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GEOMETRIC INVERSE PROBLEMS ON GAS GIANTS

MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, ANTTI KYKKÄNEN,
AND RAFE MAZZEO

Abstract. On gas giant planets the speed of sound is isotropic
and goes to zero at the surface. Geometrically, this corresponds
to a Riemannian manifold whose metric tensor has a conformal
blow-up near the boundary. The blow-up is tamer than in asymp-
totically hyperbolic geometry: the boundary is at a finite distance.

We study the differential geometry of such manifolds, especially
the asymptotic behavior of geodesics near the boundary. We relate
the geometry to the propagation of singularities of a hydrodynamic
PDE and we give the basic properties of the Laplace–Beltrami
operator. We solve two inverse problems, showing that the interior
structure of a gas giant is uniquely determined by different types
of boundary data.

1. Introduction

The study of propagation of acoustic waves on a gas giant planet
leads to a Riemannian geometry that lies between asymptotically hy-
perbolic geometry and standard geometry with boundary. Some of the
phenomena in this geometry are unlike those seen at either end; for
example, constant curvature is not possible. We set out to study this
geometry, the related analytic model, and inverse problems for deter-
mining the geometry from boundary measurements.

On a gas giant planet, unlike a rocky planet, the speed of sound goes
to zero at the boundary. Geometrically, the power law decay rate of
the speed of sound corresponds to a specific conformal blow-up rate
of a Riemannian metric. This rate is slower than on asymptotically
hyperbolic manifolds and the boundary is at a finite distance from
interior points.

We study the basic geometry of gas giant Riemannian metrics, in-
cluding properties of geodesics near the boundary (Propositions 10
and 11), the Hausdorff dimension of the boundary (Proposition 15), and
discreteness of the spectrum of the Laplace–Beltrami operator (Propo-
sition 29).

We solve two inverse problems for simple gas giants planets, prov-
ing that the metric is uniquely determined by its boundary distance
data (Theorem 16) and that the geodesic X-ray transform is injective
(Theorem 17).
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A brief introduction to gas giant physics and how it leads to our
geometric model is given in Section 1.2 below and a more detailed
model is discussed in Section 5.

1.1. Gas giant geometry. Let M be an (n+1)-dimensional compact
manifold with boundary. A metric g on M is called a gas giant metric
of order α ∈ (0, 2) if it can be written in the form

g =
g

xα

where g is a smooth non-degenerate metric on M , including up to its
boundary. Observe that any such metric is incomplete. There are
two limiting cases: when α → 0, g becomes the ordinary incomplete
metric g on M , but when α → 2, then g converges to a complete
asymptotically metric of a type often called conformally compact; cf.
e.g. [Maz88]. We shall typically use a useful normal form. We may
choose local coordinates (x, y) onM , where x ≥ 0 and x = 0 but dx 6= 0
on ∂M and y restricts to a coordinate system on the boundary. There
is an associated collar neighborhood of the boundary U ∼= [0, 1)x×∂M
and a smooth family of metrics hx on ∂M such that

g =
dx2 + hx

xα
.

This is an analogue of the Graham-Lee normal form for conformally
compact metrics. We establish this below in Section 2.1.

Our goals in this paper are to develop a number of facts about the
geometry and analysis of this class of singular metrics. The first steps
involve a series of calculations concerning the more elementary geo-
metric considerations. We also consider the somewhat more subtle
problem of understanding the asymptotics of escaping geodesics, and
of the limiting dynamics of the geodesic flow. This leads to a first sort
of inverse question: is there a way to characterize a gas giant metric
intrinsically? More specifically, if (M◦, g) is an open manifold with an
incomplete metric, then is it possible to determine from this metric
alone the compactification M , as a smooth manifold with boundary,
the metric g, the constant α and the boundary defining function x?

We consider some deeper inverse problems related to this class of
metrics. In particular, we prove that the X-ray transform Ig on (M, g)
is injective. In the final sections of this paper we also consider the
Laplace–Beltrami operator ∆g. We study its spectrum, mapping prop-
erties and whether it is essentially self-adjoint.

This paper is an initial foray into the analysis and geometry of gas
giant metrics. Our aim here is to develop a number of fundamental re-
sults, either ab initio or as consequences of other related studies, which
will then make it possible to consider some deeper inverse problems
for this class of metrics. This paper splits into two not altogether dis-
tinct sections. In the first we develop a number of fundamental facts
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about the Riemannian geometry, including the behavior of geodesics,
for gas giant metrics. Some properties are slightly simpler in the spe-
cial case α = 1 but we present all our results for all values α ∈ (0, 2).
The second part of the paper studies various analytic properties of the
scalar Laplace–Beltrami operators for such metrics. In between these
two parts, we also prove some Pestov-type identities, which involve the
vector field generating geodesic flow on the cosphere bundle, and use
these to solve an inverse problem.

1.2. Geometry from the equation of state. As a leading order
approximation, we take a gas giant planet to be a ball and assume all
physical quantities to be invariant under rotations. Spherical symmetry
is irrelevant for the geometric model introduced above, but it makes
physics simpler.

Many celestial bodies are modelled to leading order as polytropes,
a far more detailed discussion of which can be found in [Hor04]. The
defining feature of a polytrope is the polytropic equation of state

p = Kρ1+1/n

relating the pressure p and the density ρ via the polytropic constant
K and the polytropic index n. The leading order approximation to
a self-gravitating and spherically symmetric polytropic body can be
written in terms of an auxiliary radial function θ(r) that satisfies p(r) =
p0θ(r)

n+1 and ρ(r) = ρ0θ(r)
n. If the ambient dimension is d and the

polytropic index satisfies n > −1, the function θ satisfies the Lane–
Emden equation

θ′′(r) + (N − 1)r−1θ′(r) + Crn = 0,

where C > 0. By rescaling the radial variable one can achieve C = 1.
At the surface of the body where r = R we have θ(R) = 0, and by

virtue of being a positive (inside the body) solution to the second order
Lane–Emden equation the function θ must satisfy θ′(R) < 0.

The speed of sound can be computed as the (isentropic) derivative

c =

√
∂p

∂ρ
= K ′ρ1/2n = K ′′p1/2(n+1) = K ′′′θ1/2

for new constants K ′ and K ′′ and K ′′′. This means that the speed of
sound is comparable to the square root of the distance to the surface, no
matter the value of the polytropic index. For gas giants the polytropic
index is usually taken to agree with the adiabatic index, which is n =
5/3 in the case of a monoatomic gas.

The polytropic model is only a leading order approximation and is
not expected to hold perfectly. Bodies are also not perfectly rotation-
ally symmetric due to rotation and inhomogeneities. Therefore we do
not take the polytropic model as the truth, but as a guide to choosing
a realistic mathematical model.
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If e is the Euclidean Riemannian metric on a smooth domain B ⊂
R

n, then the speed of sound c(r) can be modeled by the conformally
Euclidean Riemannian metric g = c−2e. For a symmetric planet B
would be a ball. If x is a boundary defining function for B (i.e. x(z) > 0
for z ∈ B, x(z) = 0 for z ∈ ∂B, and dx 6= 0 at ∂B), the polytropic
model suggests that c(z) ≈ x(z)1/2, and this is the simplest model for
a gas giant. For a rocky planet the speed of sound has a non-zero limit
at the boundary and so c(z) ≈ 1.

Therefore we take for a general model a speed of sound c(z) ≈
x(z)α/2. For a gas giant we expect the value of the parameter α to
be 1 and for rocky planets 0. For realistic gaseous celestial bodies
we may thus reasonably expect that α is close to 1. We thus allow
α ∈ (0, 2). The extreme case α = 0 corresponds physically to solid
bodies and mathematically to manifolds with boundary, and the other
extreme α = 2 corresponds to asymptotically hyperbolic geometry but
is far from all planetary models.

Therefore we say that a gas giant metric on a smooth manifold M
with boundary is a Riemannian metric g on M◦ so that g = x−αh,
where x is a boundary defining function for M and h is a well-defined
Riemannian metric up to the boundary. The fact that h is neither
zero nor infinite at ∂M implies a specific blow-up rate for g near the
boundary. This conformal power-law blow-up is the key geometric
feature of gas giant metrics. Both extremes α = 0 and α = 2 are quite
well understood mathematically, but the intermediate cases α ∈ (0, 2)
have been studied far less. The physically most relevant case α = 1
does not appear to be geometrically substantially different from other
values in the range we allow apart from some minor conveniences and
inconveniences that are not important for the present paper.

For a more detailed physical model for the hydrodynamics of a gas
giant planet, see Section 5 below.
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2. The geometry of gas giant manifolds

We begin with an ‘extrinsic’ study of the metric g = x−αg. Namely,
we assume that the metric takes this form and proceed to study its
various geometric properties.

2.1. Normal forms and asymptotic curvatures. A first observa-
tion is that if a metric g is know to be a gas giant metric for some α,
then this value can be determined from the intrinsic geometry of g.

Proposition 1. Suppose that g is an α-gas giant metric on the interior
of some manifold with boundary M . Then g is incomplete, and there is
a smoothly varying orthonormal basis of sections for TM such that the
sectional curvatures for 2-planes spanned by pairs of these basis vectors
are asymptotic to

−
2α

(2 − α)2
dist (·, ∂M)−2, and −

α2

(2− α)2
dist (·, ∂M)−2.

Thus α can be recovered from these asymptotic sectional curvatures.
We prove this Proposition below, but before doing so, first describe

a “normal form” for the metric near the boundary. This is modelled on
a very useful normal form, due to Graham and Lee [GL91, Lemma 5.2],
in the case when α = 2, in which case the metric g is complete, and is
called conformally compact. In that case, one can define g = x2g where
x is any choice of boundary defining function, and by definition, g is a
smooth non-degenerate metric up to the boundary. The restriction of
g to ∂M is a metric on the boundary; however, replacing x by x′ = ax
where a is any positive smooth function results in a new metric on ∂M
conformal to the first one. In other words, only the conformal class of
the metric is well-defined. The Graham–Lee theorem states that if h0 is
any representative of that conformal class, there is a unique boundary
defining function x such that

g =
dx2 + h(x, y, dy)

x2
, h(0, y, dy) = h0.

Here h is a family of metrics on ∂M (pulled back to the level sets
x = const.) depending smoothly on x, and y is any local coordinate
system of the boundary. In particular, − log x is a distance function
for the metric g.

In the gas-giant setting we can attempt to prove the same thing, but
there is no longer “free data” (analogous to the choice of representative
of the conformal class).

Proposition 2. Let g be an α gas giant metric. Then there is a well-
defined metric h0 on ∂M , and an associated boundary defining function
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x on M such that

g =
dx2 + h(x, y, dy)

xα
, where h(0, y, dy) = h0.

Proof. First choose an arbitrary boundary defining function x̃. We
modify it in two steps. In the first, we seek a new boundary defining
function x̂ = ax̃ such that |dx̂/x̂α/2|2g|∂M ≡ 1. For this, we compute

d(ax̃)

(ax̃)α/2
= a1−α/2 dx̃

x̃α/2
+O(x̃),

hence we simply need choose a along ∂M so that a2−α|dx̃|2/x̃α ≡ 1
there.

The metric h0 on ∂M is then defined as the pullback of x̂αg to the
boundary. The computation above shows that there is no leeway: the 1-
jet of the boundary defining function, and hence this boundary metric,
are completely fixed by the requirement that |dx/xα|g ≡ 1.

We now make a further change, setting x = eωx̂, and study the
equation |dx/xα/2|2g ≡ 1, not just at the boundary but in the collar
neighborhood of the boundary. Writing ĝ = x̂αg, we can rewrite this
as

e(2−α)ω
|dx̂+ x̂dω|2g

x̂α
= e(2−α)ω|dx̂+ x̂dω|2ĝ = 1.

Expanding and rearranging yields

|dx̂|2ĝ + 2x̂〈dx̂, dω〉ĝ + x̂2|dω|2ĝ = e(α−2)ω .

Using the normalization of x̂ and writing 〈dx̂, dω〉ĝ = ∂x̂ω, we recast
this in the form

x̂∂x̂ω = −x̂2|dω|2 + (1− |dx̂|2) +G(ω)ω, (1)

where G(ω) = ω−1(e(α−2)ω − 1) is a smooth function of ω (including
where ω vanishes). It is important to note that G(0) = α− 2 < 0.

This is a characteristic Hamilton–Jacobi equation. Fortunately the
main result in [GK12] is an existence theorem for equations of precisely
this form. That theorem applies to equations of the form

x̂∂x̂ω = F (x, y, ω, ∂yω), ω(0, y) = ω0(y),

where F (x, y, ω, q) is smooth and satisfies

F (0, y, ω0, ∂yω0) = 0, Fω(0, y, ω0, ∂yω0) < 1, Fq(0, y, ω0, ∂yω0) = 0.

The conclusion in [GK12] is that there exists a unique smooth solution
in some small interval 0 ≤ x̂ < x̂0. In the proof they observe that the
stronger condition Fω < 0 at (0, y, ω0, ∂yω0) implies that the solution
is unique even amongst continuing solutions.

To apply this theorem to our setting, we impose the initial condition
ω(0, y) = ω0 = 0. We then write x̂∂x̂ω + x̂2|dω|2ĝ = H(x̂∂x̂ω, x̂∂yω),
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where H(q1, q2) satisfies Hq1(0, 0) = 1, Hq2(0, 0) = 0. Applying the
implicit function theorem, we can thus rewrite (1) as

x̂∂x̂ω = F(x̂, y, ω, ∂yω)

where the differential of F in its third argument at ω0 = 0 equals G(0).
Since FωG(0) = α − 2 < 0, the result of Graham and Kantor can be
applied. In fact, even the stronger form, which gives uniqueness even
amongst all continuous solutions, also holds. �

We now return to the assertion about curvature asymptotics.

Proof of Proposition 1. We first compute sectional curvatures for the
warped product metric x−α(dx2 + h0). The shortest way uses Cartan’s
method of moving frames, which we recall briefly. We choose a g-
orthonormal family of 1-forms {ωi} which span T ∗

pM at each point.
Thus, essentially by definition, g =

∑
ωi ⊗ ωi. A simple lemma states

that there exist uniquely defined 1-forms ωij which are skew-symmetric
in the indices, i.e., ωji = −ωij , such that

dωi =
∑

j

ωij ∧ ωj.

This is called Cartan’s lemma, and the forms ωij encode the Levi-Civita
connection. We then define 2-forms

Ωij := dωij −
∑

k

ωik ∧ ωkj.

It is then not difficult to show (and this is explained in many sources)
that

Ωij = −
∑

k,ℓ

Rijkℓωk ∧ ωℓ,

where Rijkℓ are the components of the Riemann curvature tensor in
this basis at each point.

We apply this as follows. Let ω̄β, β = 1, . . . , n−1, denote a smoothly
varying orthonormal basis of 1-forms on (∂M, h0), and write

ω0 =
dx

xα/2
, ωβ =

ω̄β

xα/2
.

A short calculation then shows that for β, γ = 1, . . . , n− 1,

ωβγ = ω̄βγ, ωβ0 =
α

2
x(α−2)/2ωβ.

Here ω̄βγ are the connection 1-forms for the metric h0 on ∂M (extended
to the neighborhood U by the product decomposition).

Finally we compute that

Ωβγ =
α2

4
xα−2ωβ∧ωγ+O(xα), and Ωβ0 =

α

2
xα−2ωβ∧ω0+O(xα−1).
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The estimate of the remainder term uses, for example, that |Ωβγ|
2
g =

x2α|Ωβγ |
2
g. We conclude that the principal components of the curva-

ture tensor (which agree with the corresponding sectional curvatures
because of our use of orthonormal coframes) satisfy

Rβ0β0 ∼ −
α

2
xα−2, Rβγβγ ∼ −

α2

4
xα−2.

The function x is related to the distance function s by (1−α/2)x1−α/2 =
s, hence

Rβ0β0 ∼ −
−2α

(2 − α)2
, Rβγβγ ∼ −

α2

(2 − α)2
,

as claimed.
We have shown that any gas giant metric can be written in this sim-

ple warped product form up to remainders which are O(x). However,
there is something mildly circular in that we used an initial knowledge
of α in proving that normal form. To show that this is not a true
issue, observe that we can carry out with only moderately more work
the same computations as above if we only know that the metric g is
a gas-giant metric for some parameter α, and have set g = xαg for an
arbitrary boundary defining function x. The leading asymptotics then
determine the value of α just as above. �

We list a few more basic properties.

Proposition 3. If (M, g) is a gas giant metric, then Vol (M, g) < ∞
if and only if α < 2/n. If α > 2/n, then Vol ({x ≥ ε}) ∼ Cε1−nα/2,
while if α = 2/n, then Vol ({x ≥ ε}) ∼ −C log ε.

Proof. In the special coordinates above, dVg = x−nα/2dxdVh, so the to-
tal volume is finite if −nα/2 > −1, i.e., α < 2/n. The other assertions
are immediate. �

Proposition 4. The second fundamental form of the level sets {x = ε}
are strictly convex.

Proof. This is a standard computation, which is left to the reader. The
conclusion is that

∇∂yi
(−x∂x) =

α

2
∂yi +O(x).

This shows that the second fundamental form of these level sets is,
asymptotically, α/2 times the identity, and in particular is positive
definite. �

2.2. Geodesics. We now turn to a study of the geodesic flow on
(M, g).

In the following we always use an adapted coordinate system (x, y)
near the boundary, where x is the special boundary defining function
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obtained in Proposition 2 and y is any coordinate system on the bound-
ary. We denote by (ξ, η) the associated covectors. We shall use the
Hamiltonian formalism, namely we write the equations for the bichar-
acteristics for the Hamiltonian function

H(x, y, ξ, η) =
1

2
|(ξ, η)|2gx,y =

1

2
(xαξ2 + xαhij(x, y)ηiηj).

These bicharacteristics are curves in T ∗M which project to the geodesics
on M . These equations are:

ẋ =
∂H

∂ξ
= xαξ, ẏi =

∂H

∂ηi
= xαhij(x, y)ηj

ξ̇ = −
∂H

∂x
= −αx−1H(x, y, ξ, η)−

1

2
xα∂h

ij

∂x
ηiηj ,

η̇i = −
∂H

∂yi
= −

1

2
xα∂h

jk(x, y)

∂yi
ηjηk.

We may as well restrict to geodesics of a fixed speed, and thus sup-
pose that H ≡ 1/2 along the solution curves. This simplifies the first

summand in the equation for ξ̇ to being simply −α/2x. We often
write a bicharacteristic as (z(t), ζ(t)), where z(t) = (x(t), y(t)) and
ζ(t) = (ξ(t), η(t)).

Before we begin to analyze this system, there are some preliminary
observations. First, xα(ξ2 + hijηiηj) ≡ 2 along each orbit, so from this
it follows that if Aij is any matrix which is uniformly bounded on M ,
e.g., one written in terms of partial derivatives of the hij with respect
to any of the variables x or yk, then∣∣xαAijηiηj

∣∣ ≤ C, (2)

along each orbit, where C depends only on the norm of A. In the
following, we use O(1), O(xα), etc., to denote quantities which are
bounded by C, Cxα, etc., where the constants C depend only on the
metric and are independent of the orbit.

Lemma 5. For ε > 0 small enough, if γ(t) = (z(t), ζ(t)) is any bichar-
acteristic with x(0) < ε and ξ(0) = 0, then ξ(t) < 0 for all t ∈ R.

Proof. The hypothesis is invariant with respect to replacing t by −t,
so we prove the assertion for t ≥ 0. First observe that, by (2),

ξ̇ = −αx−1 +O(1) < −
1

2
αε−1 < 0

if ε is sufficiently small. Again, the penultimate inequality here is
independent of the trajectory.

This argument shows that if ξ(0) = 0, then ξ(t) < 0 for t > 0
sufficiently small, but in fact it shows that for any t0 > 0, if ξ(t0) < 0
and x(t0) < ε, then ξ(t) remains bounded above by a strictly negative
constant. This proves that ξ(t) < 0 for all t ≥ 0, and for any t0 > 0,
ξ(t) ≤ −c < 0 for t ≥ t0. �
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Lemma 6. If γ(t) = (z(t), ζ(t)) is any bicharacteristic with x(0) < ε,
where ε is chosen as in Lemma 5, and ξ(0) ≤ 0, then z(t) converges
to a unique point (0, ȳ) ∈ ∂M at some finite time T > 0 and η(t)
converges to some η̄ as t ր T as well.

Proof. We have just shown that the function x(t) is strictly monotone
decreasing. Denote the maximal time of existence by T ≤ ∞. There
are a number of possibilities: either T < ∞ or T = ∞, and in each of
these cases, either x(t) ց x0 > 0 as t ր T or else x(t) ց 0. We aim
to show that T < ∞ and x(t) ց 0.

Suppose first that x(t) ց x0 > 0. If in addition T < ∞, then
the system of equations remains non-degenerate and we could simply
take a limit as t → T to define γ(T ) and then continue the solution
for later times t > T . On the other hand, if T = ∞, then using that
ξ̇(t) ≤ −c < 0 for t ≥ t0, we obtain ξ(t) → −∞, which would contradict
that xα

0 ξ
2 < xαξ2 ≤ 1. Neither of these scenarios are possible, hence

x(t) ց 0.
We next show that γ(t) reaches x = 0 in finite time. Since x is

monotone, we may use it as the independent parameter. Thus, writing
ξ = ξ(x), we have

dξ

dx
=

−(α/2)x−1 +O(1)

xαξ
=⇒

d

dx
ξ(x)2 = −αx−α−1 +O(x−α).

Writing the final term as x−αF , where F is bounded, and integrating
from x to 1, gives

ξ(1)2 − ξ(x)2 = (1− x−α) +

∫ 1

x

s−αF (s) ds,

whence ξ(x) = −x−α/2(1+O(x)+O(xα)). (The case α = 1 is of course
slightly different, but we omit the details.) Now insert this into the
equation for ẋ to get that

dx

dt
= xαξ =− xα/2(1 +O(x) +O(xα)) =⇒

x−α/2ẋ = −1 +O(x) +O(xα).
(3)

Bounding the last two terms by C(ε + εα), and integrating from t0 to
t1, we get

x(t1)
1−α/2 = x(t0)

1−α/2 − (1− α/2)(t1 − t0) +O(ε+ εα)(t1 − t0).

As t1 ր T , x(t1)
1−α/2 → 0, which then shows that t1 cannot become

arbitrarily large. This proves that T < ∞.
We next observe that by the Hamiltonian constraint, η̇i = O(1), and

and thus ηi(t) converges to some limiting value η̄i as t → T since T is
finite. Using this, we also conclude that yi(t) → ȳi, and furthermore
that

(y(t), η(t)) = (ȳ, η̄) +O(xα).
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Note, however, that ξ(t) is unbounded, and more specifically, ξ(t) ∼
−x(t)−α/2 → −∞ as t ր T . �

We now improve these estimates by showing that along a fixed tra-
jectory, the functions x(t), y(t), ξ(t) and η(t) have complete asymptotic
expansions in powers of τ = T − t as τ → 0. This is achieved by an
iteration argument and a careful examination of the methods used in
the preceding proof. To simplify notation below, we use τ as a new
independent variable, and for any function f(τ), denote df/dτ by f ′

(so f ′ = −ḟ). We proceed with the calculations, and summarize the
outcomes of all of this at the end.

First, integrate x−α/2x′ = O(1) from 0 to τ to get x(τ) = O(τ
2

2−α ).
Substituting this into (3) yields x−α/2x′ = 1 +O(τ 2/(2−α) + τ 2α/(2−α)),
which then implies that

x(τ) = (1− α/2)2/(2−α)τ 2/(2−α)(1 +O(τ 2/(2−α) + τ 2α/(2−α))). (4)

This gives a leading asymptotic term for the function x(τ).
For the next step, observe that since we have already proved that y

and η remain bounded, the equations of motion show that (y′, η′) =
O(xα) = O(τ 2α/(2−α)), so that

(y(τ), η(τ)) = (ȳ, η̄) +O(τ (2+α)/(2−α)). (5)

Finally,

ξ(τ) = −(1 − α/2)2/(2−α)τ−α/(2−α)(1 +O(τ 2/(2−α) + τ 2α/(2−α))). (6)

The equations (4), (5) and (6) show that each of the functions
x(τ), y(τ), ξ(τ), η(τ) has a leading asymptotic term plus a lower order
remainder as τ → 0. For many purposes this is sufficient. However, it
is straightforward to set up an inductive scheme to prove the existence
of complete polyhomogeneous expansions for these functions in pow-
ers of τ . (When α = 1, these expansions also involve positive integer
powers of log τ as well.) This is done by iteratively substituting the
partial expansions of these functions into the equations of motion and
integrating from 0 to τ , which produces an expansion with one further
term in the asymptotic plus an error term which vanishes even more
quickly.

Since it will be very helpful below, we carry out the first step of this
iteration. In the following, set

cα = (1− α/2)2/(2−α),

and for simplicity, indicate higher order remainders by “...”. Now,
insert the expansions (4) and (5) into the equation for y′i(τ) to get that

y′i(τ) = xαhij(x, y)ηj

= (cατ
2/(2−α) + . . .)αhij(cατ

2/(2−α) + . . . , ȳ + . . .)(η̄j + . . .)

= cαατ
2α/(2−α)hij(0, ȳ)η̄j + . . . ,



12 DE HOOP, ILMAVIRTA, KYKKÄNEN, AND MAZZEO

Note that hij(0, ȳ)η̄j = v̄i is the ith coordinate of the vector v̄ which is
h0-dual to η̄ at ȳ. Thus

y(τ) = ȳ + c′ατ
(2+α)/(2−α) v̄ + . . . ,

where c′α = α−1((2− α)/2)(2+α)/(2−α).
From this we immediately deduce the following.

Corollary 7. Any geodesic (x(t), y(t)) which approaches the boundary
does so along a curve asymptotic to

y − ȳ = c′′αx
(2+α)/2v̄

for some v̄ ∈ Tȳ∂M , where c′′α is a universal constant depending only
on α.

Collecting all of the calculations, and proceeding as explained above,
we have proved the following result.

Proposition 8. Each trajectory (z(t), ζ(t)) which remains in the region
{x < ε} for t ≥ 0 reaches the boundary at x = 0 at some finite time
T . The coordinate functions (x(t), y(t), ξ(t), η(t)) for a given trajectory
admit complete asymptotic expansions in powers of T − t (and when
α = 1, also log(T − τ). In particular, (y(t), η(t)) converges to some
fixed point (ȳ, η̄) in the cotangent bundle of the boundary as t → T .

We now consider all points (z0, ζ0), ζ0 ∈ T ∗
z0M , with 0 < x0 < ε,

where the forward trajectory (z(t), ζ(t)) remains in the region x < ε
for all t ≥ 0 and converges to x = 0. To simplify matters, assume that
ξ0 = 0, so that η0 satisfies the Hamiltonian constraint xα

0 |η0|
2
h(x0,y0)

= 1.
Our goal is to determine the dependence of the exit time T and exit
point (ȳ, η̄) as functions of (x0, y0, η0).

Lemma 9. The function T (x0, y0, η0) is smooth when x0 > 0 and has a
complete asymptotic expansion in powers of x0 as x0 → 0, with leading

term T ∼ cx
1−α/2
0 for some c > 0.

Proof. Strictly speaking, the analysis in the preceding proof assumes
that ξ(0) < 0. We arrange this by first using that the one-parameter
family of local diffeomorphisms Φt associated to this flow for some small
time t = ℓ(x0, y0, η0) > 0 defines a smooth map Φt(x0) : (x0, y0, η0) 7→
(x1, y1, ξ1, η1). We choose this function ℓ(x0, y0, η0) so that x1 = x0/2.
The “height” x1 depends on all the variables (x0, y0, η0) (and the func-
tion ℓ too), so the image of this map as η0 varies but (x0, y0) remains
fixed is a small (n − 2)-sphere which is not of constant height, but
along which ξ1 is everywhere negative. By Lemma 5, the continuing
trajectory converges to ∂M .

Now use that x(τ) = cτ 2/(2−α) + . . ., which implies, equivalently,
that τ = c′x(1−α/2) + . . .. These functions (and the terms in the ex-
pansions) are smooth in all the remaining data. This shows that the
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time τ needed to move along this given trajectory from (0, ȳ) to (x1, y1)
depends smoothly on (x0, y0, η0) and is polyhomogeneous in x0.

We have just shown that elapsed time h(x0, y0, η0) for the path to

move from x0 to x0/2 is on the order of c′′x
1−α/2
0 for some c′′ > 0.

This function is readily seen to be polyhomogeneous as x0 → 0, as
is the concatenation with the map that gives the elapsed time for the
trajectory to move from x0/2 to the boundary. �

We next study the “endpoint mapping” from the set of initial condi-
tions S := {(x0, y0, η0) : H(x0, y0, 0, η0) = 1/2} to the limiting covector
on the boundary:

F : S −→ T ∗∂M, F (x0, y0, η0) = (ȳ, η̄).

Of course, F is well-defined only when restricted to the set Sε =
{(x0, y0, η0) ∈ S : 0 < x0 < ε} for some sufficiently small ε, and
we henceforth fix such an ε and the restriction of F to this set. Note
that both the Hamiltonian constraint set Sε and T ∗∂M are (2n − 2)-
dimensional. In the following, we systematically identify covectors
ζ = (ξ, η) with vectors v using the metric g. However, for covectors
(ȳ, η̄) ∈ T ∗

ȳ ∂M , we identify η̄ with a vector v̄ ∈ Tȳ∂M via the metric h0.

Proposition 10. The map F : Sε −→ T ∗∂M is a diffeomorphism
onto its image. Furthermore, it is smooth, in a precise sense to be
made explicit during the course of the proof, in the limit as x0 → 0.

Proof. First note that along geodesics starting on Sε, we have that
ξ = −x−α/2(1/2 − xαhij(x, y)ηiηj)

1/2. Inserting this into the equation
for ẋ yields that

dx

dt
= −xα/2(1/2− xαhij(x, y)ηiηj)

1/2 =: −xα/2K.

The quantity K is simply the second factor with the square root. As
we have done before, let us shift to using x as the independent variable.
We can then rewrite the equations for ẏi and η̇i as

dyi
dx

=
dyi/dt

dx/dt
= −xα/2hij(x, y)ηj,

dηi
dx

=
dηi/dt

dx/dt
=

1

2
xα/2∂yih

pq(x, y)ηpηq.

What we have done is to rewrite the equations for (y, η) as “self-
contained” equations involving only the new independent variable x
and (y, η). This system takes the form

d

dx

[
y
η

]
= xα/2K(x, y, η)G(x, y, η), where G(x, y, η) =

[
−hijηj

1
2
∂yih

pqηpηq

]
.

Rewrite this as x−α/2 d
dx

[
y
η

]
= K(x, y, η)G(x, y, η). This suggests that

we reparametrize again, setting u = x1+α/2/(1 + α/2) so that d
du

=
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dx
du

d
dx

= x−α/2 d
dx
. The system then becomes

d

du

[
y
η

]
= K(x(u), y, η), G(x(u), y, η).

Finally, the endpoint map we are studying corresponds to the flow of

this system between the two values u0 = x
1+α/2
0 /(1 + α/2) and u1 = 0.

Since x(u) = (1 + α/2)2/(2+αu2/(2+α), the functions on the right are
polyhomogeneous in u, but not smooth at u = 0. However, the lack
of full regularity in the independent variable is not relevant in the
key fact needed here, which is smooth dependence on initial condi-
tions (u0, y0, η0). This map Sε ∋ (x0, y0, η0) 7→ (y(0), η(0)) is this thus
smooth, and patently reversible, hence defines a diffeomorphism from
the domain Sε to its image, an open subset of T ∗∂M .

For the final statement, we employ a scaling argument to study this
map as x0 → 0. Fix a point (0, 0) ∈ ∂M , and consider the family of
dilations δλ : (x, y) 7→ (λx, λy). The pullback of the fixed metric g with
respect to δλ is

δ∗λ(x
−α(dx2 + hij(x, y)dy

idyj)) = λ2−αx−α(dx2 + hij(λx, λy)dy
idyj),

and after normalizing, this has a limit:

lim
λ→0

λα−2δ∗λg = x−α(dx2 + hij(0, 0)dy
idyj).

This last metric is defined on the entire half-space Rn
+ = {(x, y) ∈ R

n :
x > 0}. The (co)geodesic flow of these dilated rescaled metrics are
simply reparametrizations of the geodesics for the initial metric g.

We employ this as follows. To understand the behavior of F (x0, y0, η0)
as x0 → 0, it suffices to consider the family of mappings Fx0

(1, y0, η0)
which are defined in the same way as F , but for the family of rescaled
metric xα−2

0 δ∗x0
g. These rescaled metrics converge smoothly as x0 → 0,

and this implies easily that this family of mappings Fx0
also converge

smoothly. �

With this analysis, we can now use the map F to understand further
maps of interest.

Proposition 11. Let y1 and y2 be two nearby points on ∂M . Then
there exists a unique geodesic γ which connects y1 to y2.

Proof. Given any (y1, η1) and a point (x0, y0) with y0 sufficiently near
to y1, x0 sufficiently small and |η1| ≤ C, there exists a unique trajec-
tory (x(t), y(t), ξ(t), η(t)) with initial condition (x0, y0, 0, η0) for some
η0 satisfying H(x0, y0, 0, η0) = 1/2 and such that (y(t), η(t)) → (y1, η1).
Now follow this trajectory past (x0, y0). This continuation hits the
boundary at some point (ȳ, η̄) = F (x0, y0,−η0). The elapsed time for
the entire trajectory is T (x0, y0, η0) + T (x0, y0,−η0). This defines a
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smooth invertible map, which is the analogue of the scattering relation
in this setting,

E : T ∗∂M → T ∗∂M, E(y1, η1) = (ȳ, η̄).

Now fix y1 and project E off the η̄ component. Since there are no conju-
gate points, this defines a diffeomorphism from a small punctured ball
Bc(0) \ {0} ⊂ T ∗

y1
∂M of non-zero covectors to its image, a punctured

neighborhood of y1 in ∂M . Thus to every y2 in this neighborhood,
there exists some η1 such that E(y1, η1(y2)) = (y2, η2) for some η2.
This associates to the pair (y1, y2) first the covector (y1, η1) and then
the apex of the corresponding geodesic F−1(y1, η1), and finally the en-
tire geodesic. �

We have now shown that the interior distance function dg(y1, y2) is
well-defined for (y1, y2) lying in a sufficiently small punctured neigh-
borhood of the diagonal of (∂M)2. Let us reparametrize the space
of such pairs with the new variables (ȳ, v̄); here ȳ is defined as the
midpoint of the h0-geodesic connecting y1 to y2 and v̄ ∈ Tȳ∂M is the
tangent vector to that geodesic (in the direction from y1 toward y2)
with length dg(y1, y2)/2. Thus y1, y2 = exph0

ȳ (±v̄). Write v̄ = rω in
spherical coordinates, so r = dg(y1, y2)/2 ≥ 0 and ω ∈ Sn−2.

Corollary 12. The interior distance function dg(y1, y2) is polyhomo-
geneous as r → 0, with dg(y1, y2) ∼ r1−α/2.

Proof. We have already shown that that there is a well-defined diffeo-
morphism which maps (y1, y2) to (x0, y0, η0). We also analyzed that
this map has a smooth limit as y2 → y1, i.e., for r → 0. In particu-
lar, x0 depends smoothly on r. Next, by Lemma 9, the elapsed times
T (x0, y0,±η0) to descend either of the two halves of this geodesic to-
ward y1 and y2 are polyhomogeneous as x0 → 0. Finally, the lengths
of these two half-geodesics γ± are computed using the usual formula

ℓ(γ±) =

∫ T (x0,y0,±η0)

0

|γ′
±(t)| dt,

which is smooth in T , and hence polyhomogeneous in x0 and thus also

in r . Since T ∼ cx
1−α/2
0 , this is the behavior of dg(y1, y2) as well. �

We note that it is possible to arrive at essentially the same conclu-
sion, at least at the level of an estimate of order of growth but without
the expansion, by a more elementary method.

Proposition 13. Then there are uniform constants 0 < C1 < C2 so
that

C1dg(y1, y2) ≤ dh0
(y1, y2)

1−α
2 ≤ C2dg(y1, y2).

for all y1, y2 ∈ ∂M .

Remark 14. Observe that this result shows in yet a different way that
boundary measurements determine α.
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Proof of proposition 13. It is convenient here to use coordinates (s, y)
where

g = ds2 + s−β(1− α/2)−βh(s, y, dy) and h(0, y, dy) = h0. (7)

In fact, s = x1−α/2/(1− α/2) and β = 2α/(2− α).
Suppose, as before, that y1, y2 ∈ ∂M are sufficiently close to one

another. We work locally near the boundary in the coordinates (s, y)
so that the metric is of the form (7), and in particular the distance of a
point (s, y) to the boundary is s. Let γ be the unique interior geodesic
connecting these boundary points, and set k = maxt dg(∂M, γ(t)). In
the following, Cα denotes various positive constants depending on α
but not y1, y2.

We now approximate γ by a “quasi-geodesic”. Define curves γ1, γ2 by
γj(t) = (t, yj), j = 1, 2, 0 ≤ t ≤ ε, where ε is to be determined, and let
γ3 be the interior geodesic which connects γ1(ε) to γ2(ε). Denote by γε
the concatenation of these three curves; this connects y1 to y2. Hence
dg(y1, y2) ≤ minε ℓg(γε), the length with respect to g of this piecewise
curve. Furthermore,

lg(γε) = lg(γ1) + lg(γ2) + lg(γ3) = 2ε+ Cαε
− α

2−αdh(y1, y2). (8)

The right-hand side of (8) is minimized at ε = Cαdh(y1, y2)
1−α

2 . This
gives

dg(y1, y2) ≤ Cαdh0
(y1, y2)

1−α
2 + Cαdh0

(y1, y2)(dh(y1, y2)
1−α

2 )−
α

2−α

= Cαdh0
(y1, y2)

1−α
2 .

Next, choose t0 so that k = dg(∂M, γ(t0)). Writing γ(t) = (s(t), y(t)),
then

ℓg(γ) ≥

∫ ℓg(γ)

0

|ṡ(t)| dt =

∫ t0

0

ṡ(t) dt−

∫ ℓg(γ)

t0

ṡ(t) dt = 2k. (9)

On the other hand, since s(t) ≤ s(t0) on the entire geodesic,

ℓg(γ) ≥

∫ ℓg(γ)

0

s(t)−
α

2−α |ẏ(t)|h0
dt ≥ s(t0)

− α
2−α

∫ ℓg(γ)

0

|ẏ(t)|h0
dt

≥ k− α
2−αdh0

(y1, y2).

(10)

Combining (9) and (10), we obtain that dg(y1, y2) ≥ Cαdh0
(y1, y2)

1−α
2 ,

while combining (8) and (10) yields k ≥ Cαdg(y1, y2). Therefore all
dg, dh0

and k are comparable with constants only depending on α as
claimed. �

Proposition 15. The Hausdorff dimension of (∂M, dg) equals
2

2−α
(n−

1). The Hausdorff dimension of M equipped with this same metric
equals max{n, 2

2−α
(n− 1)}.

Proof. By Proposition 13, (∂M, dg) and (∂M, d
1−α

2

h0
) are bi-Lipschitz

equivalent, and hence have the same Hausdorff dimension. It is enough
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then to compute dim (∂M, d
1−α

2

h0
). For simplicity, write this metric

space as (∂M, dα).
It follows from the definition of Hausdorff measure that for all δ > 0,

Hδ(∂M, dα) = H(1−α/2)δ(∂M, dh0
), hence

dimH(∂M, dα) =
2

2− α
dimH(∂M, dh0

) =
2

2− α
(n− 1).

This proves the first claim. As for the second, this follows since M =
∂M ∪M◦ and dimH(M

◦, dg) = n. �

2.3. A travel time inverse problem for a gas giant. As a first
application of our study of geodesics on gas giants, we consider a pre-
liminary inverse problem which asks whether the interior geometry of
a gas giant can be recovered (modulo isometries) from knowledge of
the Riemannian distances from interior points to the boundary. This
simple application can be seen as a proof of concept of our gas giant
geometry, leading to a proof as simple as that in the case α = 0.

The corresponding result is known both for compact Riemannian
manifolds with boundary [KKL01] and in the Finsler setting [dHILS19].
There is a more straightforward proof [ILS23] in the Riemannian case
when the metric is simple using a version of the Myers–Steenrod theo-
rem from [dHILS23]. The result here is related to this simpler version.

Theorem 16. Let M be a compact manifold with boundary and, for
i = 1, 2, suppose that gi are simple αi-gas giant metrics on M . Denote
by di : M × M → R

+ the associated Riemannian distance functions.
Define the maps ri : M → C(∂M), where ri(x) is the function which
sends ∂M ∋ z 7→ di(x, z).

If the ranges of the two maps r1 and r2 are the same in C(∂M), then
α1 = α2 and g1 is isometric to g2 by a diffeomorphism which is the
identity on ∂M .

Proof. First note that each map ri is well-defined, i.e., ri(x) is indeed
a continuous function on ∂M . For standard incomplete metrics, this
follows immediately from the triangle inequality. In this setting, the
same conclusion holds because, if z, z′ ∈ ∂M and dhi

is the distance
function associated to the metric hi on ∂M , then using the analysis
of the last section gives the continuity estimate |di(x, z) − di(x, z

′)| ≤
dhi

(z, z′)1−αi/2. We also observe the unique continuous extension of di
to the closed manifold with boundary is also well-defined and continu-
ous.

Next, it is also straightforward to check that each ri is injective.
Indeed, if there were to exist two distinct points x, x′ ∈ M◦ such that
ri(x) = ri(x

′), i.e., di(x, z) = di(x
′, z) for all z ∈ ∂M , then consider the

maximally extended geodesic γ which is length minimizing between any
two of its points (this is where we use simplicity of the metrics) passing
through x and x′. Suppose that one end of γ meets ∂M at a point z,
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with x′ between x and z. Then clearly ri(x)(z) = ri(x
′)(z) + di(x, x

′),
so ri(x) 6= ri(x

′) in C(∂M). The extended maps from all of M are also
injective.

Continuing this same line of reasoning, we claim that in fact, if x, x′ ∈
M◦, then ‖ri(x)− ri(x

′)‖∞ = di(x, x
′). This follows since, on the one

hand, by the triangle inequality, ‖r(x)− r(x′)‖∞ ≤ d(x, x′), while on
the other, choosing the minimizing geodesic γ as above, then d(z, x)−
d(z, x′) = ±d(x, x′), whence ‖r(x)− r(x′)‖∞ ≥ dg(x, x

′).
As continuous injective maps from the compact Hausdorff space

(M, di) to C(∂M), each ri is a homeomorphism onto the common im-
age r1(M) = r2(M). We may then define Ψ := r−1

2 ◦ r1 : M → M . By
construction, this is a bijective metric isometry.

If x ∈ ∂M , then 0 = r1(x)(x) = r2(Ψ(x))(x), so x = Ψ(x), i.e., Ψ is
the identity on the boundary. The fact that Ψ is a Riemannian isometry
from (M◦, g1) to (M◦, g2) is then a consequence of the Myers–Steenrod
theorem [MS39, Pal57]. �

3. Geodesic X-ray tomography on a gas giant

This section studies the problem of unique reconstructibility of a
function on a gas giant from the knowledge of its X-ray data i.e. in-
tegrals over all maximal geodesics. We prove that the X-ray data
uniquely determines functions smooth up to the boundary.

The study of geodesic X-ray tomography in standard smooth Rie-
mannian geometry originated in the work of Mukhometov [Muh77],
who first proved the case α = 0 of our theorem 17 below. For a com-
prehensive survey of the results, history and motivation of geodesic
X-ray tomography, see [Sha94, IM19, PSU23]. The X-ray transform is
known to be injective on Cartan–Hadamard manifolds (see [LRS18])
and in asymptotically hyperbolic geometry (see [GGSU19]). These re-
sults are the closest relatives to our Theorem 17.

Theorem 17. Let M be a smooth manifold with boundary of dimension
n + 1 ≥ 2. Let g = x−αg be a gas giant metric on M for some α ∈
(0, 2) which is simple, i.e., non-trapping and free of conjugate points.
Suppose that a function f ∈ C∞(M̄) has zero integral over all maximally
extended g-geodesics. Then f = 0.

The proof of this theorem is based on a Pestov identity method. We
begin by recalling relevant terminology, and refer to [Pat99] for more
details about the geometry of unit sphere bundles.

3.1. Pestov identity with boundary terms on a regular bound-

ary. Let (M, g) be any compact smooth Riemannian manifold with
smooth boundary (in this subsection g is assumed to be smooth up to
∂M), and S∗M its unit cosphere bundle. This has the standard projec-
tion π : S∗M → M , as well as a connection map K : TS∗M → TM , de-
fined by K(θ) = Dtc

♯(0); here c is any curve in S∗M with c(0) = (x, ξ)
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and ċ(0) = θ, c♯(t) = c(t)♯ is the family of dual covectors, and Dt is the
Levi-Civita connection along π(c(t)).

There is an orthogonal decomposition

TS∗M = RX ⊕H⊕ V, V = Ker dπ, H = KerK. (11)

We denote by N → S∗M the bundle whose fibers are Nx,ξ = Ker ξx ⊆
TxM . The maps dπ|H : H → N and K|V : V → N are isomorphisms
and we freely identify H⊕V = N ⊕N . We define the Sasaki metric G
on S∗M by

G(θ, θ′) = g(dπ(θ), dπ(θ′)) + g(K(θ), K(θ′))

for θ, θ′ ∈ Tx,ξS
∗M . The splitting (11) of TS∗M is orthogonal with

respect to G.
The G-gradient of a smooth function u on S∗M can be written as

∇Gu = (Xu,∇Hu,∇Vu)

where the horizontal and vertical gradients ∇Hu and ∇Hu are smooth
sections of the bundle N andX is the Hamiltonian vector field on S∗M .
The Riemannian curvature tensor maps sections W of N to sections of
N by the action

RW (x, ξ) = R(W (x, ξ), ξ♯)ξ♯.

Let dΣ be the volume form of the Sasaki metric.
Now pull the volume form dΣ by the inclusion ∂S∗M → S∗M to get

a natural volume form dσ on ∂S∗M . For all u ∈ C∞(S∗M) define

B(u) :=

∫

∂S∗M

〈∇Vu,∇Hu〉+ nuXu dσ.

The following Pestov identity was proved in [GGSU19, p. 60].

Lemma 18. With notation as above, then for all u ∈ C∞(S∗M),

‖∇VXu‖2 = ‖X∇Vu‖2 − (R∇Vu,∇Vu) + n‖Xu‖2 +B(u). (12)

Remark 19. By approximation, the identity (12) continues to hold if
u ∈ C1(S∗M) has ∇VXu ∈ L2(N) and X∇Vu ∈ L2(N).

3.2. Proof of theorem 17. We return to the case where g is a simple
gas giant metric and present the proof of theorem 17 using a collection
of lemmas, the proofs of which appear in sections 3.3, 3.4 and 3.5.

Lemma 20. Let g be a simple α-gas giant metric on M , and let f ∈
C∞(M̄). If f integrates to zero over all maximally extended g-geodesics
of M then f ∈ x∞C∞(M).

Lemma 21. Let g be a simple α-gas giant metric on M , and suppose
that f ∈ x∞C∞(M). Then there is a solution u ∈ x∞C∞(S∗M◦) to the
transport equationXu = −f in S∗M◦ with ∇Gu ∈ x∞L∞(S∗M ;TS∗M)
and X∇Vu,∇VXu ∈ L2(N).
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Lemma 22. Let u ∈ x∞C∞(S∗M◦) satisfy Xu = −f as well as
∇VXu,X∇Vu ∈ L2(N) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M). Then

‖∇VXu‖2 = ‖X∇Vu‖2 − (R∇Vu,∇Vu) + n‖Xu‖2.

In the following, C∞(N◦) denotes the space of sections of N which
are smooth over the interior S∗M◦.

Lemma 23. Let g be a simple α-gas giant metric on M . Then

Q(W ) = ‖XW‖2 − (RW,W ) ≥ 0

for all W ∈ x∞C∞(N◦) with W ∈ x∞L∞(S∗M ;TS∗M).

Proof of theorem 17. Suppose that f ∈ C∞(M) integrates to zero over
all maximally extended geodesics. Then f ∈ x∞C∞(M) by Lemma 20
and so by Lemma 21 there is a solution u ∈ x∞C∞(S∗M◦) to the
transport equation Xu = −f with ∇Gu ∈ x∞L∞(S∗M ;TS∗M) and
∇VXu,X∇Vu ∈ L2(N). Apply the Pestov identity in Lemma 22 to u
to get

‖∇Vf‖2 = Q(∇Vu) + n‖f‖2. (13)

Since f is the lift of a function on M to S∗M , ∇Vf ≡ 0. In addition,
Q(∇Vu) ≥ 0. Thus by Lemma 23, the Pestov identity (13) reduces to
0 ≥ n‖f‖2, so f ≡ 0 as claimed. �

3.3. Boundary determination. In this section we prove that a func-
tion smooth up to the boundary of M is uniquely determined to any
order at the boundary by its integrals over all maximal g-geodesics in
M . We first prove an auxiliary result about geodesics converging to a
given boundary point.

Lemma 24. Let g be a simple α-gas giant metric on M . For any
ȳ ∈ ∂M , there exists a sequence ζk ∈ S∗

ȳM such that the lengths lg(γk)
of the bicharacteristics γk(t) = (zk(t), ζk(t)) with γk(0) = (ȳ, ζk) are
positive for all k and converge to zero as k → ∞.

Proof. Choose a smooth boundary curve c : (−ε, ε) → ∂M with c(0) =
ȳ, and set ȳk := c(1/k). By simplicity, there is a unique unit speed
bicharacteristic γk(t) = (zk(t), ζk(t)) with zk(0) = ȳ, zk(τk) = ȳk; here
τk is the exit time of zk (this is finite by lemma 6). We then let ζkζk(0).
Since ȳk 6= ȳ, each lg(γk) has positive length. Moreover, by Proposi-
tion 13 we have

lg(γk) = dMg (ȳk, ȳ) ≤ Cd∂Mh (ȳk, ȳ)
1−α/2,

so the lengths converge to zero, as needed. �

We can now prove the following boundary determination lemma.
We use arguments similar to the proof of [LSU03, Theorem 2.1]. The
only step in its proof where simplicity of the metric is needed is when
Lemma 24 is invoked.
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Proof of lemma 20. We prove by induction on ℓ that for all ȳ ∈ ∂M
and every ℓ ≥ 0, (∂ℓ

xf)(0, ȳ) = 0.
When ℓ = 0, choose a sequence ζk ∈ S∗

ȳM so that that the cor-
responding bicharacteristics γk(t) = (zk(t), ζk(t)) have lengths lg(γk)
tending to zero, as in Lemma 24. By hypothesis,

1

τk

∫ τk

0

f(zk(t)) dt = 0,

where τk is the length of the geodesic zk. Since f is smooth, there exist
tk ∈ (0, τk) such that f(zk(tk)) = 0. Clearly tk < τk → 0. Thus

f(0, ȳ) = lim
k→∞

f(zk(tk)) = 0,

as claimed.
Now assume, for any ℓ > 0, that ∂j

xf(x, y)|(0,ȳ) = 0 for all 0 ≤
j < ℓ. We prove that (∂ℓ

xf)(0, ȳ) = 0 by assuming the contrary, that
(∂ℓ

xf)(0, ȳ) 6= 0 and arriving at a contradiction.
Assume that (∂ℓ

xf)(0, ȳ) > 0. Since f is smooth, (∂ℓ
xf)(x, y) > 0 for

all (x, y) in some neighborhood U of (0, ȳ). Taking the Taylor expansion
of f at any (0, y) and using the inductive hypothesis, we have that

f(x, y) = xℓ∂ℓ
xf(0, y) +O(xℓ+1).

By the positivity of the ℓth derivatives, there is a smaller neighbourhood
ȳ ∈ U ′ ⊆ U such that f(x, y) > 0 in U ′. Since lg(γk) → 0, the entire
geodesic zk lies in U ′ when k is large. Hence the integral of f over zk
cannot vanish, a contradiction.

This proves that f vanishes to order ℓ along ∂M , and since this is
true for all ℓ > 0, we are done. �

As a corollary of this Lemma, we prove that the transport equation
Xu = −f admits a solution which is smooth in M◦, and that this
solution vanishes to all orders at ∂M if f ∈ C∞(M) is in the kernel of
the X-ray transform.

Given f ∈ C∞(M̄), we define uf to be the function on S∗M defined
by the formula1

uf(z, ζ) =

∫ τ(z,ζ)

0

f(φt(z, ζ)) dt;

here f is identified with its pullback π∗f , and φt(z, ζ) is the cogeodesic
flow.

Corollary 25. Let g be a simple α-gas giant metric on M , and let
f ∈ C∞(M̄). If the integral of f over all maximal geodesics in M is
zero, then uf solves the transport equation Xu = −f in S∗M◦, and
uf ∈ x∞C∞(S∗M◦).

1In this section, unlike above, we denote the exit time by τ to adhere with the
common convection.
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Proof. Since f , φt and τ are all smooth (see Lemma 9), clearly uf ∈
C∞(S∗M◦).

We prove that uf(z, ζ) = O(xℓ) for all ℓ > 0, where the constant
depend only on ℓ. It suffices to prove this at (z0, ζ0) ∈ S∗M◦, so that
x0 ∈ (0, ε) and ξ0 < 0. For positive ξ0 the claim follows from this one
and vanishing integrals of f over maximal geodesics.

Let γ(t) = (z(t), ζ(t)) be a bicharacteristic γ(0) = (z0, ζ0). We have
already shown that f(x, y) = O(xℓ) for any ℓ. Since x(t) is strictly
decreasing by lemma 5 and g is non-trapping, we have

∣∣uf(z0, ζ0)
∣∣ ≤

∫ τ(z0,ζ0)

0

|f(φt(z0, ζ0)| dt ≤ Ck

∫ τ(z,ζ)

0

x(t)ℓ dt

≤ C̃kx(0)
ℓ = C̃kx

ℓ
0

for all ℓ > 0, hence uf ∈ x∞C∞(S∗M◦).
To prove that uf solves Xu = −f in S∗M◦, we compute just as for

the classical case of metrics smooth up to the boundary. The point is
simply that X differentiates along the cogeodesic flow and uf is defined
by integration along the orbits of this flow. �

3.4. Derivatives of the integral function. We now prove lemma 21.
This involves an estimate of the derivatives of uf , where f has vanishing
X-ray transform. The first step is to show that normal Jacobi fields
cannot blow up at the boundary with respect to the metric g = xαg.

Lemma 26. Let J(t) be a Jacobi field everywhere normal to a bicharac-
teristic curve (z(t), ζ(t)) with x(0) < ε and ξ(0) ≤ 0. Then |J(t)|g ≤ C

and |DtJ(t)|g ≤ Cx(t)−1 for all t ∈ [0, τ(z(0), ζ(0))].

Proof. Choose any local coordinate system on M near the endpoint of
the projected geodesic. The Jacobi equation takes the form

J̈ i + 2Γi
jkγ̇

jJ̇k + (∂kΓ
i
jl)γ̇

jγ̇lJk = 0,

where J̈ and J̇ denote the usual derivatives of the coordinates of J with
respect to t. The Christoffel symbols of the actual metric g are

Γ0
00 = −

α

2
x−1, Γ0

i0 = 0, Γm
00 = 0

Γ0
ij = −

α

2
x−1hij +

1

2
hij

Γm
i0 = −

α

2
x−1δmi +

1

2
hmk∂xhki

Γi
jk =

1

2
hmk(∂jhki + ∂ihkj − ∂khij) := H i

jk,
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where H i
jk is defined by this last equality. When J(t) is normal to z(t),

the Jacobi equation reduces to

0 = J̈ i + 2Γi
0kẋJ̇

k + 2Γi
jkẏ

jJ̇k + 2(∂kΓ
i
0l)ẋẏ

lJk + (∂kΓ
i
jl)ẏ

j ẏlJk

= J̈ i − αx−1ẋJ̇ i + (hil∂xhlkẋ+ 2H i
jkẏ

j)J̇k

+ (∂k(h
ip∂xhpl)ẋẏ

l + (∂H i
jl)ẏ

jẏl)Jk.

(14)

The coefficient of the third term on the right, involving J̇k, is bounded
for x ≥ 0, and since ẏ = O(xα), equation (14) becomes

J̈ i − αx−1ẋJ̇ i + F i
kJ̇

k + xαGi
kJ

k = 0 (15)

for some bounded functions F i
k and Gi

k.
Equation (15) can be reduced to a non-singular equation by rescaling

J̇ . Define W1(t) = J(t) and W2(t) = x(t)−αJ̇(t), so that Ẇ1 = xαW2.
Substituting into (15) gives

0 = αxα−1ẋW i
2 + xαẆ i

2 − αxα−1ẋW i
2 + xαF i

kW
k
2 + xαGi

kW
k
1

which reduces to Ẇ i
2 = −F i

kW
K
2 − Gi

kW
k
1 . This shows that W =

(W1,W2) satisfies Ẇ = AW where

A =

(
0 xαI

−G −F

)

and I is the identity matrix, and F = (F i
k) and G = (Gi

k).
It suffice to prove boundedness of the Jacobi field in the Euclidean

metric e with respect to the (x, y) coordinates. We compute

∂t |W (t)|2e = 2Ẇ (t) ·W (t) = 2A(t)W (t) ·W (t).

Since A is continuous up to ∂M , and hence bounded, we get ∂t |W (t)|2e ≤

C |W (t)|2e. By Grönwall’s inequality, |W (t)|2e ≤ C |W (0)|2e. This proves

that |J(t)|2e ≤ C and |J̇(t)| ≤ Cx(t)2α, and hence |DtJ(t)|e ≤ Cx(t)−1,
as claimed. �

By Lemma 26, we can now estimate derivatives of uf .

Lemma 27. If f ∈ x∞C∞(M), then ∇Gu
f(z, ζ) = O(xℓ) for any ℓ ≥ 0,

where the constants are uniform in (z, ζ) ∈ S∗M◦.

Proof. It suffices to prove that ∂θu
f(z, ζ) = O(xℓ) uniformly on S∗M◦,

where x < ε, ξ ≤ 0 and θ ∈ Tz,ζS
∗M◦ with θ ⊥ X . For convenience,

identify f with its lift π∗f to S∗M◦. Choose a smooth curve c(s) in
S∗M◦ with c(0) = (z, ζ) and ċ(0) = θ. Then

∂θu
f(z, ζ) =

d

ds

∫ τ(c(s))

0

f(φt(c(s))) dt

∣∣∣∣
s=0

= f(φτ(z,ζ)(z, ζ))
d

ds
τ(c(s))

∣∣∣∣
s=0

+

∫ τ(x,ζ)

0

d

ds
f(φt(c(s)))

∣∣∣∣
s=0

dt.



24 DE HOOP, ILMAVIRTA, KYKKÄNEN, AND MAZZEO

Since τ is smooth in S∗M◦ and f vanishes on ∂M , the first term on
the right here vanishes. The second interior term is estimated using
Jacobi fields.

Let Jθ(t) be the Jacobi field along the geodesic π(φt(z, ζ)) with ini-
tial conditions Jθ(0) = dπ(θ) and DtJθ(0) = K(θ). In the splitting
of TS∗M , the differential dφt(θ) splits into Jθ(t) = dπ(dφt(θ)) and
DtJθ(t) = K(dφt(θ)). Thus

d

ds
f(φt(c(s)))

∣∣∣∣
s=0

= d(π∗f)(∂sφt(c(s))|s=0)

= π∗(df)(Jθ(t), DtJθ(t))

= df(Jθ(t)).

Now, both f and df are O(xℓ) for all ℓ. Since θ ⊥ X , Jθ is normal to
this geodesic, Lemma 26 implies that |Jθ(t)|g remains bounded. Thus
the integrand in the second term is bounded by Cx(t)ℓ. Since x is
strictly decreasing on [0, τ(z, ζ)] (and the metric is non-trapping), this
shows that ∂θu

f(z, ζ) = O(xℓ) for all ℓ, as claimed. �

Proof of lemma 21. Let f ∈ x∞C∞(M) and set u = uf . By Corol-
lary 25 and Lemma 27, the integral function u satisfies Xu = −f in
S∗M◦ and u ∈ x∞C∞(S∗M◦) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M). It
remains to prove that ∇VXu,X∇Vu ∈ L2(N).

Since u solves the transport equation and the lift of f to S∗M de-
pends only on x, we see that ∇VXu = −∇Vf = 0, which is in L2(N).
Now use the commutator formula [X,∇V ] = −∇H, valid in S∗M◦, (cf.
[PSU15, Appendix A]) to see that

‖X∇Vu‖L2 = ‖∇Hu‖L2 ≤ ‖∇Gu‖L2. (16)

Since ∇Gu ∈ x∞L2(S∗M ;TS∗M) ⊂ ∇Gu ∈ L2(S∗M ;TS∗M), (16)
gives that X∇Vu ∈ L2(N). This proves all of the assertions. �

3.5. Proof of the Pestov identity. We complete this entire argu-
ment by proving Lemmas 22 and 23.

Proof of lemma 22. Let u ∈ x∞C∞(S∗M◦) be such that∇VXu,X∇Vu ∈
L2(N) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M). In adapted coordinates (x, y)
near ∂M , consider the truncated manifold Mε := {x ≥ ε}. The restric-
tion of g to this truncation is smooth and non-degenerate up to ∂Mε.
By Lemma 18, for any w ∈ C∞(S∗Mε),

‖∇VXw‖2ε = ‖X∇Vw‖2ε − (R∇Vw,∇Vw)ε + (n− 1)‖Xw‖2ε +Bε(w).

In particular, this holds for the restriction of u to S∗Mε. We prove that
the identity on all of S∗M by taking the limit ε → 0.

First, since ∇Gu ∈ x∞L∞(S∗M ;TS∗M), we see that

|Bε(u)| ≤ CεℓVol({x = ε})
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for large ℓ in the sense of the inherited volume form of the submanifold
{x = ε}. The volume of (M, g) is finite when α < 2/n; if α = 2/n,
the volume of Mε is asymptotic to −C log(ε), while for α > 2/n it is
asymptotic to Cε1−nα/2. Choose ℓ large, it is clear that Bε(u) → 0 as
ε → 0.

We next prove that the term involving curvature converges to the
corresponding term in S∗M . The sectional curvatures of g are asymp-
totic to Cαs

−2 where s is the distance to the boundary with respect
to g; it is related to x by s = (1 − α/2)x1−α/2. The pointwise inner
product 〈R∇Vu,∇Vu〉 is thus bounded by a multiple of x−2+α|∇Gu|

2.
It follows that

(R∇Vu,∇Vu)− (R∇Vu,∇Vu)ε ≤ C

∫

S∗M\S∗Mε

xℓ−2+α dΣ

for ℓ large. We then compute that
∫

S∗M\S∗Mε

xℓ−2+α dΣ = C

∫

M\Mε

xℓ−2+α−nα
2 dxdVh

≤ Cεℓ−2+α−nα
2 Volg(M \Mε).

Since ℓ can be chosen as large as desired, this last term vanishes as
ε → 0, proving that

(R∇Vu,∇Vu)ε → (R∇Vu,∇Vu).

Finally, since the pointwise norms |X∇Vu|, |∇Vu| and |Xu| are
bounded by |∇Gu|, a similar computation shows that we can take limits
in the remaining terms ‖X∇Vu‖2ε, ‖∇

VXu‖2ε and ‖Xu‖2ε. �

Proof of lemma 23. We prove finally that

Q(W ) = ‖XW‖2 − (RW,W ) ≥ 0

for all W ∈ x∞C∞(N◦) ∩ x∞L∞(S∗M ;TS∗M).
Choose χ ∈ C∞([0,∞)) with χ = 1 in [2,∞), χ = 0 in [0, 1] and

0 ≤ χ ≤ 1 everywhere. We use the special adapted coordinates (x, y).
For (z, ζ) ∈ S∗M , write χε(z, ζ) = χ(x/ε), and define Wε = χεW .
Then Wε is smooth in the interior of S∗M and supported in S∗Mε =
{(z, ζ) ∈ S∗M : x ≥ ε}. We claim that Q(Wε) → Q(W ) as ε → 0.

By the product rule,

Q(Wε) =

∫

S∗Mε

|χε|
2 (|XW |2 − 〈RW,W 〉

)
dΣε

+

∫

S∗Mε

|(Xχε)W |2 − 2χε(Xχε)〈RW,W 〉 dΣε.

(17)

The first term on the right converges to Q(W ) as ε → 0 by dominated
convergence. It suffices to prove that the second term also vanishes as
ε → 0.
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The derivative Xχε is supported in {ε ≤ x ≤ 2ε}. In addition, for
all (z, ζ) ∈ S∗M◦

Xχε(z, ζ) =
d

dt
χ(x(t)/ε)

∣∣∣∣∣
t=0

= ε−1ẋ(0)χ′(x/ε),

so |Xχε| ≤ Cε−1 and the integrand in the last term of (17) is bounded

by a constant multiple of Cε−1(|W |2 + 〈RW,W 〉) in {ε ≤ x ≤ 2ε} and
vanishes elsewhere. Also, the sectional curvatures are asymptotic to
Cαx

−2+α. Since W ∈ x∞L∞(SM ;TS∗M), we can bound Cε−1(|W |2 +
〈RW,W 〉) by a multiple of εℓ−3+α in {ε ≤ x ≤ 2ε}, and hence the
second integral in (17) is bounded by

Cεℓ−3+αVolG({ε ≤ x ≤ 2ε}) = C̃εℓ−3+αVolg({ε ≤ x ≤ 2ε}).

The volume grows no faster than a fixed power of ε, so choosing ℓ
sufficiently large, we see that this term also vanishes in the limit. Thus
Q(Wε) → Q(W ) as ε → 0.

The final step is to note that since the Wε are smooth and compactly
supported in S∗Mε, and since the truncated manifold Mε is simple
in the traditional sense, it follows from [PSU15, Lemma 11.2] that
Q(Wε) ≥ 0 for all ε > 0. Thus its limit Q(W ) is also non-negative. �

4. The Laplacian of g

We now turn to the final major theme of this paper, which is to
determine a few of the fundamental analytic properties of the scalar
Laplace–Beltrami operator ∆g associated to a gas giant metric. This
operator degenerates at x = 0, hence is poorly behaved from the point
of view of classical theory. However, as we explain here, it can be
regarded as an operator with a “uniform degeneracy” as x → 0, and
as such, can be transformed to lie in a class of operators for which
there is already an extensive theory. We describe this transformation
of ∆g into an “elliptic 0-differential operator”, as studied in [Maz91]
(and elsewhere). Quoting results from that theory, we study some of
basic mapping and regularity properties of ∆g.

We begin by deriving an expression for this operator in terms of the
Laplacian of the metric g. First observe that

gij = xαg ij , det(gij) = x−αn det(gij).

For simplicity, write det g = det(gij) and det g = det(gij). Using the
usual special adapted coordinates z = (z0, z

′) = (x, y), we compute

∆g = xαn/2 1

det g
∂zi
(
xα(1−n/2)(det g) gij ∂zj

)
= xα∆g+xα−1α(1−

n

2
) ∂x

As noted earlier, this operator is clearly degenerate at x = 0.
We now set this into the context of the class of uniformly degenerate,

or 0-, differential operators. Using coordinates (x, y) near ∂M , we recall
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that a differential operator L is called a 0-operator if it can be expressed
locally as a linear combination of products of smooth vector fields, each
of which vanish at ∂M . The space of all smooth vector fields vanishing
at ∂M is denoted V0(M), and called the space of 0 vector fields. It is
generated over C∞(M) by the ‘basis’ vector fields x∂x, x∂y1 , . . . , x∂yn−1

,
i.e.,

V0(M) = spanC∞ {x∂x, x∂y1 , . . . , x∂yn−1
}.

Thus a 0-operator can be written in small neighborhoods as a finite sum
of smooth multiples of products of these vector fields. In particular,
for example, a 0-operator of order 2 is one which takes the form

L =
∑

j+|β|≤2

ajβ(x, y)(x∂x)
j(x∂y)

β.

For the present purposes, the key point is that ∆g assumes this
form after multiplication by the factor x2−α. (In carrying out some of
the arguments below, it is occasionally more transparent to maintain
symmetry of the operator by pre- and post-multiplying by x1−α/2, but
we shall not get into this level of detail). To illustrate this, let x
be a special boundary defining function, so that g = dx2 + h, where
h(x) is a smooth family of metrics on ∂M , pulled back to this collar
neighborhood by the projection (x, y) 7→ y. Then

∆g :=xα∆ḡ − α(n/2− 1)xα−1∂x

= xα(∂2
x + q(x, y)∂x +∆h(x))− xα−1α(n/2− 1)∂x.

where q(x, y) is related to derivatives of det h, but its precise expression
is irrelevant since it is a higher order error term. This operator is
symmetric with respect to the measure x−αn/2dxdVh(x). From this we
see directly that x2−α∆g is a 0-differential operator.

Associated to a 0-differential operator is its 0-symbol, which is ob-
tained by writing L as a sum of products of the generating vector fields,
and then replacing each x∂x by ξ and x∂yi by ηi, and then dropping all
terms with homogeneity less than that of the degree of L. In particular,
for L = x2−α∆g,

0σ2(L)(x, y; ξ, η) := ξ2 + |η|2h(x).

This is not apparently an invariant definition, but (ξ, η) turn out to
be natural linear variables on the fiber of a certain replacement for
the cotangent bundle T ∗M , and 0σ2(L) is a well-defined homogeneous
polynomial of degree 2 on these linear fibers. In any case, a 0-operator
is called 0-elliptic if this symbol is non-vanishing (or invertible, if a
system) when (ξ, η) 6= (0, 0); this operator L is obviously 0-elliptic. As
such, the calculus of 0-pseudodifferential operators offers analogues of
all the familiar constructions in pseudodifferential theory. In particu-
lar, there is an elliptic parametrix construction for L, and the various
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properties of the parametrix G for L obtained through this construc-
tion lead to sharp mapping and regularity properties which are used
below.

Now consider the densely defined unbounded operator

∆g : L
2(M, dVg) −→ L2(M, dVg). (18)

This is symmetric on the core domain C∞
0 (M◦) of smooth functions

compactly supported in the interior of M , and one of the starting
points for the analysis of the Laplacian is to determine whether this
symmetric operator has a unique self-adjoint extension, or if boundary
conditions need to be imposed to obtain a self-adjoint realization? Once
that is accomplished, one may proceed to study the spectrum of any
such self-adjoint extension.

We first recall some facts relevant to determining whether ∆g is
essentially self-adjoint. In the following, we translate some definitions
from the development of the 0-calculus to the present setting (rather
than working directly with the 0-operator L = x2−α∆g simply to avoid
too many confusing changes of notation.

A fundamental invariant of ∆g in this geometric setting is its pair of
indicial roots, γ±. These are the values γ such that solutions of ∆gu
grow or decay like xγ. More formally, these are the exponents which
yield approximate solutions in the sense that

∆gx
γ = O(xγ−1+α)

rather than the expected rate O(xγ−2+α). In other words, γ is an
indicial root if there is some leading order cancellation. To calculate
these, we compute

∆gx
γ = (γ(γ − 1)− α(n/2− 1)γ) xγ−2+α +O(xγ−1+α),

and hence γ must satisfy γ2 − (α(n/2− 1) + 1)γ = 0, or finally

γ± =0, α(n/2− 1) + 1

=
1

2
(α(n/2− 1) + 1)±

1

2
(α(n/2− 1) + 1).

This last expression is included to emphasize the symmetry of γ±
around their average, which is useful below.

Next, observe that a function xγ lies in L2(dVg) near x = 0 if and
only if

γ >
1

2
(nα/2− 1).

We call this threshold the “L2 cutoff weight”. It is most natural to let
∆g act on the Sobolev spaces adapted to the 0-vector fields:

Hk
0 (M, dVg) = {u : V1 . . . Vℓu ∈ L2(dVg) ℓ ≤ k, each Vi ∈ V0(M)},
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and their weighted version xµHk
0 = {u = xµv : v ∈ Hk

0}. It clear from
this definition that

∆g : x
µH2

0 −→ xµ−2+αL2

is bounded for every µ. In particular, ∆gu ∈ L2 if u ∈ xµH2
0 where

µ ≥ 2−α. Since C∞
0 (M◦) is dense in x2−αH2

0 , it is clear that the minimal
domain, i.e., the minimal closed extension from the core domain, of (18)
is contained in x2−αH2

0 . Using the parametrix for ∆g alluded to above,
it can be proved that this is an equality:

Dmin(∆g) = x2−αH2
0 (M, dVg).

On the other hand, we also define the maximal domain Dmax = {u ∈
L2 : ∆gu ∈ L2}.

Proposition 28. The operator ∆g is essentially self-adjoint on L2,
i.e.,

Dmin = Dmax

if and only if α > 2/n.

Proof. They key issue is whether either of the indicial roots γ± lie in
the critical weight interval

µ− :=
1

2
(nα/2− 1) ≤ µ ≤

1

2
(nα/2− 1) + 2− α =: µ+.

Notice that the midpoint of this critical interval is 1
2
(nα/2−1)+1−α =

1
2
(α(n/2 − 1) + 1), which is precisely the same as the midpoint of the

gap between the two indicial roots. The width of this weight interval
is 2− α, whereas γ+ − γ− = α(n/2− 1) + 1. We claim that

γ− < µ− < µ+ < γ+

precisely when α > 2/n, which is verified by noting that α(n/2−1)+1 >
2− α precisely then.

The relevance of whether the indicial roots are included in the critical
weight interval is that, using the parametrix carefully, one can deduce
that if γ± do not lie in this critical weight interval, then u ∈ L2 and
∆gu ∈ L2 imply that u ∈ x2−αH2

0 = Dmin. However, when α ≤ 2/n,
then we can only deduce that

u(x, y) ∼
∑

aj(y)x
γ−+j +

∑
bj(y)x

γ++j.

This asymptotic expansion has some complicating features, such as
that if a0 6≡ 0, then the coefficients aj , bj may only have finite regularity
(and will have negative Sobolev regularity for large j. Conversely, there
exists a solution of ∆gu = 0 where u has an expansion of this type with
any prescribed smooth leading coefficient a0(y). In any case, the upshot
is that the maximal domain is far bigger than the minimal domain in
this case. �
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When α < 2/n, there are many possible self-adjoint extensions. The
most prominent, and the one we shall use below, is the Dirichlet exten-
sion. This corresponds to the choice of domain DDir consisting of those
u ∈ L2 such that ∆gu ∈ L2 and where the leading coefficient a0(y)
in the expansion above vanishes. Other self-adjoint extensions corre-
spond to other types of conditions on the pair of leading coefficient
(a0(y), b0(y)). We do not detail these below, except mentioning the
most standard other ones: the Neumann extension, where b0(y) ≡ 0,
and the family of Robin extensions, corresponding to conditions of the
form A(y)a0(y) + B(y)b0(y) ≡ 0, where A,B are given smooth func-
tions.

Proposition 29. Let D be a domain of self-adjointness for ∆g as
above. Then (∆g,D) is a Fredholm operator on L2 with discrete spec-
trum.

Proof. The first step is to show that this operator is Fredholm. This fol-
lows from the existence of its parametrix. This is a 0-pseudodifferential
operator of order −2 which maps L2 onto D (possibly modulo compact
errors), and which satisfies G ◦∆g = Id−R1, ∆g ◦G = Id−R2, where
R1 and R2 are compact operators on L2 and on D (with its graph topol-
ogy) respectively. As noted earlier, the construction of this parametrix
is one of the standard consequences of 0-ellipticity; details are given
in [Maz91]. When α < 2/n, a slightly more intricate construction
is needed which incorporates the choice of boundary conditions; this
appears in [MV14].

The key point here is that the operator G is constructed as an ele-
ment of the 0-pseudodifferential calculus. This means that its Schwartz
kernel is a very well-understood object which, as a distribution on
M ×M , has explicit asymptotic expansions at the boundary faces of
this product, and a slightly more intricate, but equally explicit ex-
pansion near the corner of M2. The precise details are omitted. The
upshot, however, is that it then follows by general properties of such
pseudodifferential operators proved in [Maz91] that G is bounded on
L2. Of course, as a pseudoinverse to ∆g, its range must lie in D. Since
it is a (0-)pseudodifferential operator of order −2, it is clear that the
elements in G(L2) have two derivatives in L2, at least in the interior of
M . However, slightly more is true, and the precise statement is that
for any f ∈ L2 and any two vector fields V1, V2 ∈ V0(M), we must have
that V1V2(Gf) ∈ xεL2 for some fixed ε > 0 which is independent of f .
This is summarized by saying that G : L2 → xεH2

0 , where the range is
a weighted 0-Sobolev space. We may then invoke the L2 version of the
Arzelà–Ascoli theorem, which may be used to prove that xεH2

0 →֒ L2 is
a compact embedding. This shows that the domain of ∆g is compactly
contained within L2, and hence that (∆g,D) has discrete spectrum.
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We say a few more words about this parametrix construction, par-
ticularly when α > 2/n. Write ∆g = xα/2−1Lxα/2−1; as noted earlier,
L is an elliptic 0-operator. The singular factor has been distributed on
opposite sides of L to preserve symmetry. Let G be a parametrix for L
as constructed in [Maz91]. Thus Id− LG = R′

1, Id−GL = R′
2, where

R′
1, R

′
2 are operators with smooth kernels on the interior ofM×M , and

which admit classical expansions at all boundary faces of a certain reso-
lution (or blow-up) of this product, with coefficients in these expansion
smooth functions on the corresponding boundary faces. We then write
G = x1−α/2Gx1−α/2, so that ∆g ◦ G = Id − xα/2−1R1x

α/2−1 = I − R1,
G ◦∆g = Id − xα/2−1R′

2x
α/2−1 = Id − R2. These remainder terms are

much better, inasmuch as they have smooth Schwartz kernels which
have polyhomogeneous expansions at the two boundary hypersurfaces
of M2, without need for the resolution (or blow-up) process.

If ∆gu = f ∈ L2, then applying G, we get that u = R1u+Gf = R1u+
x1−α/2Gx1−α/2f . The first term is polyhomogeneous on M , and decays
at a fixed rate strictly greater than the L2 cutoff. When α > 2/n, the
range of G lies in x2−αH2

0 . This range is identified with the domain of
self-adjointness D (again, when α > 2/n), hence, as described above,
D ⊂ L2 is indeed compact. �

We now take up our final problem. Fix a domain D ⊂ L2 where
(∆g,D) is self-adjoint. To be very concrete below, we assume that
this is the Dirichlet extension henceforth. As just proved, the Dirichlet
Laplacian has discrete spectrum 0 ≤ λ0 < λ1 ≤ λ2 ≤ . . ..

Next consider the truncated manifold Mε = {p ∈ M : x(p) ≥ ε},
where x(p) is just the value of the boundary defining function x at p
(we assume that x has been extended to be a smooth function on the
interior of M which is strictly positive on Mε). Then ∆g restricts to
an operator acting on H2(Mε) functions which vanish at ∂Mε. This
operator has discrete spectrum as well, by classical elliptic theory, and
we denote its eigenvalues by 0 < λ0(ε) < λ1(ε) ≤ . . .. By classical
perturbation theory, each λj(ε) can be regarded as a continuous, and
piecewise smooth, function of ε. The basic question is whether the
spectrum of (∆g,DDir) on Mε converges to the spectrum of (∆g,D)
on M . While there are such statements that can be made about the
entire spectrum at once, we consider here the variation of individual
eigenvalues.

Proposition 30. For each j = 0, 1, 2, . . ., the function λj(ε) converges
to λj as ε → 0. In fact, there exists a constant Cj > 0 such that

|λj(ε)− λj| ≤ Cjε
α(n/2−1)+1

Proof. We will denote ∂ε by dot and ∂x by prime.
Let us focus on a particular eigenvalue λj(ε). For simplicity, we first

make the computations below assuming that this is a simple eigenvalue,



32 DE HOOP, ILMAVIRTA, KYKKÄNEN, AND MAZZEO

staying away from eigenvalue crossings. Thus, dropping the index j,
assume that ∆gφ = λ(ε)φ on Mε, with φ = 0 on ∂Mε. We shall con-
struct a family of diffeomorphisms Fε : M → Mε, with F0 = Id. Using
these to pull back all the data on Mε, we consider the family of metrics
gε = F ∗

ε g, the associated Laplace operators ∆gε , and eigenfunctions φε

which are smooth functions on M vanishing at ∂M . Choosing these
to have L2(M, dVε) norms equal to 1, the proof involves estimating the
quantity

λ̇ =

∫

M

(∆̇gεφε)φε dVε.

There are two parts to this. In the first, we obtain the uniform
estimate

|φε| ≤ Cx(ε+ x)α(n/2−1),

with a constant C independent of ε. Thus φε vanishes only like x when
ε > 0, but like xα(n/2−1)+1 = xγ+ when ε = 0. In the second, we must
compute ∆̇.

To get started, we define the diffeomorphisms Fε. Using a specially
adapted boundary defining function, define U = {x < c} for some small
c > 0, and identify U with [0, c) × ∂M . Define Fε(x) = x + εχ(x/ε),
where χ(s) is a smooth monotone non-negative function which equal 1
for s ≤ 1 and 0 for s ≥ 4. We also require that |χ′(s)| ≤ 1/2 for all s.
We then have that

gε = x−α
ε (dx2

ε + h(xε)).

Define

dxε

dx
:= J = 1 + χ′(x/ε), and ẋε =

dxε

dε
= −(x/ε)χ′(x/ε).

Then, since ∂xε
= J−1∂x, we obtain

∆ε = xα
ε J

−2∂x − xα−1
ε (α(n/2− 1)J−1 − xεJ

′/J2)∂x + xε∆h.

We have actually made the tacit assumption here that ḡ = dx2+h with
h independent of x. The extra terms which appear when h depends on
x are lower order in all the computations below, so we can safely omit
them.

Computing further, we arrive at the expression

∆̇ = xα−1
ε A∂2

x + xα−2
ε B∂x + xα−1

ε C∆h,

where A, B and C are expressions which are sums of terms, each a
smooth bounded multiples involving the quantities xεJ̇ , ẋε, xεJ

′ and
(xεJ

′)̇. The key point here is that each of these terms is uniformly
bounded in ε, and supported in the region ε ≤ x ≤ 4ε.

Now, granting the uniform estimate on the φε stated above, we see
that ∆̇φ ∼ εα−1+α(n/2−1)−1, and as before, supported in x ∈ [ε, 4ε].
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Thus
∫
(∆̇φ)φ dVε ∼

∫ 4ε

ε

εα−1+α(n/2−1)−1+α(n/2−1)+1−nα/2 dx

=

∫ 4ε

ε

εα(n/2−1)−1 dx = 4εα(n/2−1),

as claimed.
It remains to verify the assertion about the uniform bound on φε.

We indicate the more elementary of the two arguments. First note that
since the L2 norm of φε equals 1, and interior estimates bound |∇φε on
any subset {x ≥ c > 0}, the functions φε are uniformly bounded on any
compact subset of the interior of M , and all vanish at the boundary.
We obtain a uniform upper bound of the form |φ| ≤ Cx(ε + x)β for
any β < α(n/2 − 1). Since we may take β arbitrarily close to this
upper limit, this suffices to give the eigenvalue variation limit above
with arbitrary small loss in the exponent.

Now suppose that there is no uniform constant C such that |φε(x, y)| ≤
Cx(ε+x)β. The bound is clearly true for ε ≥ ε0 > 0 and for x ≥ c > 0,
so there must exist sequences (xj , yj) and εj with xj → 0, εj → 0, such
that after multiplying by a sequence of factors 1/Cj → 0, and writing
φj instead of φεj , we have

|φj(x, y)| ≤ x(εj + x)β , |φj(xj , yj)| = xj(εj + xj)
β.

Now rescale, setting s = x/xj , w = (y − yj)/xj, to write this as

|φj(x, y)| ≤ xjs(εj + xjs)
β.

We now separate into two cases. In the first, εj ≫ xj , so we rewrite

the right hand side of this inequality as xjε
β
j s(1+(xj/εj)s)

β. Replacing

φj by φ̃j = φj/xjε
β
j , we see that

|φ̃j(s, w)| ≤ s(1 + (xj/εj)s)
β,

with equality at (1, 0). Taking a limit as j → ∞, we conclude the
existence of a limit φ∞ which satisfies |φ∞| ≤ s for s ≥ 0 and all
w ∈ R

n−1. Each of the φj is smooth up to ∂Mεj , and there is a uniform
bound on the tangential derivatives (this follows from the parametrix
methods); this implies that φ∞ is in fact constant in w, and so must
satisfy the ODE s2∂2

sφ∞ − α(n/2 − 1)s∂sφ∞ = 0, whence φ∞(s) =
Cs1+α(n/2−1). This contradicts the bound above.

The other case is when xj ≥ Cεj as εj → 0. Now rewrite the right

hand side of the inequality as x1+β
j s((εj/xj) + s)β. Now normalize by

dividing by x1+β
j to define φ̃j, and take a limit as before. This yields a

function φ∞ such tat

|φ∞(s, w)| ≤ s(c+ s)β,
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with equality at (1, 0), and where c is the limit of (some subsequence)
of the εj/xj. This constant is finite, and possibly 0. As before, φ∞ is
independent of w and must equal a constant times sα(n/2−1)+1 for all
s ≥ 0, which is inconsistent with this limiting bound as s gets large.

As noted earlier, there is a more sophisticated way to obtain a
sharper bound, and in fact complete asymptotic expansions for φε as
both x → 0 and ε → 0. This requires a generalization of the parametrix
machinery described above. This generalization allows one to treat not
only degenerate operators such as ∆g, but also families of degnerating
operators ∆gε. However, for simplicity we do not describe or develop
this point of view here. What we have proved with this more elemen-
tary argument is the slightly weaker estimate that each eigenvalue λ(ε)
satisfies

|λ̇(ε)| ≤ Cδε
α(n/2−1)+1−δ

for any δ > 0.
We then return to the case of a degenerate eigenvalue λ. The

eigenspace at ε = 0 has the orthonormal basis {φ1, . . . , φm} so that
each φk is the limit of eigenfunctions φk

ε of ∆gε as ε → 0. Each eigen-
value λk satisfies the same estimate. �

5. Original equations for gas giants

Here, we present the extraction of the Laplace–Beltrami operator
and acoustic wave operator from the system of equations describing
the seismology on, and free oscillations of solar system gas giants.
The system has been applied to studying the interiors of Saturn and
Jupiter [DMF+21]. The original system is given explicitly for the dis-
placement and contains implicitly the pressure; most of the work to
extract the acoustic wave operator involves eliminating the displace-
ment. Such an elimination appeared already in the study of inertial
modes, that is, a reduction of the original system and invoking incom-
pressibility leading to the Poincaré equation. Here, we follow the work
of Prat, Lignières and Ballot [PMA+16].

5.1. Acoustic-gravitational system of equations. The displace-
ment vector of a gas or liquid parcel between the unperturbed and
perturbed flow is u. The unperturbed values of pressure (P ), density
(ρ) and gravitational potential (Φ) are denoted with a zero subscript.
The incremental Lagrangian stress formulation in the acoustic limit
gives the equation of motion

ρ0∂
2
t u + 2ρ0Ω× ∂tu = ∇(κ∇ · u)−∇(ρ0u · ∇(Φ0 +Ψs))

+ (∇ · (ρ0u))∇(Φ0 +Ψs)− ρ0∇Φ′, (19)

where the perturbed gravitational potential, Φ′, solves

∇2Φ′ = −4πG∇ · (ρ0u) (20)
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and Ψs denotes the centrifugal potential,

Ψs = −1
2
(Ω2x2 − (Ω · x)2)

(|Ω| signifying the rotation rate of the planet). We may introduce the
solution operator, S, for (20) such that

Φ′ = S(ρ0u). (21)

We will use the shorthand notation,

g′0 = −∇(Φ0 +Ψs). (22)

A spherically symmetric manifold requires Ω = 0 from well-posedness
arguments.

5.2. Brunt–Väisälä frequency. We rewrite the first two terms on
the right-hand side of (19),

∇(κ∇ · u)−∇(ρ0u · ∇(Φ0 +Ψs)) = ∇[κρ−1
0 (∇ · (ρ0u)− s̃ · u)], (23)

in which

s̃ = ∇ρ0 − g′0
(ρ0)

2

κ
, κ = P0γ;

s̃ is related to the Brunt–Väisälä frequency, N2,

N2 = ρ−1
0 (s̃ · g′0). (24)

In (23), κρ−1
0 (∇ · (ρ0u) − s̃ · u) can be identified with the dynamic

pressure, −P say. We recognize the acoustic wave speed,

c2 = κρ−1
0 .

Thus (19) takes the form

∂2
t (ρ0u) + 2Ω× ∂t(ρ0u) = ∇[c2 (∇ · (ρ0u)− ρ−1

0 s̃ · (ρ0u))]

+ (∇ · (ρ0u))g
′
0 − ρ0∇Φ′. (25)

In (25) we can substitute (21) to arrive at an equation for u containing
a nonlocal contribution.

5.3. Equivalent system of equations and Cowling approxima-

tion. Writing v = ∂tu for the velocity, we obtain the following equiv-
alent system of equations,

∂tρ+∇ · (ρ0v) = 0,

∂t(ρ0v) + 2Ω× (ρ0v) = −∇P + ρg′0 − ρ0∇Φ′,

∂tP + v · ∇P0 = c2(∂tρ+ v · ∇ρ0),

using that ∇P0 = −ρ0g
′
0. Well-posedness of the system of equations

implies that

ρ−1
0 (s̃ · (ρ0u))g

′
0 =

ρ−1
0 s̃ · g′0
|g′0|

2
(g′0 · (ρ0u)).
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Upon inserting (24), the third equation takes the form

∂tP = c2
(
∂tρ+

N2

|g′0|
2
(g′0 · (ρ0v)

)
.

In the Cowling approximation the term −ρ0∇Φ′ is dropped and the
system reduces to

∂tρ+∇ · (ρ0v) = 0,

∂t(ρ0v) + 2Ω× (ρ0v) = −∇P + ρg′0,

∂tP = c2
(
∂tρ+

N2

|g′0|
2
(g′0 · (ρ0v)

)
.

This is identical to the system appearing in Prat et al. [PMA+16].

5.4. “Truncation”: Consistent boundary condition. The free-
surface boundary condition is given by the vanishing of the dynamic
pressure (perturbation). If ρ0 and c would not vanish at the boundary,
we thus get the boundary condition

(κ∇ · u+ ρ0g
′
0 · u)|∂Mε

= 0.

(For comparison, the first term corresponds with the Lagrangian pres-
sure perturbation.) This corresponds to taking the boundary condition
slightly below the boundary rather than exactly at it. We prove in
proposition 30 that if the gas giant manifold is truncated just before
the boundary, then the eigenvalues on this slightly smaller manifold
Mε converge to those of the true manifold M at a specific rate. This
truncation has been widely used in computations [DMF+21].

We have already noted the possibility of imposing certain types of
boundary conditions when α < 2/n, and this one here falls neatly into
that framework. In particular, we can prove, just as in Section 4, that
the domain of the operator augmented by this boundary condition is
compactly contained in L2, so that its spectrum is discrete. Further-
more, the spectra of the associated truncated problems converge at an
estimable rate to the spectrum of this degenerate operator.

5.5. Equation for the pressure and geometry. We introduce

∇z = Ω̂ · ∇, ∇‖ = (−ĝ′0) · ∇,

with unit vectors

Ω̂ =
Ω

|Ω|
, ĝ′0 =

g′0
|g′0|

and

∇⊥ = ∇+ ĝ′0∇‖, ∆⊥ = ∇ · (∇⊥).

Furthermore, eφ is the unit vector in the direction of Ω × g′0, noting

that Ω̂, ĝ′0, eφ form a non-orthogonal basis.
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Lemma 31 ([PMA+16]). The time-Fourier-transformed pressure, P̂ ,
satisfies the equation

∆P̂ −
4

τ 2
Ω · ∇(Ω · ∇P̂ )

−
N2

(τ 2 − 4|Ω|2)

[
∆P̂ −

1

|g′0|
2
g′0 · ∇(g′0 · ∇P̂ )−

4

τ 2
Ω · ∇(Ω · ∇P̂ )

−
4(Ω · g′0)

2

τ 2|g′0|
2

∆P̂ +
4(Ω · g′0)

τ 2|g′0|
2

(Ω · ∇(g′0 · ∇P̂ ) + g′0 · ∇(Ω · ∇P̂ ))

]

+
1

τ 2(τ 2 − 4|Ω|2)
V · ∇P̂ +

1

c2τ 4(τ 2 − 4|Ω|2)
R

+
1

c2

[
τ 2

(
1−

4

τ 2
|Ω|2

)
+ c2M̂∇ ·

(
(4τ−2(g′0 · Ω)Ω− g′0)

c2M̂

)]
P̂ = 0,

(32)

where R and V are given below. In coordinates relative to the above
mentioned non-orthogonal basis, the terms with leading, second-order
spatial derivatives take the form ∆P̂ − τ−2(4|Ω|2∇2

zP̂ +N2∆⊥P̂ ); the

leading, second-order term in τ is given by c−2τ 2P̂ . Thus one identifies,
to leading order, the acoustic wave operator on the one hand and an
equation like Poincaré’s equation in the (axi)symmetric case [RN99] on
the other hand.

For clarity, we summarize the proof of this lemma. To eliminate v from
the system of equations, one takes 2Ω× and 2Ω · of (30) and applies a
time derivative to the resulting equations. Upon taking another time
derivative, and substituting the second resulting equation in the first,
one obtains the equation

L(ρ0v) = −4(Ω · ∇P ) Ω + 4ρ(Ω · g′0) Ω

−∇∂2
t P + (∂2

t ρ)g
′
0 + 2Ω×∇∂tP − 2(∂tρ)Ω× g′0, (33)

where

L = ∂3
t + 2|Ω|2∂t.

With this operator, (29) implies

∂tL(ρ) = −∇ · L(ρ0v) (34)

and (31) implies

∂tL(P ) = c2∂tL(ρ) + βg′0 · L(ρ0v), (35)

where

β =
c2N2

|g′0|
2
.
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Substituting (33)) into (35) gives

∂tL(P ) + β[4(Ω · ∇P )(g′0 · Ω) + g′0 · ∇∂2
t P

+ 2(Ω× g′0) · ∇∂tP ] = c2∂tL(ρ) + β[ρ(2Ω · g′0)
2 + (∂2

t ρ)|g
′
0|

2]. (36)

Using the definition of L, one may extend the operator notation to
c2M(ρ) for the right-hand side of this equation, with

M = ∂4
t + (4|Ω|2 +N2)∂2

t +
4N2(Ω · g′0)

2

|g′0|
2

.

Introducing the dual, τ , of i∂t, one writes

∂̂tL = τ 2(τ 2 − 4|Ω|2), M̂ = τ 4 − (4|Ω|2 +N2)τ 2 +
4N2(Ω · g′0)

2

|g′0|
2

for the relevant symbols, noting that N2 and g′0 are dependent on the
coordinates. Equation (36) then gives

ρ̂ =
∂̂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0 − 2iτ(Ω× g′0)] · ∇P̂

c2M̂
. (37)

Taking the divergence of (33) yields

∇ · L(ρ0v̂) = τ 2∆P̂

− 4Ω · ∇(Ω · ∇P̂ ) +∇ · [ρ̂ (4(g′0 · Ω)Ω− τ 2g′0 + 2iτ(Ω× g′0))]. (38)

Here, it was used that Ω is a constant vector (signifying uniform ro-
tation). One then considers (34) and substitutes (38) to obtain an

equation for P̂ upon using (37) on the left-hand side:

τ 2∆P̂ − 4Ω · ∇(Ω · ∇P̂ )

+∇ ·

[
(∂̂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0 − 2iτ(Ω× g′0)] · ∇P̂ )

c2M̂

· (4(g′0 · Ω)Ω− τ 2g′0 + 2iτ(Ω× g′0))

]

+
∂̂tL (∂̂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0 − 2iτ(Ω× g′0)] · ∇P̂ )

c2M̂
= 0.

As g′0 derives from a potential (cf. (22)), it follows that

∇ · (Ω× g′0) = 0.
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Then

τ 2∆P̂ − 4Ω · ∇(Ω · ∇P̂ )

+∇ ·

[
(∂̂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0] · ∇P̂ )

c2M̂
(4(g′0 · Ω)Ω− τ 2g′0)

]

+
∂̂tL (∂̂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0] · ∇P̂ )

c2M̂
+

1

c2M̂
R = 0, (39)

where

R = −2iτc2M̂∇·

[
β

c2M̂
((Ω×g′0)·∇P̂ ) (4(Ω·g′0) Ω+2iτΩ×g′0−τ 2g′0)

]

+ 2iτc2(Ω× g′0) · ∇

[
β

c2M̂
(4(Ω · g′0) Ω− τ 2g′0) · ∇P̂

]

+ 2iτc2∂̂tL (Ω× g′0) ·

[
∇

(
P̂

c2M̂

)
−

β

c2M̂
∇P̂

]

represents the sum of terms containing 2iτ(Ω × g′0) ·. It is noted that
in the axisymmetric case,

(Ω× g′0) · ∇

(
1

c2M̂

)
= 0,

and that in a polytropic model (see Subsection 1.2), β is a constant,
which simplifies the computations. Equation (39) can be rewritten as

M̂∆P̂ − 4(τ 2 − (4|Ω|2 +N2)) Ω · ∇(Ω · ∇P̂ )

+
βτ 2

c2
g′0 · ∇(g′0 · ∇P̂ )−

4β

c2
(Ω · g′0) [Ω · ∇(g′0 · ∇P̂ ) + g′0 · ∇(Ω · ∇P̂ )]

+
4

c2τ 2

{[
(1 + β)∂̂tL+ c2M̂∇ ·

(
β(4(g′0 · Ω)Ω− τ 2g′0)

c2M̂

)]
(g′0 · Ω)

+
β

2
Ω · ∇(g′0 · (4(g

′
0 · Ω)Ω− τ 2g′0))

}
Ω · ∇P̂

−
1

c2

{
(1 + β)∂̂tL+ c2M̂∇ ·

(
β(4(g′0 · Ω)Ω− τ 2g′0)

c2M̂

)}
g′0 · ∇P̂

+
∂̂tL

c2τ 2

[
∂̂tL+ c2M̂∇ ·

(
(4(g′0 · Ω)Ω− τ 2g′0)

c2M̂

)]
P̂ +

1

c2τ 2
R = 0.
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The sum of the two terms containing factors in between braces allow
the shorthand notation V · ∇P̂ :

(τ 2 − 4|Ω|2)∆P̂ − (τ 2 − 4|Ω|2)
4

τ 2
Ω · ∇(Ω · ∇P̂ )

−N2

[
∆P̂ −

1

|g′0|
2
g′0 · ∇(g′0 · ∇P̂ )−

4

τ 2
Ω · ∇(Ω · ∇P̂ )

−
4(Ω · g′0)

2

τ 2|g′0|
2

∆P̂+
4(Ω · g′0)

τ 2|g′0|
2

(Ω·∇(g′0 ·∇P̂ )+g′0 ·∇(Ω·∇P̂ ))

]
+

1

τ 2
V ·∇P̂

+
∂̂tL

c2τ 4

[
∂̂tL+ c2τ 2M̂∇ ·

(
(4τ−2(g′0 · Ω)Ω− g′0)

c2M̂

)]
P̂ +

1

c2τ 4
R = 0.

One then divides the equation by (τ 2 − 4|Ω|2); the factor in front of P̂
then takes the form

1

c2

[
τ 2

(
1−

4

τ 2
|Ω|2

)
+ c2M̂∇ ·

(
(4τ−2(g′0 · Ω)Ω− g′0)

c2M̂

)]
.

This results in equation (32).

5.6. Propagation of singularities. The propagation of singularities
depends only on the leading order part of the system of equations.
Ignoring lower order terms, equation (25) reads

∂2
t (ρ0u)−∇[c2∇ · (ρ0u)] = 0

and the principal symbol at (t, x; τ, ξ) is τ 2Id−c2(x)ξξT . From the way
the matrix ξξT acts we may read that pressure singularities propagate
but shear ones do not. Pressure waves (“polarized” along the momen-
tum ξ) follow the geodesics of the isotropic sound speed c just as the
solutions of the scalar wave equation for pressure (∂2

t − c2∆)P = 0 as
extracted from the original system in Lemma 31. Therefore, if only the
travel times of singularities are concerned, it suffices to model a gas
planet with a scalar wave equation.

The parametrix construction outlined in Section 4 is a very flexible
one. Although we have used it to analyze the simpler operator ∆g

studied in the rest of this paper, the operator appearing in (32) is a
perturbation of such a Laplacian, for appropriately defined gas-giant
metric g, with all extra terms being of lower order in the sense of
this calculus of degenerate operators. In other words, it is possible,
just as easily, to construct a parametrix for this operator in the 0-
pseudodifferential calculus, and to derive the same sorts of conclusions
as we have discussed for the Laplacian. Furthermore, the lower order
terms here are all compact relative to the main part of this operator,
hence do not affect the discreteness of the spectrum, but do cause
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the usual sorts of perturbations to the spectrum caused by any such
compact perturbations.
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