6) show that the slowness

vector and ray-velocity vector must satisfy

pivi = 1 (7)

along the ray Ω.

Hamilton’s equations may alternatively be formulated compactly as

dwr
dτ

= Jrs
∂H
∂ws

, (8)

where Jrs are components of the 6× 6 matrix

J = {Jrs} =

 {0ij} {δij}

−{δij} {0ij}

 . (9)

The right-hand side of equation (8) is the Hamiltonian vector field corresponding to the

Hamiltonian H .

Differentiation of equation (3) with respect to pi yields the important relation

∂2H
∂pi∂pj

pj =
∂H
∂pi

, (10)

which holds for general locations in phase space. For other useful expressions involving deriva-

tives of the Hamiltonian, see Appendix A.
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 7

On the ray Ω equation (10) is recast to

Vij(τ) p̂j(τ) = vi(τ), (11)

where

Vij(τ) =
∂2H
∂pi∂pj

(ŵ(τ)). (12)

In physics, the quantity {Vij} is often referred to as the wave-propagation metric tensor

(Klimeš 2002a). In Riemannian geometry (e.g., Bao et al., 2012), the hypersurface (2) is

approximated using partial derivatives of slowness components up to order two taken on the

ray Ω. As a consequence, the second-order derivatives ∂2H/∂pi∂pj are considered invariant

with respect to p.

3 CONVENTIONAL DYNAMIC RAY TRACING

As an introduction to higher-order Hamilton-Jacobi perturbation equations, we summarize

the basics of conventional dynamic ray tracing.

3.1 Perturbations in phase space

Consider again a reference ray Ω with phase-space locations (ŵr(τ)) consistent with equation

(2). A perturbed phase-space location is then generally expressed as

wr = ŵr(τ) + δwr, (13)

where all six perturbation components δwr may vary freely. It is common to write the per-

turbed phase-space location as a vectorial function, with components wr = wr(γ, τ). Here, the

vector γ = (γa) has dimension Nγ and serves to parametrize a perturbation of the phase-space

location corresponding to the initial point on Ω, for which τ = τ0. The symbol γ̂ signifies no

perturbation of this initial phase-space location. We require i) that the variables γa are mu-

tually independent, ii) that none of them depend on the time, τ , and iii) that none of them

depend on the model of the medium. It follows that the dimension, Nγ , of the vector γ must

have the maximum value Nγ = 6, i.e., the dimension of the Cartesian phase space.

3.2 System of Hamilton-Jacobi perturbation equations

A system for dynamic ray tracing in Cartesian coordinates (xi) can be derived by inserting

equation (13) on the left-hand side of equation (8) followed by partial differentiation with

respect to the variable γa. Since τ and γa are independent variables, the differentiations d/dτ
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8 E. Iversen et al.

and ∂/∂γa commute (Červený, 2001; section 4.2.1). We obtain the system of ODEs

dXra

dτ
(τ) = Srt(τ)Xta(τ);

dX

dτ
(τ) = S(τ) X(τ), (14)

where Xra(τ) can be equivalently defined by by the partial derivatives

Xra(τ) =
∂(δwr)

∂γa
(γ̂, τ) =

∂wr
∂γa

(γ̂, τ), (15)

and Srt(τ) is formed by the second partial derivatives of the Hamiltonian,

Srt(τ) = Jrs
∂2H
∂ws∂wt

[w(γ̂, τ)]. (16)

The quantity Xra in equation (15) is a first-order phase-space perturbation derivative related

to a point with time τ on the reference ray Ω. For clarity of notation, we prefer mostly to

write such derivatives as in the last expression of equation (15), i.e., without the perturbation

(δ) symbol. It is emphasized that the derivative ∂wr/∂γa belongs to a fixed value of the time

τ .

Conventional dynamic ray tracing in Cartesian coordinates yields as output the 6 × Nγ

matrix X(τ) = {Xra(τ)}, with components of the form given in equation (15). The matrix

function X(τ) is continued along the ray Ω by solving the system of ODEs in equation (14)

with suitable initial conditions. It is common to split the matrix {Xra} into 3×Nγ sub-matrices

{Qma} and {Pma}, such that

Qma(τ) =
∂xm
∂γa

(γ̂, τ), Pma(τ) =
∂pm
∂γa

(γ̂, τ). (17)

Equation (14) can therefore be written equivalently as

d

dτ

 Q(τ)

P(τ)

 =

 WT (τ) V(τ)

−U(τ) −W(τ)

 Q(τ)

P(τ)

 , (18)

with

Uij(τ) =
∂2H
∂xi∂xj

[w(γ̂, τ)], Vij(τ) =
∂2H
∂pi∂pj

[w(γ̂, τ)] , Wij(τ) =
∂2H
∂xi∂pj

[w(γ̂, τ)]. (19)

Here, Vij represents the wave-propagation metric tensor components introduced in equation

(12). Dynamic ray tracing, prescribed by the Hamilton-Jacobi perturbation equations (18),

may be performed simultaneously or subsequently with respect to ray tracing, prescribed

by Hamilton’s equations (5). In the latter case, the functions x̂(τ) and p̂(τ) will be known

beforehand; the same is true for the functions v(τ) and η(τ) in equation (6).

3.3 Ray propagator matrix

There are two common ways to find a solution of the system of ODEs in equation (14) or (18)

by means of integration. One is to integrate with right-hand sides of the differential equations
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 9

exactly as specified in (14) or (18), the other is to make use of a precalculated (known) first-

order mapping between perturbed phase-space locations at the start and end point of the

ray Ω. The coefficients of this mapping form the 6 × 6 ray propagator matrix in Cartesian

coordinates. Below we introduce this matrix in a formal way.

A situation of particular interest arises if we choose the vector γ specifically as the six-

dimensional phase-space perturbation at the initial point on Ω, for which τ = τ0, that means,

γr = (δwr)0 = wr − ŵr(τ0). (20)

Obviously, for this definition of γ we have γ̂ = 0, the six-component zero vector. Using

equation (13), we establish the function

δwr(δw0, τ) = wr(δw0, τ)− ŵr(τ), (21)

where it is implicit that the freely varying (perturbation) vector δw0 belongs to the time τ0.

The ray propagator matrix of size 6× 6 in Cartesian coordinates can then be introduced as

Πru(τ, τ0) =
∂(δwr)

∂(δwu)0
(δw0 = 0, τ). (22)

The ray propagator matrix encapsulates the six fundamental solutions to the system (14) of

ODEs. The Hamilton-Jacobi perturbation equations for the ray propagator matrix are given

by

dΠru

dτ
(τ, τ0) = Srt(τ) Πtu(τ, τ0);

dΠ

dτ
(τ, τ0) = S(τ) Π(τ, τ0), (23)

with the initial condition

Πru(τ0, τ0) = δru. (24)

When the ray propagator matrix is known for the segment (τ, τ0) of the ray Ω, any other

dynamic ray-tracing solution on that segment can be computed using the linear combination

of fundamental solutions,

Xra(τ) = Πrt(τ, τ0)Xta(τ0); X(τ) = Π(τ, τ0)X(τ0). (25)

In this way, the ray propagator matrix Π(τ, τ0) represents the solution operator for the initial

value problem (14).

The initial perturbation γ = δw0 encompasses six degrees of freedom. A general pertur-

bation δw0 can be considered to consist of i) a paraxial contribution (four degrees of freedom),

ii) a ray-tangent contribution (one degree of freedom), and iii) a non-eikonal contribution (one

degree of freedom). The particular fundamental solutions resulting from these three types of

initial conditions are often referred to as the paraxial, ray-tangent, and non-eikonal solutions

of dynamic ray tracing (Červený 2001).
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10 E. Iversen et al.

3.4 Dynamic ray tracing specified by two paraxial ray parameters

Consider a situation with two parameters specifying the initial phase-space perturbation

(Nγ = 2). For this particular situation we replace lowercase indices a and b in equation

(17) with corresponding uppercase indices A and B. We further assume that the parameters

γA, A = 1, 2, have a purely paraxial nature, so that any initial phase-space perturbation is

constrained not to have a ray-tangent or non-eikonal contribution. The parameters γA specify

the initial conditions for paraxial rays, that means, rays in the vicinity of the reference ray

Ω. We refer to γA as paraxial ray parameters or just ray parameters. For any reference ray or

paraxial ray, the ray parameters are constant.

Together, the two quantities γA and the traveltime τ form a three-dimensional curvilinear

ray coordinate system, (γ1, γ2, τ). The mapping from ray coordinates to Cartesian coordinates

reads

xi = xi(γ1, γ2, τ), pi = pi(γ1, γ2, τ). (26)

We introduce 3 × 3 matrices Q̂ and P̂ for performing first-order transformation of position

and momentum vectors from ray coordinates to Cartesian coordinates. The components of

these matrices are

QiA =
∂xi
∂γA

, Qi3 =
∂xi
∂τ

, (27)

PiA =
∂pi
∂γA

, Pi3 =
∂pi
∂τ

. (28)

Matrix Q̂ is the 3 × 3 geometrical spreading matrix for dynamic ray tracing in Cartesian

coordinates.

For the inverse mapping operation, from Cartesian coordinates to ray coordinates, we

introduce the ray parameter function γA(x) and the traveltime function τ(x),

γA = γA(x), τ = τ(x), (29)

with first-order derivatives

∂γA
∂xi

= Q†Ai,
∂τ

∂xi
= pi = Q†3i. (30)

The quantities Q†ai in equation (30) form the inverse of matrix Q̂, such that

Q̂−1 = Q̂†. (31)

More details on the first-order transformation between ray coordinates and Cartesian coordi-

nates are given in Appendix B.
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 11

For the second derivatives of the traveltime function τ(x) we use the notation

M = {Mij} =

{
∂2τ

∂xi∂xj

}
. (32)

It is straightforward to show (see Appendix B) that matrix M can be computed using

M = P̂Q̂−1. (33)

4 HIGHER-ORDER HAMILTONIAN-JACOBI PERTURBATION

EQUATIONS

In conventional dynamic ray tracing in Cartesian coordinates one continues along the ray Ω

the first-order derivatives of a phase-space perturbation, given in equation (15). That approach

is extended here to include continuation of derivatives up to third order.

4.1 Continuation of second-order phase-space perturbation derivatives

We formulate second-order phase-space perturbation derivatives compactly as

Xrab(τ) =
∂2wr
∂γa∂γb

(γ̂, τ). (34)

In Q-P notation we write them as

Qiab(τ) =
∂2xi
∂γa∂γb

(γ̂, τ), Piab(τ) =
∂2pi
∂γa∂γb

(γ̂, τ). (35)

We map the third-order derivatives of the Hamiltonian to a three-dimensional coefficient

tensor,

Srtu(τ) = Jrs
∂3H

∂ws∂wt∂wu
[wz(γ̂, τ)]. (36)

Using the latter, we establish ODEs for continuation of second-order phase-space perturbation

derivatives,

dXrab

dτ
(τ) = Srt(τ)Xtab(τ) +Rrab(τ), (37)

where

Rrab(τ) = Srtu(τ)Xta(τ)Xub(τ). (38)

The combination of ODEs given by equations (14) and (37) can be integrated to yield the

solution (34).

A different approach is to use an expression for the solution in terms of the initial condition,

the ray propagator matrix, and a closed-form integral along the ray Ω,

Xrab(τ) = Πrt(τ, τ0)Xtab(τ0) +

∫ τ

τ0

Πrt(τ, τ
′)Rtab(τ

′) dτ ′. (39)
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12 E. Iversen et al.

This approach requires that the ray propagator matrix, Πrt(τ, τ0), is a known (precomputed)

function.

It is convenient to reformulate equation (39) such that the ray propagator matrix in the

integrand corresponds to propagation from τ = τ0 to τ = τ ′. Using the chain property and

the symplectic property of the ray propagator matrix we obtain

Xrab(τ) = Πrt(τ, τ0)

(
Xtab(τ0)−

∫ τ

τ0

JtvΠsv(τ
′, τ0)Jsq Rqab(τ

′) dτ ′
)
. (40)

4.2 Continuation of third-order phase-space perturbation derivatives

We want to determine phase-space perturbation derivatives of third order,

Xrabc(τ) =
∂3wr

∂γa∂γb∂γc
(γ̂, τ), (41)

or in Q-P notation,

Qiabc(τ) =
∂3xi

∂γa∂γb∂γc
(γ̂, τ), Piabc(τ) =

∂3pi
∂γa∂γb∂γc

(γ̂, τ). (42)

The ODEs for continuation of third-order phase-space perturbation derivatives can be

written,

dXrabc

dτ
(τ) = Srt(τ)Xtabc(τ) +Rrabc(τ), (43)

where

Srtuv(τ) = Jrs
∂4H

∂ws∂wt∂wu∂wv
[wz(γ̂, τ)], (44)

Rrabc(τ) = Srtu(τ) [Xta(τ)Xubc(τ) + Xtb(τ)Xuac(τ) + Xuc(τ)Xtab(τ)]

+ Srtuv(τ)Xta(τ)Xub(τ)Xvc(τ). (45)

The ODEs given by equations (14), (37), and (43) can be integrated to yield the solution (41).

Alternatively we write the solution in terms of its initial condition, the ray propagator

matrix, and a closed-form integral along the ray Ω,

Xrabc(τ) = Πrt(τ, τ0)Xtabc(τ0) +

∫ τ

τ0

Πrt(τ, τ
′)Rtabc(τ

′)dτ ′. (46)

In this situation Πrt(τ, τ0) and Xtab(τ) must be known along Ω. The chain and symplectic

properties of the ray propagator matrix yield

Xrabc(τ) = Πrt(τ, τ0)

(
Xtabc(τ0)−

∫ τ

τ0

JtvΠsv(τ
′, τ0)Jsq Rqabc(τ

′) dτ ′
)
. (47)

Equation (47) represents a third-order analogue of equation (40).
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 13

5 CONSTRAINT RELATIONS

Perturbation derivatives in phase space are in general not independent, as they will be con-

strained by the Hamiltion-Jacobi equation (2). To describe dependencies between first-order

perturbation derivatives in conventional dynamic ray tracing Červený (2001) uses the notion

constraint relation. When introducing perturbation derivatives of higher order it is necessary

to consider also higher-order constraint relations.

5.1 Constraint relation for first-order phase-space perturbation derivatives

The Hamiltonian is required to be constant along a trajectory in the phase space. As a

consequence,

∂H
∂wr

∂wr
∂γa

= 0, or equivalently,
∂H
∂xi

∂xi
∂γa

+
∂H
∂pi

∂pi
∂γa

= 0. (48)

Thus, along Ω the following constraint applies,

viPia = ηiQia. (49)

Equation (49) represents the constraint relation for first-order phase-space perturbation deriva-

tives in Cartesian coordinates (Červený 2001).

5.2 Constraint relations for second-order phase-space perturbation derivatives

Differentiation of equation (48) with respect to γb yields

∂2H
∂wr∂ws

∂wr
∂γa

∂ws
∂γb

+
∂H
∂wr

∂2wr
∂γa∂γb

= 0. (50)

We use

∂H
∂wr

= −Jrsẇs,

∂2H
∂wr∂ws

= −JrtSts,

so that equation (50) becomes

−JrtStsXraXsb − JrsẇsXrab = 0. (51)

Applying the standard Hamilton-Jacobi perturbation equations (14) then yields the second-

order constraint relation,

−XrabJrsẇs = XraJrsẊsb. (52)

In Q-P notation the latter equation is restated

viPiab = ηiQiab +QiaṖib − PiaQ̇ib. (53)
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14 E. Iversen et al.

For a situation with two paraxial ray parameters γA, A = 1, 2, we may introduce in equation

(53) the 3× 3 matrix M of second derivatives of traveltime, defined in equation (33), so that

viPiAB = ηiQiAB + ṀijQiAQjB. (54)

5.3 Constraint relations for third-order phase-space perturbation derivatives

We differentiate equation (52) with respect to γc. Since the quantities γc are independent of

the traveltime τ , the order of differentiation in γc and τ can be interchanged. We then obtain

the third-order constraint relation,

−XrabcJrsẇs = XrabJrsẊsc +XracJrsẊsb +XraJrsẊsbc. (55)

Introducing Q-P notation in equation (55) yields the constraint relation

viPiabc = ηiQiabc +QiabṖic − PiabQ̇ic +QiacṖib − PiacQ̇ib

+ QiaṖibc − PiaQ̇ibc. (56)

In the situation with two paraxial ray parameters, the lowercase indices a, b, and c are replaced

by their corresponding uppercase versions. The constraint relation (56) can then be rephrased

in terms of second- and third-order derivatives of traveltime,

viPiABC = ηiQiABC + Ṁij (QiAQjBC +QiBQjAC +QiCQjAB)

+ ṀijkQiAQjBQkC . (57)

6 INITIAL CONDITIONS

To be able to start the integration operations described above we need initial conditions.

At the initial point of the ray Ω, for which the time is τ = τ0, we denote the position

vector as x = x̂(τ0) and the slowness vector as p = p̂(τ0). It is necessary to specify the phase-

space perturbation derivatives Xra(τ0), Xrab(τ0), Xrabc(τ0), . . . up to the highest order under

consideration in the system of Hamilton-Jacobi perturbation equations.

We limit our discussion of initial conditions to those prescribed by two paraxial ray pa-

rameters γA, A = 1, 2. In this respect, two cases are of particular interest, i) the point source

situation where the initial wavefront is degenerated and coincides with the source point, and

ii) the plane-wave situation where the initial wavefront is a plane Π normal to the direction

of the slowness vector p̂(τ0).

To aid the setup of initial conditions, we introduce two linearly independent vectors e1

and e2 in the plane Π. Except for the requirements of linear independence and confinement
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 15

to the plane Π, the orientation of e1 and e2 is arbitrary. The components of e1 and e2 form

the 3× 2 matrix E = {EiM}. We establish a 3× 3 matrix H = {Hij} so that

H =
[
E v

]
. (58)

The inverse H† = H−1 may then be expressed as

H−1 =

 FT

pT

 . (59)

If e1 and e2 are chosen orthonormal, one will be able to compute F from the relation

FiM = [δij − pi vj ] EjM = αij EjM , (60)

where all quantities belong to τ = τ0. The quantity αij represents a projection operator with

respect to the wave-propagation metric tensor (Hanyga 1982; Klimeš 2006). If e1 and e2 are

not orthonormal, we compute F from equation (59), so that

FiM = H†Mi. (61)

6.1 Point source

For a point source, the two ray parameters γA will be parametrizing the slowness vectors of

rays starting out from that point. Obviously, the location xi of a point on the (degenerated)

source wavefront will be insensitive to any value of the parameters γA. As a consequence, all

position perturbation derivatives on Ω are zero at the source point,

QiA =
∂xi
∂γA

= 0, QiAB =
∂2xi

∂γA∂γB
= 0, QiABC =

∂3xi
∂γA∂γB∂γC

= 0, etc. (62)

We define here the two ray parameters γA at the source point by

γA = EiA [pi − p̂i(τ0)] . (63)

It is remarked that other definitions are possible, for example, one may let the parameters γA

be Euler angles. The parameters γA in equation (63) represent a projection of the slowness

vector perturbation onto the coordinates corresponding to the vectors e1 and e2. One impor-

tant notice in this context is that the three components of vector p are constrained, as they

have to satisfy the Hamilton-Jacobi equation.

From equation (63) it follows that

EiM
∂pi
∂γA

(γ, τ0) = δMA. (64)

Moreover, the combination of constraint relation (49) and the first initial condition in equation

(62) gives

vi(τ0) PiA(τ0) = 0. (65)
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16 E. Iversen et al.

Then, solving the system of equations (64)–(65) for PiA(τ0) yields at the initial point

PiA = FiA, (66)

where FiA is given by equation (60) or (61).

To obtain PiAB(τ0), differentiate equation (64) further,

EiM
∂2pi

∂γA∂γB
(γ, τ0) = 0. (67)

Also, we combine constraint relation (56) with initial conditions (62),

vi(τ0) PiAB(τ0) = −PiA(τ0) Q̇iB(τ0). (68)

Here, the time derivative on the right-hand side is given by the standard Hamilton-Jacobi

perturbation equations (18). We solve equations (67)–(68) for PiAB(τ0), which yields

PiAB = −piFmAFnB Vmn. (69)

where all quantities belong to the initial point.

With values corresponding to a point source the constraint relation (56) becomes

vjPjABC = −PjAQ̇jBC − PjABQ̇jC − PjACQ̇jB. (70)

Applying equation (69), we obtain

Q̇jBC = VjkPkBC + VjmnPmBPnC

= −VjkpkFmBFnCVmn + VjmnFmBFnC

= −vjFmBFnCVmn + VjmnFmBFnC , (71)

where Vjmn is the tensor of third-order partial derivatives of the Hamiltonian with respect to

slowness components, evaluated on the reference ray. Using equations (66), (69), and (71) in

(70) then yields

vj PjABC = −VjmnFjAFmBFnC . (72)

Since equation (67) in addition implies that EiMPiABC = 0, it follows that the initial condition

for PiABC is

PiABC = −piVjmnFjAFmBFnC . (73)

If the Hamiltonian is a polynomial function of second degree in the slowness components, we

have Vjmn = 0, and hence PiABC = 0.
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 17

6.2 Plane-wave source

For a plane-wave source the two ray parameters γA may represent any pair of coordinates in

the initial wavefront plane, Π. We choose here specifically these coordinates in the directions

of the vectors e1 and e2 introduced earlier, such that ∂x/∂γ1 = e1 and ∂x/∂γ2 = e2 on Ω;

hence,

∂xi
∂γA

(γ̂, τ0) = EiA. (74)

Since our choice of plane-wave ray parameters γA is connected with the matrix E, the matrix

F in equation (59) will also relate to these ray parameters. The connection is simply

FiA =
∂γA
∂xi

, (75)

where γA = γA(x), see equation (29), and where the derivative is taken at the source point

on Ω. In view of equation (75) we find it natural to define the plane-wave ray parameters by

the linear expression

γA = FiA [xi − x̂i(τ0)] . (76)

The following relations must then be satisfied along the plane Π,

FiA
∂xi
∂γB

(γ, τ0) = δAB, EiM pi(γ, τ0) = 0, (77)

Equation (74) readily yields the initial conditions

QiA = EiA, QiAB = 0, QiABC = 0. (78)

Also, repeated differentiation of the last sub-equation in (77) with respect to γA gives

EiM PiA = 0, EiM PiAB = 0, EiM PiABC = 0. (79)

To obtain PiA we use equation (79) and also invoke the constraint relation (49),

viPiA = ηiQiA. (80)

In combination, equations (79) and (80) yield the initial condition

PiA = pi ηj EjA. (81)

Proceeding to compute PiAB, we take constraint relation (53) with QiA = EiA and QmAB =

0, as prescribed by initial conditions (78),

vmPmAB = QmAṖmB − PmAQ̇mB. (82)

Using the standard Hamilton-Jacobi perturbation equations then gives

vmPmAB = (−Uij + 3ηiηj)EiAEjB. (83)
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18 E. Iversen et al.

The combination of the middle sub-equation (79) with (83) therefore yields

PmAB = pm [−Uij + 3ηi ηj ] EiA EjB. (84)

For the initial plane wavefront the constraint relation (56) can be formulated as (Appendix C)

vm PmABC = QmAṖmBC − PmAQ̇mBC − PmABQ̇mC − PmACQ̇mB

= (15ηiηjηk − 3ηiUjk − 3ηjUik − 3ηkUij − Uijk)EiAEjBEkC . (85)

Here, the tensor Uijk represents the third-order derivatives of the Hamiltonian with respect

to position components, evaluated on the reference ray. By combining the last sub-equation

in (79) with (85) we obtain the initial condition

PmABC = pm(15ηiηjηk − 3ηiUjk − 3ηjUik − 3ηkUij − Uijk)EiAEjBEkC . (86)

7 PARAXIAL EXTRAPOLATION

We describe extrapolation of geometrical spreading and traveltime away from the reference

ray, Ω. The ray Ω is specified by paraxial ray parameters γA = γA0, A = 1, 2, and it includes

a source point, x = s0, and a reference receiver point, x = r0. The traveltime at r0 is

τ = τR0 = τ(r0).

7.1 Extrapolation of geometrical spreading

In the neighbourhood of the reference receiver point x = r0 we consider the 3× 3 geometrical

spreading matrix Q̂ to be a function of the receiver position, x = r, while the source position

is kept fixed. A Taylor-series expansion of Q̂ in ∆r = r− r0 reads

Qia(r, s0) = Qia(r0, s0) +
∂Qia
∂rk

(r0, s0) ∆rk +
1

2

∂2Qia
∂rk∂rl

(r0, s0) ∆rk∆rl

+
1

6

∂3Qia
∂rk∂rl∂rm

(r0, s0) ∆rk∆rl∆rm + . . . (87)

with the first three sets of derivatives given by

∂Qia
∂rk

=
∂2ri
∂γa∂γb

∂γb
∂rk

= QiabQ
†
bk, (88)

∂2Qia
∂rk∂rl

=
∂3ri

∂γa∂γb∂γc

∂γb
∂rk

∂γc
∂rl

+
∂2ri
∂γa∂γb

∂2γb
∂rk∂rl

= QiabcQ
†
bkQ

†
cl + QiabQ

†
bkl, (89)
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 19

∂3Qia
∂rk∂rl∂rm

=
∂4ri

∂γa∂γb∂γc∂γd

∂γb
∂rk

∂γc
∂rl

∂γd
∂rm

+
∂3ri

∂γa∂γb∂γc

(
∂γb
∂rk

∂2γc
∂rl∂rm

+
∂γb
∂rl

∂2γc
∂rk∂rm

)
+

∂2ri
∂γa∂γb

∂3γb
∂rk∂rl∂rm

= QiabcdQ
†
bkQ

†
clQ

†
dm + Qiabc

(
Q†bkQ

†
clm + Q†blQ

†
ckm

)
+ QiabQ

†
bklm. (90)

We see that a first-order expansion of matrix {Qia} relies on second-order perturbation deriva-

tives Qiab, a second order expansion of {Qia} relies on third-order perturbation derivatives

Qiabc, and so forth. The derivatives of the transformation from Cartesian coordinates to ray co-

ordinates, i.e., the quantities Q†bk, Q
†
bkl, Q

†
bklm . . ., can be obtained by repeated differentiation

of equation (B.4).

It is assumed that the dynamic ray tracing is subject to point-source initial conditions at

the point s0. The relative geometrical spreading for a paraxial ray from s0 to r can then be

computed using

L(r, s0) =

[
1

c(r)
det{Qia(r, s0)}

]1/2
, (91)

where c(r) is the phase velocity of the paraxial ray evaluated at the position r.

7.2 Extrapolation of traveltime

Consider the traveltime function T (r, s0) = τ(r) corresponding to a fixed source point at

x = s0. We write a Taylor expansion of T in ∆r,

T (r, s0) = τR0 + pk ∆rk +
1

2
Mkl ∆rk∆rl

+
1

6
Mklm ∆rk∆rl∆rm +

1

24
Mklmn ∆rk∆rl∆rm∆rn + . . . , (92)

where all the coefficients are evaluated at r0.

The 3× 3 matrix of second derivatives of traveltime, M, can be computed using equation

(33). The latter is restated here as

Mij Qja = Pia, (93)

where all indices run from 1 to 3. Differentiating equation (93) twice with respect to the ray

coordinates yields,

MijkQjaQkb = Piab −Mij Qjab, (94)

MijklQjaQkbQlc = Piabc

−Mijk (QjaQkbc +QjbQkac +QjcQkab)−Mij Qjabc. (95)

When the right-hand sides of equations (93)–(95) have been evaluated, we obtain explicit
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20 E. Iversen et al.

expressions for the second-, third- and fourth order derivatives of traveltime after multiplying

by the relevant number of (inverse) matrices, {Q†aj}.

To evaluate the right-hand side of (94) we need to know Mij , which is precomputed

using (93). In addition, we need QiAB, PiAB, Q̇iA, ṖiA, v̇i, and η̇i. To evaluate the right-

hand side of (95) we will also need Mijk, precomputed using (94), as well as QiABC , PiABC ,

Q̇iAB, ṖiAB, Q̈iA, P̈iA, v̈i, and η̈i. The temporal derivatives Q̇iA, ṖiA, Q̇iAB, and ṖiAB can

be readily obtained from the relevant system of differential equations given in the main text.

The derivatives Q̈iA, P̈iA, v̇i, η̇i, v̈i, and η̈i can be obtained after temporal differentiation of

such equations.

In some situations it can be useful to do a Taylor expansion of squared traveltime rather

than of the traveltime itself, as the expansion of T 2(r, s0) to second order in ∆r is exact

for waves from a point source in an isotropic homogeneous medium. For underlying theory

and numerical examples, see Ursin (1982); Gjøystdal et al. (1984). Extrapolation of squared

traveltime may be highly appropriate also for a transversely isotropic medium with a vertical

axis of symmetry. For details on this matter, see Alkhalifah & Tsvankin (1995) and Tsvankin

(2013).

8 HAMILTONIANS FOR P AND S WAVES IN ANISOTROPIC

HETEROGENEOUS MEDIA

Up to this point, the theory has been described with the Hamiltonian appearing as a black box.

In this section, we elaborate on specific Hamiltonians related to P and S waves in anisotropic

heterogeneous media.

8.1 Arbitrary anisotropy

The Christoffel matrix Γ, as defined e.g. in Červený (2001), equation (2.2.19), is of size 3× 3

and has the components

Γik(x,p) = aijkl(x) pjpl. (96)

Here, aijkl is the tensor of density-normalized elastic moduli. The Christoffel matrix has

three real eigenvalues and three corresponding mutually orthogonal eigenvectors. One selected

eigenvalue and its associated eigenvector are denoted, respectively, by the symbols G and g.

The eigenvalue G corresponds to an elementary P or S wave with polarization vector g.

The eigenvalues of matrix Γ satisfy the characteristic equation

det(Γ−GI) = 0; (97)
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 21

here. I is the 3× 3 identity matrix. Equation (97) represents a third-order polynomial in G,

G3 − PG2 +QG−R = 0, (98)

where the quantities P , Q, and R are invariants of Γ,

P = trΓ, Q = tr(cofΓ), R = det Γ. (99)

We note that P , Q, and R are scalar functions in phase space, and they are homogeneous

of degree two (P ), four (Q), and six (R) in the slowness components, pi. The function G is

homogeneous of degree two pi.

For a given wave mode and a given point x, we get an exact description of the relevant

slowness-surface sheet if the eigenvalue function G is subject to the constraint G(w) = 1. On

the other hand, our Hamiltonian H satisfies the Hamilton-Jacobi equation H = 1/2. Hence,

to ensure consistency with the slowness surface it is natural to express H in terms of G, such

that

H (w) =
1

2
G(w). (100)

In the case of arbitrary anisotropy, derivatives of H are obtained by differentiation of

equations (98) and (100), followed by setting G = 1.

We remark that for some applications of ray perturbation theory (see, e.g., Klimeš, 2002b;

Červený & Klimeš, 2009) it may be useful to redefine the Hamiltonian to

H (w) =
1

N
[G(w)]N/2 , (101)

where N is a nonzero scalar. Such a redefinition will only affect the non-eikonal solution to

dynamic ray tracing; the other fundamental solutions are unaffected.

8.2 Partial factoring of the characteristic equation by polarization

For particular anisotropic symmetries, e.g. transversely isotropic media, one can utilize a

partial factoring of the characteristic equation (98) by polarization. One of the elementary S

waves is then SH polarized, meaning that the polarization vector is confined to the (locally)

horizontal plane. The polarization vectors of the two other elementary waves, P and SV, form

a (locally) vertical plane. The partial factoring is stated

(G2 − PPSVG+RPSV )(G−GSH) = 0. (102)

In this situation we get a specific equation for the Hamiltonian of the SH-polarized wave,

H =
1

2
GSH . (103)
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with slowness-surface distance function The eigenvalue function GSH is homogeneous of degree

two in the slowness components, and the slowness sheet for the SH wave is elliptical.

Equation (102) further yields another, common, equation for the P- and SV-polarized

waves,

G2 − PPSVG+RPSV = 0. (104)

The functions PPSV and RPSV are homogeneous of degree two and four in the slowness

components.

For an SH wave, derivatives of H in phase space are obtained by differentiating equation

(103). For a P or SV wave, we differentiate equations (100) and (104), followed by setting

G = 1.

8.3 Full factoring of the characteristic equation by polarization

Consider a further factoring of equation (102) so that

(G−GP )(G−GSV )(G−GSH) = 0. (105)

This yields the following possibilities for the Hamiltonian,

H =
1

2
GP , H =

1

2
GSV , H =

1

2
GSH . (106)

The eigenvalue functions GP (w), GSV (w), and GSH(w) are all homogeneous of second degree

in the slowness components. The P- and SH-wave slowness sheets are elliptical; the SV-wave

slowness sheet is spherical.

To obtain derivatives of the Hamiltonian H , we differentiate the relevant eigenvalue func-

tion in equation (106).

9 NUMERICAL EXAMPLES

We have performed numerical tests of the above described higher-order approaches to dynamic

ray tracing in Cartesian coordinates, using three related 3D heterogeneous models. All the

simulation examples are for P waves. In this section the spatial coordinates of the models are

referred to as (x, y, z).

9.1 Model ISO

The first model, Model ISO, is adopted from Iversen & Tygel (2008)— it is isotropic and

includes a gentle anticline structure (Fig. 1). However, in the implementation of higher-order
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dynamic ray tracing we use a quintic (fifth-order) B-spline representation (e.g., Farin et al.,

2002) to ensure C4 continuity of the volumetric medium parameter functions. As a conse-

quence, the P-wave velocity field appears here in a somewhat smoother form than in Iversen

& Tygel (2008). The ratio of S-wave to P-wave velocity is constant = 0.5. Data for numerical

comparisons is obtained using conventional P-wave kinematic and dynamic ray tracing from

a source point at depth z = 4 km to receivers in the plane at zero depth. Fig. 1 shows a

sub-selection of rays (black) for receivers along the line y = 5 km. The ray (grey) arriving

at the receiver location (7, 5, 0) km is taken as a reference ray for higher-order dynamic ray

tracing computations.

Fig. 2 shows the computed traveltime data (top) and geometrical spreading data (bottom).

Geometrical spreading was computed using equation (91). As ray parameters γA in that

equation we used the two horizontal components of the slowness vector at the source point.

Our results are shown as error curves for the extrapolated traveltime (Fig. 3) and the

extrapolated geometrical spreading (Fig. 4). The computed error curves belong to a line of

constant y (= 5 km) and a line of constant x (= 7 km). We refer to the lateral distance

between a receiver and the reference ray as the paraxial distance. In the cross sections y = 5

and x = 7 (km) the maximum paraxial distance is 3 km.

For traveltime extrapolation, we observe that second-order extrapolation of squared trav-

eltime (dashed blue) yields a very good result. The maximum relative errors at 3 km parax-

ial distance are around 0.15%. For heterogeneous media such a good result is not obvious

(Gjøystdal et al. 1984). In the current test, however, the heterogeneities are moderate. We

note that the results for fourth-order extrapolation of traveltime (magenta) and squared trav-

eltime (dashed magenta) are also very good. The range of relative errors for the latter approach

is 0-0.3%.

Concerning extrapolation of geometrical spreading, a striking observation is that the ex-

trapolation function needs to be at least third order in the perturbation derivatives, in order

to be appropriate at large paraxial distances. The relative errors obtained for the third-order

approach (magenta) are below 1% for paraxial distances 0–1.5 km and below 5% for paraxial

distances 1.5–3 km.

9.2 Model VEL

The second model, Model VEL, differs from Model ISO only in one respect— we have intro-

duced elliptic anisotropy related to a vertical axis of symmetry. The anisotropy was defined

to be constant, with Thomsen’s (1986) parameters specified as ε = δ = 0.2. Since we consider
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P-wave simulation only, the value of Thomsen’s parameter γ (not to be confused with ray

parameters) does not affect our computations.

To get an impression of the effect of introducing strong elliptic anisotropy we can compare

Figs. 2 and 5. We note a decrease in traveltime at large lateral distances from the reference

ray, and also a general increase in the values of geometrical spreading.

Figs. 6 and 7 show the same type of error curves as was given for Model ISO (Figs. 3 and

4). Extrapolation of squared traveltime to second order (dashed blue) yields also for Model

VEL an excellent result. The reason is twofold— the heterogeneities are moderate and the

anellipticity effect is zero. For a corresponding homogeneous model the fourth-order term of

the extrapolation function for squared traveltime would have vanished completely (Alkhal-

ifah & Tsvankin 1995). The results for fourth-order extrapolation of traveltime (magenta)

and squared traveltime (dashed magenta) are also very good. We note that the results for

second-order extrapolation of traveltime (blue) and third-order extrapolation of traveltime

are significantly better than in the isotropic case. Third-order extrapolation of geometrical

spreading (magenta) has the same level of relative accuracy as for the isotropic model, i.e.,

less than 1% / 5% for paraxial distance ranges, respectively, 0–1.5 km / 1.5–3 km.

9.3 Model VTI

In the third model, Model VTI, the anisotropy is transversely isotropic (hexagonal) relative

to a vertical axis of symmetry. We have introduced anellipticity in the slowness surface by

the parameter setting ε = 0.3, δ = 0.1. The parameters are constant throughout the model,

so the anellipticity is invariant.

By comparing Fig. 5 for Model VEL with Fig. 8, we see that the change in traveltime is

quite minor, while geometrical spreading has substantial changes at large lateral offsets with

respect to the reference ray.

Figs. 9 and 10 show curves of relatives errors in traveltime and geometrical spreading.

They are to be compared to the corresponding Figs. 3–4 (for Model ISO) and 6–7 (for Model

VEL). We observe that it is now harder to get a good extrapolation result in the full range of

paraxial distances (3 km). When using fourth-order extrapolation of squared traveltime, the

errors are below 0.025% within a paraxial distance of 2 km. For third-order extrapolation of

geometrical spreading, errors are below 1% within 1 km paraxial distance.
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10 DISCUSSION AND CONCLUSIONS

We give a brief discussion on the connections to differential geometry, followed by our con-

cluding remarks.

The theory derived in this paper has important connections to differential geometry—

in particular to the Riemannian and Finslerian geometry systems (see, e.g., Shen, 2001; Bao

et al., 2012). Any Riemannian, Finslerian, or similar geometrical structure can be completely

described by distances. In the propagation of elastic waves distance is naturally measured

in traveltime: the distance between two points is the shortest time it takes for a wave to go

from one point to the other. By Fermat’s principle elastic waves travel along geodesics (rays).

Locally, the geodesics represent length-minimizing curves of the geometrical structure under

consideration.

The elastic geometry of P waves in anisotropic media is Finsler geometry, as observed

by Antonelli et al. (2003). If the anisotropy is elliptical, then the Finsler geometry simplifies to

Riemannian geometry. For anisotropy of lower order than elliptic, non-Riemannian geometric

features are intrinsic properties of the medium. Leading-order variations from a reference ray

can be adequately described by elliptic anisotropy, and similarly, a Finsler geometry has a

canonical Riemannian metric along a reference geodesic. Higher-order variations require a

Finsler treatment— elliptic approximations are insufficient.

To gain access to the powerful tools of differential geometry, it is reasonable to rephrase the

study of elastic waves in a geometrical framework. Writing equations in terms of coordinate

invariant geometrical quantities simplifies the structure significantly. Many extra terms in

calculations in anisotropic heterogeneous media may be viewed as a symptom of computing

in coordinates rather than invariantly. For example, the geometric counterpart of the Q-P

quantities is a Jacobi field and its covariant derivative; for details on the geometrical aspects,

see Paternain (2012). In the equation of motion of the geometrical variant, similar to equation

(18), the diagonal blocks are automatically zero and the the top-right block is the identity.

All geometrical information is packed into the curvature operator appearing as the lower left

block. It is our intention to elaborate on these connections between differential geometry and

seismology in future work.

A key motivation behind this paper is to contribute to better computational capabilities,

with respect to accuracy as well as efficiency, for processes exploiting amplitude and/or phase

properties of high-frequency Green’s functions.

The starting point of the theory development is a Hamilton-Jacobi equation in Cartesian

coordinates. Based on this fundamental equation, we first reviewed the standard approach to
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dynamic ray tracing, by which first-order phase-space perturbation derivatives are continued

along a reference ray. Thereafter, we developed a theoretical framework for computation of

higher-order phase-space perturbation derivatives. Detailed results were exposed for the orders

two and three in these derivatives.

We did numerical tests of higher-order dynamic ray tracing for three related 3D heteroge-

neous models— one isotropic, one elliptically anisotropic, and one transversely isotropic. The

higher-order approach yields clear improvements of the paraxial extrapolation of traveltime

and geometrical spreading, compared to results obtained using conventional dynamic ray trac-

ing. One important observation is that the extrapolation function for geometrical spreading

must be at least third order to be appropriate at large extrapolation distances.

The presented methodology opens possibilities for further research and development in

several directions. So far we have only considered continuous models— for completeness it

should also be possible to use models with interfaces. Furthermore, when concerning S waves

in anisotropic media one should take into account Hamiltonians that honour both elementary

S waves simultaneously, such that problems with S-wave singularities are circumvented. With

higher-order perturbation derivatives available it should also be possible to formulate higher-

order variants of Hamilton’s two-point characteristic. Last, but not least, it would be of great

interest to see the method developed for ray-centred coordinates, taking into account the

connections to differential geometry outlined above.
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Červený, V., Iversen, E., & Pšenč́ık, I., 2012. Two-point paraxial traveltimes in an inhomogeneous

anisotropic medium, Geophysical Journal International , 189(3), 1597–1610.

Chapman, C. H., 2004. Fundamentals of Seismic Wave Propagation, Cambridge University Press.

de Hoop, M., Holman, S., Iversen, E., Lassas, M., & Ursin, B., 2014. Reconstruction of a Conformally

Euclidean Metric from Local Boundary Diffraction Travel Times, SIAM Journal on Mathematical

Analysis, 46(6), 3705–3726.

de Hoop, M. V. & Bleistein, N., 1997. Generalized radon transform inversions for reflectivity in

Page 27 of 52 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28 E. Iversen et al.

anisotropic elastic media, Inverse Problems, 13(3), 669.

de Hoop, M. V., Burridge, R., Spencer, C., & Miller, D., 1994. Generalized radon transform/amplitude

versus angle (grt/ava) migration/inversion in anisotropic media, Proc. SPIE , 2301, 15–27.

de Hoop, M. V., Smith, H., Uhlmann, G., & van der Hilst, R. D., 2009. Seismic imaging with the

generalized radon transform: a curvelet transform perspective, Inverse Problems, 25(2), 025005.

de Hoop, M. V., Holman, S. F., Iversen, E., Lassas, M., & Ursin, B., 2015. Recovering the isometry

type of a riemannian manifold from local boundary diffraction travel times, Journal de Mathmatiques

Pures et Appliques, 103(3), 830 – 848.

de Hoop, M. V. d. & Uhlmann, G., 2006. Characterization and ‘source-receiver’ continuation of

seismic reflection data, Communications in Mathematical Physics, 263(1), 1–19.

Douma, H. & de Hoop, M. V., 2006. Explicit expressions for prestack map time migration in isotropic

and VTI media and the applicability of map depth migration in heterogeneous anisotropic media,

Geophysics, 71(01), S13–S28.

Duchkov, A. A. & de Hoop, M. V., 2010. Extended isochron rays in prestack depth (map) migration,

Geophysics, 75(4), S139–S150.

Farin, G., Hoschek, J., & Kim, M.-S., 2002. Handbook of computer aided geometric design, Elsevier,

Amsterdam.

Farra, V. & Madariaga, R., 1987. Seismic waveform modeling in heterogeneous media by ray pertur-

bation theory, Journal of Geophysical Research, 92, 2697–2712.

Foss, S.-K. & Ursin, B., 2004. 2.5d modelling, inversion and angle migration in anisotropic media,

Geophysical Prospecting , 52, 65–84.

Foss, S.-K., Ursin, B., & Sollid, A., 2004. A practical approach to pp seismic angle tomography,

Geophysical Prospecting , 52, 663–669.

Foss, S.-K., de Hoop, M. V., & Ursin, B., 2005. Linearized 2.5-dimensional parameter imaging

inversion in anisotropic elastic media, Geophysical Journal International , 161, 722–738.

Gjøystdal, H., Reinhardsen, J. E., & Ursin, B., 1984. Traveltime and wavefront curvature calculations

in three-dimensional inhomogeneous layered media with curved interfaces, Geophysics, 49, 1466–

1494.

Goldin, S. V. & Duchkov, A. A., 2003. Seismic wave field in the vicinity of caustics and higher-order

travel time derivatives, Studia Geophysica et Geodaetica, 47, 521–544.

Hamilton, W. R., 1837. Third supplement to an essay on the theory of systems of rays, Transactions

of the Royal Irish Academy , 17, 1–144, read January 23, 1832, and October 22, 1832.

Hanyga, A., 1982. Dynamic ray tracing in an anisotropic medium, Tectonophysics, 90, 243–251.

Hubral, P., 1977. Time migration - Some ray theoretical aspects, Geophysical Prospecting , 25(04),

738–745.

Hubral, P., 1983. Computing true amplitude reflections in a laterally inhomogeneous earth, Geo-

physics, 48, 1051–1062.

Page 28 of 52Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 29

Hubral, P., Schleicher, J., & Tygel, M., 1992. Three-dimensional paraxial ray properties: – Basic

relations, Journal of Seismic Exploration, 1, 265–279.

Iversen, E., 2004a. The isochron ray in seismic modeling and imaging, Geophysics, 69(4), 1053–1070.

Iversen, E., 2004b. Reformulated kinematic and dynamic ray tracing systems for arbitrarily

anisotropic media, Studia Geophysica et Geodaetica, 48, 1–20.

Iversen, E. & Gjøystdal, H., 1996. Event-oriented velocity estimation based on prestack data in time

or depth domain, Geophysical Prospecting , 44(4), 643–686.
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APPENDIX A: RELATIONS FOR DERIVATIVES OF THE HAMILTONIAN

The considered Hamiltonian H satisfies the relations

pi
∂2H
∂pi∂pj

=
∂H
∂pj

, pi
∂2H
∂pi∂xj

= 2
∂H
∂xj

. (A.1)

These relations hold on the reference ray, Ω, as well as in its vicinity.

For the third-order derivatives of H we have the following general relations,

pi
∂3H

∂pi∂xj∂xk
= 2

∂2H
∂xj∂xk

, (A.2)

pi
∂3H

∂pi∂pj∂xk
=

∂2H
∂pj∂xk

, (A.3)

pipj
∂3H

∂pi∂pj∂xk
= 2

∂H
∂xk

, (A.4)

It is important to note that H may have nonzero derivatives of order three and higher

in the slowness components. In particular, it follows from equation (A.1) that the third- and

fourth-order derivatives must satisfy

pi
∂3H

∂pi∂pj∂pk
= 0 (A.5)

and

pi
∂4H

∂pi∂pj∂pk∂pl
= − ∂3H

∂pj∂pk∂pl
. (A.6)
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APPENDIX B: TWO-PARAMETRIC SYSTEM OF RAYS

Consider a ray-parameter space (γA) with dimensionNγ = 2, and the associated ray-coordinate

system, (γ1, γ2, τ). In a local region around a point on the reference ray we assume that a one-

to-one mapping exists between the Cartesian coordinates (x1, x2, x3) and the ray coordinates

(γ1, γ2, τ).

B1 First-order transformation between Cartesian coordinates and ray

coordinates

To first order, the quantities on Ω describing the transformation from ray coordinates to

Cartesian coordinates are

∂xi
∂γA

= QiA,
∂xi
∂τ

= vi = Qi3. (B.1)

For the inverse transformation we use the functions γA = γA(x) and τ = τ(x), with the

first-order derivatives

∂γA
∂xi

= Q†Ai,
∂τ

∂xi
= pi = Q†3i. (B.2)

The quantities in equations (B.1) and (B.2) form the 3× 3 matrices

Q̂ =
[

Q v
]
, Q̂−1 = Q̂† =

 Q†

pT

 . (B.3)

Based on the relations

Q†aiQib = δab QiaQ
†
aj = δij , (B.4)

we can list some intrinsic properties of the transformation between ray coordinates and Carte-

sian coordinates on Ω,

piQiA = 0,

viQ
†
Ai = 0,

Q†AiQiB = δAB,

pivi = 1,

Q†AiQjA = αij , (B.5)

where αij is given by

αij = δij − pivj . (B.6)
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 33

B2 Second-order derivatives of traveltime

Consider a specific traveltime function τ(x) which correspond to two paraxial ray parameters

γA(x), A = 1, 2. The first- and second-order derivatives of τ on Ω are

∂τ

∂xi
= pi, (B.7)

∂2τ

∂xi∂xj
= Mij . (B.8)

The quantities Mij are forming the 3× 3 matrix M.

Using the chain rule for differentiation, we then obtain

∂2τ

∂xi∂xj
=

∂

∂xj
{pi [γA(x), τ(x)]}

=
∂pi
∂γA

∂γA
∂xj

+
∂pi
∂τ

∂τ

∂xj
,

and consequently,

Mij = PiAQ
†
Aj + ηi pj , M = P Q† + η pT . (B.9)

The last relation describes how the 3×3 matrix of second derivatives of traveltime, M, can be

obtained from the 3 × 2 matrices P and Q computed using the (standard) Hamilton-Jacobi

perturbation equations. The 2×3 matrix Q† is a sub-matrix of matrix Q̂−1 in equation (B.3).
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APPENDIX C: CONSTRAINT RELATION FOR THIRD-ORDER

PHASE-SPACE PERTURBATION DERIVATIVES: PLANE WAVEFRONT

Based on equation (56), the constraint relation for third-order phase-space perturbation

derivatives and two ray parameters can be written

viPiABC = ηiQiABC +QiAṖiBC − PiAQ̇iBC

+QiABṖiC − PiABQ̇iC

+QiAC ṖiB − PiACQ̇iB. (C.1)

In this appendix we derive a special version of equation (C.1), pertaining specifically to a

plane wavefront. On the way we use relations for the derivatives of the Hamiltonian given

in Appendix A. It is convenient to use abbreviated forms for partial derivatives in these

derivations, namely,

∂1k =
∂

∂xk
, ∂2k =

∂

∂pk
, (C.2)

and

∂H
∂xk

= H ,1
,k ,

∂H
∂pk

= H ,2
,k ,

∂2H
∂xk∂xl

= H ,11
,kl ,

∂2H
∂xk∂pl

= H ,12
,kl ,

∂2H
∂pk∂pl

= H ,22
,kl , (C.3)

and so forth.

We find expressions for the various quantities on the right-hand side of equation (C.1). In

particular, we can use the ODEs in equation (37) to obtain

Q̇iBC = H ,12
,miQmBC + H ,22

,imPmBC

+ QmB [QnC ∂1n + PnC ∂2n]H ,12
,mi

+ PmB [QnC ∂1n + PnC ∂2n]H ,22
,im ,

which yields

Q̇iBC = H ,12
,miQmBC + H ,22

,imPmBC

+H ,112
,mniQmBQnC + H ,122

,nmiPmBQnC + H ,122
,mniQmBPnC + H ,222

,mniPmBPnC . (C.4)

Likewise,

ṖiBC = −H ,11
,imQmBC − H

,12
,imPmBC

+ QmB [QnC ∂1n + PnC ∂2n](−H ,11
,im)

+ PmB [QnC ∂1n + PnC ∂2n](−H ,12
,im),
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so therefore,

ṖiBC = −H ,11
,imQmBC − H

,12
,imPmBC

−H ,111
,imnQmBQnC − H

,112
,inmPmBQnC − H

,112
,imnQmBPnC − H

,122
,imnPmBPnC . (C.5)

Using equations (C.4) and (C.5) we obtain,

PiAQ̇iBC = H ,12
,miPiAQmBC + H ,22

,imPiAPmBC

+H ,112
,mniPiAQmBQnC + H ,122

,nmiPiAPmBQnC

+H ,122
,mniPiAQmBPnC + H ,222

,mniPiAPmBPnC , (C.6)

QiAṖiBC = −H ,11
,imQiAQmBC − H

,12
,imQiAPmBC

−H ,111
,imnQiAQmBQnC − H

,112
,inmQiAPmBQnC

−H ,112
imnQiAQmBPnC − H

,122
,imnQiAPmBPnC . (C.7)

C1 A special case

Assume that the quantities PiA and PiAB can be expressed in terms of the slowness components

pi as

PiA = piEA, PiAB = piFAB. (C.8)

Applying equation (C.8) in equations (C.6)–(C.6) yields

PiAQ̇iBC = H ,12
,mipiQmBCEA + H ,22

,impipmEAFBC

+H ,112
,mnipiQmBQnCEA + H ,122

,nmipipmQnCEAEB

+H ,122
,mnipipnQmBEAEC , (C.9)

QiAṖiBC = −H ,11
,imQiAQmBC − H

,12
,impmQiAFBC

−H ,111
,imnQiAQmBQnC − H

,112
,inmpmQiAQnCEB

−H ,112
,imnpnQiAQmBEC − H

,122
,imnpmpnQiAEBEC . (C.10)

In equation (C.9) we have also applied the property (A.5) of the Hamiltonian, which eliminates

the term including the derivative H ,222
,imn.

Using relations (A.2)–(A.4) in equations (C.9)–(C.10) leads to

PiAQ̇iBC = −2ηmQmBCEA + EAFBC

+2H ,11
,mnQmBQnCEA − 2ηnQnCEAEB − 2ηmQmBEAEC , (C.11)
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36 E. Iversen et al.

QiAṖiBC = −H ,11
,imQiAQmBC + 2ηiQiAFBC

−H ,111
,imnQiAQmBQnC − 2H ,11

,in QiAQnCEB

−2H ,11
,imQiAQmBEC + 2ηiQiAEBEC . (C.12)

C2 Plane wavefront

The next step is to apply in equations (C.11)–(C.12) specifically the conditions for a plane

wavefront. This means to set

EA = ηiEiA, (C.13)

FAB = (−Uij + 3ηiηj)EiAEjB, (C.14)

QiA = EiA, (C.15)

QiAB = 0. (C.16)

This yields,

PiAQ̇iBC = (−Ujk + 3ηjηk)ηiEiAEjBEkC

+2H ,11
,mnEmBEnC ηiEiA − 2ηnEnCηiEiAηjEjB − 2ηmEmBηiEiAηkEkC

= (ηi Ujk − ηiηjηk) EiAEjBEkC (C.17)

and

QiAṖiBC = 2ηiEiA (−Ujk + 3ηjηk)EjBEkC

−H ,111
,imnEiAEmBEnC − 2H ,11

,in EiAEnC ηjEjB

−2H ,11
,imEiAEmB ηkEkC + 2ηiηjηkEiAEjBEkC

= (8ηiηjηk − 2ηi Ujk − 2ηj Uik − 2ηk Uij − Uijk) EiAEjBEkC . (C.18)

Taking the difference yields,

QiAṖiBC − PiAQ̇iBC = (9ηiηjηk − 3ηi Ujk − 2ηj Uik − 2ηk Uij − Uijk) EiAEjBEkC . (C.19)

In addition, we have

PiABQ̇iC = piFAB(H ,12
,miQmC + H ,22

,imPmC)

= (H ,12
,mipiQmC + H ,22

,impipmEC)FAB

= (−2ηmQmC + EC)FAB. (C.20)

Inserting as above yields

PiABQ̇iC = (−3ηiηjηk + ηk Uij) EiAEjBEkC . (C.21)
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 37

Finally, we apply the results (C.18), (C.19), and (C.21) in equation (C.1), which yields

the constraint relation for a plane wavefront,

viPiABC = QiAṖiBC − PiAQ̇iBC − PiABQ̇iC − PiACQ̇iB

= (15ηiηjηk − 3ηi Ujk − 3ηjUik − 3ηkUij − Uijk) EiAEjBEkC . (C.22)
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LIST OF TABLES

1 Main mathematical symbols used in the paper. For multicomponent quantities

the dimensions are specified.
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LIST OF FIGURES

1 Model ISO and some of the rays used in numerical tests. (Top) The vertical P-

wave velocity is indicated by color in vertical slices. Data for numerical comparisons

is computed along rays (black) from a source point at depth 4 km. Coefficients for

extrapolation of ray quantities are computed along a single reference ray (grey).

(Bottom) Lateral differences in the vertical P-wave velocity, relative to the velocity

on the reference ray, at depth 2 km.

2 Model ISO: Ray-tracing simulated P-wave traveltime (top) and geometrical

spreading (bottom) in the plane at depth 0 km for a source point at depth 4 km.

3 Model ISO: Relative error in traveltime for different extrapolation approaches

along the lines y = 5 km (top) and x = 7 km (bottom).

4 Model ISO: Relative error in geometrical spreading for different extrapolation

approaches along the lines y = 5 km (top) and x = 7 km (bottom).

5 Model VEL: Ray-tracing simulated P-wave traveltime (top) and geometrical

spreading (bottom) in the plane at depth 0 km for a source point at depth 4 km.

6 Model VEL: Relative error in traveltime for different extrapolation approaches

along the lines y = 5 km (top) and x = 7 km (bottom).

7 Model VEL: Relative error in geometrical spreading for different extrapolation

approaches along the lines y = 5 km (top) and x = 7 km (bottom).

8 Model VTI: Ray-tracing simulated P-wave traveltime (top) and geometrical

spreading (bottom) in the plane at depth 0 km for a source point at depth 4 km.

9 Model VTI: Relative error in traveltime for different extrapolation approaches

along the lines y = 5 km (top) and x = 7 km (bottom).

10 Model VTI: Relative error in geometrical spreading for different extrapolation

approaches along the lines y = 5 km (top) and x = 7 km (bottom).
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40 E. Iversen et al.

Table 1. Main mathematical symbols used in the paper. For multicomponent quantities the dimensions

are specified.

Quantity Dimension Description

(x1, x2, x3) 3 Cartesian coordinate system

x = (xi) 3 Position vector of the Cartesian coordinate system

p = (pi) 3 Slowness vector (momentum vector) of the Cartesian coordinate system

w = (wr) 6 Phase-space vector of the Cartesian coordinate system

= (xi, pj)

Ω Reference ray

H (w) Hamiltonian

Ĥ Constant value of the Hamiltonian

N Degree of the Hamiltonian

τ Traveltime along the ray Ω

τ0 Traveltime at the initial point of the ray Ω

c Phase velocity

v = (vi) 3 Ray-velocity (group-velocity) vector

η = (ηi) 3 Derivative of slowness vector p with respect to traveltime τ

Nγ Number of parameters specifying perturbation

of the initial phase-space location. Possible values are 1 to 6.

(γa) Nγ Parameters specifying perturbation

of the initial phase-space location

X = {Xra} 6×Nγ Phase-space perturbation derivatives of first order

S = {Srs} 6× 6 ODE coefficients related to first-order perturbation derivatives

U = {Uij} 3× 3 Sub-set (sub-matrix) of the ODE coefficients {Srs}

V = {Vij} 3× 3 Sub-set (sub-matrix) of the ODE coefficients{Srs},

the wave-propagation metric tensor

W = {Wij} 3× 3 Sub-set (sub-matrix) of the ODE coefficients{Srs}

δw = (δwr) 6 Perturbation of the phase space vector

δw0 = (δwr)0 6 Perturbation of the phase space vector

at the initial point on Ω

Π(τ, τ0) 6× 6 Ray propagator matrix

= {Πrs(τ, τ0)}

Π Paraxial plane

E = {EiM} 3× 2 Basis vectors in the plane Π

= [e1 e2]

H = {Hij} 3× 3 Transformation matrix related to the plane Π

= [E v]

F = {FiM} 3× 2 Sub-matrix of the 3× 3 matrix H−T .

{αij} 3× 3 Projection operator with respect to the wave-propagation metric tensor
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 41

Table 1. – continued

Quantity Dimension Description

M = {Mij} 3× 3 Second-order derivattives of traveltime

with respect to Cartesian coordinates, on Ω

{Mijk} 3× 3× 3 Third-order derivattives of traveltime

with respect to Cartesian coordinates, on Ω

{Mijkl} 3× 3× 3× 3 Fourth-order derivattives of traveltime

with respect to Cartesian coordinates, on Ω

{Qia}, {Pia} 3×Nγ Phase-space perturbation derivatives of first order,

in Q-P notation

Q = {QiA}, P = {PiA} 3× 2 Phase-space perturbation derivatives of first order,

in Q-P notation, for the case Nγ = 2

Q̂ = [Q v] 3× 3 Extension of matrix Q to size 3× 3,

the geometrical spreading matrix

P̂ = [P η] 3× 3 Extension of matrix P to size 3× 3

Q̂† = {Q†ij} = Q̂−1 3× 3 Inverse geometrical spreading matrix

Q† = {Q†Ij} 2× 3 Sub-matrix of the inverse geometrical spreading matrix

{Xrab} 6×Nγ ×Nγ Phase-space perturbation derivatives of second order

{Qiab}, {Piab} 3×Nγ ×Nγ Phase-space perturbation derivatives of second order,

in Q-P notation

{Srst} 6× 6× 6 Main ODE coefficients related to

second-order perturbation derivatives

{Rrst} 6× 6× 6 Additional ODE coefficients related to

second-order perturbation derivatives

{Uijk} 3× 3× 3 Sub-set of the ODE coefficients {Srst}

{Vijk} 3× 3× 3 Sub-set of the ODE coefficients {Srst}

{Xrabc} 6×Nγ ×Nγ ×Nγ Phase-space perturbation derivatives of third order

{Qiabc}, {Piabc} 3×Nγ ×Nγ ×Nγ Phase-space perturbation derivatives of third order,

in Q-P notation

{Srstu} 6× 6× 6× 6 Main ODE coefficients

related to third-order perturbation derivatives

{Rrstu} 6× 6× 6× 6 Additional ODE coefficients

related to third-order perturbation derivatives
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42 E. Iversen et al.

Table 1. – continued

Quantity Dimension Description

s = (si) 3 Source point

r = (ri) 3 Receiver point

T (r, s) Traveltime as a function of source-receiver coordinates

L(r, s) Relative geometrical spreading as a function of

source-receiver coordinates

{aijkl} 3× 3× 3× 3 Density-normalized elastic moduli

Γ = {Γij} 3× 3 Christoffel matrix

G Eigenvalue of the Christoffel matrix

P , Q, R General invariants of the Christoffel matrix,

for arbitrarily anisotropic media

PPSV , RPSV , GSH Particular invariants of the Christoffel matrix,

for transversely isotropic media

GP , GSV Particular invariants of the Christoffel matrix,

for elliptically anisotropic media

0 * Zero multicomponent quantity. The dimensions follow from the context.

I 3× 3 Identity matrix

J 6× 6 Matrix for rearranging derivatives in Hamilton’s equations
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Higher-order Hamilton-Jacobi perturbation theory in Cartesian coordinates 43

Figure 1. Model ISO and some of the rays used in numerical tests. (Top) The vertical P-wave velocity

is indicated by color in vertical slices. Data for numerical comparisons is computed along rays (black)

from a source point at depth 4 km. Coefficients for extrapolation of ray quantities are computed along

a single reference ray (grey). (Bottom) Lateral differences in the vertical P-wave velocity, relative to

the velocity on the reference ray, at depth 2 km.
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Figure 2. Model ISO: Ray-tracing simulated P-wave traveltime (top) and geometrical spreading (bot-

tom) in the plane at depth 0 km for a source point at depth 4 km.
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Figure 3. Model ISO: Relative error in traveltime for different extrapolation approaches along the

lines y = 5 km (top) and x = 7 km (bottom).
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Figure 4. Model ISO: Relative error in geometrical spreading for different extrapolation approaches

along the lines y = 5 km (top) and x = 7 km (bottom).
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Figure 5. Model VEL: Ray-tracing simulated P-wave traveltime (top) and geometrical spreading

(bottom) in the plane at depth 0 km for a source point at depth 4 km.
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Figure 6. Model VEL: Relative error in traveltime for different extrapolation approaches along the

lines y = 5 km (top) and x = 7 km (bottom).
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Figure 7. Model VEL: Relative error in geometrical spreading for different extrapolation approaches

along the lines y = 5 km (top) and x = 7 km (bottom).
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Figure 8. Model VTI: Ray-tracing simulated P-wave traveltime (top) and geometrical spreading

(bottom) in the plane at depth 0 km for a source point at depth 4 km.
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Figure 9. Model VTI: Relative error in traveltime for different extrapolation approaches along the

lines y = 5 km (top) and x = 7 km (bottom).
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Figure 10. Model VTI: Relative error in geometrical spreading for different extrapolation approaches

along the lines y = 5 km (top) and x = 7 km (bottom).
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