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Abstract. It is known that a geometric measurement of the light cones
of supernovae determines the conformal class of the visible part of the
spacetime. The conformal factor is physically meaningful but cannot
be determined geometrically by anything with zero mass, such as the
photon. We show that measuring the neutrino cones in addition to light
cones completely removes this gauge freedom. We describe the physical
model in great detail, including why ultrarelativistic neutrinos are the
only option.

1. Introduction

Can a color-blind astronomer reconstruct a reliable model of the universe
by just looking at the sky? More accurately: If one makes geometric mea-
surements of the arrivals of all photons from all supernova explosions but has
no spectral information on the photons, can one reconstruct the Lorentzian
metric describing the spacetime in one’s visible past?

This is not quite possible: Such data does determine the conformal class of
the metric, but nothing more can be said from such data. Lightlike geodesics
are conformally invariant.

This conformal gauge freedom can be broken by measuring a particle that
has a non-zero mass, and the only such option is a neutrino. We will show
that in a simple but physically reasonable model neutrino measurements fix
the conformal factor uniquely.

Our data is purely geometric in nature. We only assume that we know the
mechanism behind the supernovae (which is valid for type Ia); all measure-
ments of photons and neutrinos are based on the light cones and “neutrino
cones” that describe when and where they are observed. All measurements
are passive, as otherwise it is impossible to reach cosmologically relevant
scales in any remotely realistic scenario.

We model the trajectories of neutrinos as first order perturbations of those
of photons. We will see later that this linearization is well justified, as the
main small parameter µ2 describing neutrino mass is on the order of 10−20.

We begin the article with the geometric background in section 1.1, cov-
ering the results in inverse problems related to light observation sets and
determination of the conformal class. We then give a detailed exposition of
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our geometric model for supernova neutrinos in section 2. The geometric
and the physical introductions can be read independently of each other. We
state and prove our main theorem in section 3.

1.1. Geometric background. Let (M, g) be a (1 + 3)-dimensional time
oriented Lorentzian manifold. The signature of g is (+,−,−,−). (The
typical choice of signature is (−,+,+,+) in the inverse problems literature,
but our choice is more natural for particle physics so we use it to simplify
kinematic considerations below.) The prototypical example is Minkowski
space-time (R4, gm) with the metric gm = dt2 − dx2 − dy2 − dz2. The light
cone and the classification of tangent vectors is illustrated in figure 1.

v is timelike if g(v, v) > 0
v is lightlike if g(v, v) = 0

v is spacelike if g(v, v) < 0

Figure 1. The light cone at q ∈ M is a subset of TqM .
In our sign conventions timelike directions have a positive
square.

Definition 1. a) L±q M is the set of future (past) pointing lightlike vectors
at q.

b) Casual vectors are the collection of timelike and lightlike vectors.
c) A curve γ is timelike (lightlike, causal) if the tangent vectors are time-

like (lightlike, causal).

Let µ̂ be a timelike geodesic, which corresponds to the worldline of an
observer in general relativity. For p, q ∈M the notation p� q means that p
and q can be joined by a future pointing timelike curve, and p < q means
that p and q can be joined by a future-pointing causal curve.

Definition 2. a) The chronological future of p ∈ M is I+(p) = {q ∈ M :
p� q}.

b) The causal future of p ∈M is J+(p) = {q ∈M : q < p}.
c) J(p, q) = J+(p)∩J−(q), I(p, q) = I+(p)∩I−(q) are the diamond-shaped

regions as depicted in figure 2.

Definition 3. A Lorentzian manifold (M, g) is globally hyperbolic if there
is no closed causal paths in M , and for any p, q ∈ M and p < q, the set
J(p, q) is compact.

Under the global hyperbolicity assumption, Einstein’s equations, for in-
stance, are well-posed on (M, g). Also, in this case, (M, g) is isometric to
the product manifold R×N with the metric g = β(t, y)dt2 − κ(t, y) . Here
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Figure 2. The intersection of the causal future J+(p) of p
and the causal past J−(q) of q is the diamond-shaped region
J(p, q) ⊂M .
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Figure 3. Left: The blue observation set U as a neighbor-
hood of a timelike geodesic from p− to p+, and a set W
contained in the lightlike past of U . Right: The light ob-
servation set PU (q) of the source point q as observed in the
(blue) set U .

β : R × N → R+ is smooth, N is a three-dimensional manifold and κ is a
Riemannian metric on N and smooth in t.

We shall use x = (t, y) = (x0, x1, x2, x3) as the local coordinates on M .
Let µ = µ([−1, 1]) ⊂ M be a timelike geodesic containing p− and p+. We
consider observations in a neighborhood U ⊂M of µ.

Definition 4. Let W ⊂ I−(p+) \ J−(p−) be relatively compact open set.
The light observation set for q ∈W is

PU (q) := {γq,ξ(r) ∈ U ; r ≥ 0, ξ ∈ L+
q M}. (1)

See figure 3.

Definition 5. The earliest light observation set of q ∈M in U is

EU (q) = {x ∈ PU (q) : there is no y ∈ PU (q) and future pointing

timelike path α such that α(0) = y and α(1) = x} ⊂ U.
(2)

In the physics literature the light observation sets are called light-cone
cuts [3, 2].
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The following result was proven in [10] (the proof was published in [11]).

Theorem 6 ([10, 11]). Let (M, g) be an open smooth globally hyperbolic
Lorentzian manifold of dimension n ≥ 3 and let p+, p− ∈ M be the points
of a timelike geodesic µ̂([−1, 1]) ⊂ M,p± = µ̂(s±). Let U ⊂ M be a neigh-
borhood of µ̂([−1, 1]) and W ⊂ M be a relatively compact set. Assume that
we know

EU (W ). (3)

Then we can determine the topological structure, the differential structure,
and the conformal structure of W , up to diffeomorphism.

Our result, theorem 10, builds on theorem 6, using additional data to
determine the only remaining unknown: the conformal factor.

The light observation sets corresponds to measurements of light point
sources. This concept has also been applied to active measurements. In this
cases different types of waves are sent from a neighborhood U of a timelike
geodesic. One creates an artificial source on the diamond set I(p−, p+) that
comes back to the set U and thus measuring the light observation set. This
was done in [10] and [9] for Einstein equations coupled with scalar fields, for
semilinear equations in [13] for equations with quadratic non-linearities in
the derivatives [16]. The measurements made in those papers are encoded
in the source to solution map. For the case of measurements on timelike
boundary of Lorentzian manifolds with boundary in [6] was introduced the
concept of boundary light observation set. It was used to solve inverse
boundary value problems by determining the Lorentzian manifold up to a
conformal class in [15] and [7] by measuring the Dirichlet-to-Neumann or
Neumann to Dirichlet map. For comprehensive reviews of a very active field
see [12] and [14].

Linearizations of geometric and analytic inverse problems often lead to
problems in integral geometry. In the case of Lorentzian geometry and
hyperbolic equations, the linear inverse problems typically concern the light
ray transform. In light light ray tomography of tensor fields, there is a
conformal kernel in addition to the usual potential kernel of Riemannian
ray transforms [4]. For more on inverse problems in integral, we refer the
reader to the review [8].

2. The physical model

The physical basics needed to set up the model can be found in a number
of books and other sources. The most comprehensive material for neutrinos
and supernovae are [5, 1]. A reader in need of more information on neutrino
physics and supernovae should be amply satisfied with this pair of books.
We will not include citations in the physical discussion of this section, and
we have tried to make this section readable to a mathematician.

2.1. Breaking symmetries with mass. Massless particles experience no
time and are blind to distance scales in the spacetime; they only care about
the conformal class of the geometry. Mass brings scale to the universe and
breaks the conformal freedom that a universe consisting of only massless
particles would enjoy. Therefore massive particles are needed fix the scale
everywhere, and this amounts to fixing a metric from a conformal class.
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Travelling at the speed of light is a has a clear invariant description in
Lorentzian geometry — the curve is null — and this description enjoys
conformal invariance as well. Travelling at almost the speed of light is a
far uglier concept: coordinate invariance and conformal invariance are both
lost.

This loss of invariance both a curse and a blessing. Any particle travelling
at less than the speed of light has a valid rest frame and in that frame it
is nowhere near the speed of light. The geometric description is far more
involved and requires the use of certain natural coordinate systems. This
is the price to pay for the benefit: breaking the conformal symmetry is
precisely what allows us to identify the correct metric from a conformal
class.

Particles travelling at speeds comparable to the speed of light are called
relativistic, and those that are extremely close to that speed limit are called
ultrarelativistic. Both of these concepts depend on the observer — the only
speed on which everyone will agree is exactly the speed of light.

Gravitational waves travel at the speed of light. Geometric measurements
of the kind we are using make no difference between a photon and a gravi-
ton, and therefore measuring “graviton cones” would not allow breaking the
conformal gauge symmetry.

2.2. Supernova neutrinos. In order to measure the conformal factor ge-
ometrically at cosmological distances, one needs to measure particles that

(1) are slow enough and fast enough (not exactly the speed of light but
not a tiny fraction either),

(2) do not interact too much with electromagnetic fields near us (so that
they are accurately modelled by geodesics),

(3) can be detected, and
(4) are produced in sufficient quantities all around the universe.

The only particle that meets these requirements is the neutrino: Neutrinos
have tiny but non-zero mass and are typically ultrarelativistic. (The slower
ones are practically impossible to observe with current technology.) They
are electrically neutral and interact very weakly but can be observed with
specialized detectors. They are produced in great numbers in supernova
explosions; about 99 % of supernova energy is carried by neutrinos.

Supernova neutrinos are the only viable signal for geometric determina-
tion of the spacetime, given its conformal class. (There are of course a
number of different kinds of physical measurements that could achieve sim-
ilar results. Most measurements rely on spectral information in one way or
another. We require no information on spectrum or intensity.) The reso-
lution of current neutrino detection technology presents an issue, but the
challenges are more technological than fundamental, unlike with any other
particle.

We assume that supernova explosions are dense in the spacetime. For a
rough estimate on their true density, we may proceed as follows: There are
on the order of 0.01 supernovae per year in our Milky Way and galaxies are
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typically about a million light years apart, which amounts to a density of

10−20 · supernovae

(year)4
= 1 · supernova

(105 years)4
, (4)

where ‘year’ stands for either year or light year (c = 1). On a scale of
millions or billions of years and light years our model is not unreasonable.

A supernova explodes twice in our model: The neutrinos are released first
and photons a short time τ > 0 later. In reality both processes are spread
over time, but the time difference between the neutrino burst and the photon
burst is substantial. The difference of a couple of hours (depends on details
of the model and the supernova) is due to photons being trapped in the
expanding plasma in the early stages of the explosion, whereas neutrinos do
not interact with the rest of the matter and are free to leave immediately.

We will treat the photon explosion as the main event and the neutrino
explosion preceding it a small perturbation. This choice makes the setting
most compatible with using first pure photon observations to determine the
conformal class of the spacetime.

There are several different types of supernovae, and we shall not venture
into their taxonomy. We will only mention that type Ia supernovae have
very consistent characteristics due to the mechanism that produces them.
If we restrict our attention to this type only, it is reasonable to assume a
constant and known time delay between the neutrino and the photon burst.

The simplifying assumptions of our model are the following:

• The delay between neutrinos and photons is a known constant.
• All photons are released instantaneously, and so are all neutrinos.
• All neutrinos have the same known energy, and that energy is very

high compared to the neutrino mass. (The energies of the photons
are geometrically irrelevant.)
• Supernovae are dense in the spacetime.

These assumptions make for a tractable geometric model, where the
worldlines of neutrinos can be seen as small perturbations of worldlines of
photons. A photon travels along a null geodesic, so what we use to describe
neutrino kinematics can well be called ultrarelativistic Jacobi fields. We will
explore the kinematics of supernova neutrinos within this model in the next
subsection.

2.3. Kinematics of a supernova explosion. The kinematics will depend
on two model parameters: time delay τ > 0 between neutrinos and photons
and the mass-to-energy ratio µ = m/E of a neutrino in the supernova rest
frame. Both τ and µ are considered small: the delay is cosmologically neg-
ligible (a couple of hours certainly is) and the neutrinos are ultrarelativistic
(m < 1 eV and E ≈ 10 MeV, so µ < 10−10). The speed of light need not be
made explicit so we set c = 1.

A supernova is massive enough to substantially curve the spacetime, so
the spacetime near it is best described with the Schwarzschild or the Kerr
metric. Both of these metrics are asymptotically the Minkowski metric of
the flat spacetime of special relativity. However, on the largest scales the
geometry is whatever the geometry of the whole universe is, and on that we
impose no restrictions.
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We do not focus on modelling the spacetime geometry and other phys-
ical aspects of the explosion itself, so the explosion is most conveniently
described in the mesoscopic model of a Minkowski space between the very
local (and highly curved and dynamic) and the global (and unrestricted)
geometries. Every tangent space of a Lorentzian manifold (M, g) describing
the spacetime is indeed a Minkowski space.

Consider a supernova explosion at x ∈ M . Suppose the four-velocity
— the normalized velocity vector of the future-pointing worldline — of the
exploding star is u ∈ TsM . The star has non-zero mass, so u is always
timelike and can be normalized. We may always choose coordinates so that
u = (1, 0, . . . , 0), so that locally the coordinate time agrees with the proper
time of the star.

For simplicity, let us first consider the case of 1 + 1 dimensions in the
Minkowski space TxM . The worldline of a photon starting at the origin
can be parametrized by t 7→ (t, t). This parametrization is natural, as the
parameter is the proper time of the exploding star — or, equivalently, the
coordinate time in its rest frame.

We want to find the worldline of a neutrino with energy E and mass m
starting at x = 0 when t = −τ . The Lorentz factor is γ = E/m = µ−1, so
the neutrino’s four-velocity is

uν = µ−1(1,
√

1− µ2) ≈ µ−1(1, 1− 1
2µ

2). (5)

The worldline can be parametrized with the proper time of the exploding
star (rather than that of the neutrino itself):

t 7→ µuνt− (τ, 0) = (t− τ, (1− 1
2µ

2)t). (6)

Thus the spacetime separation between the photon and the corresponding
neutrino is

(−τ,−1
2µ

2t). (7)

The higher-dimensional Minkowskian description is similar. Notice that τ
and µ are the two small parameters of our model.

The photons are faster than neutrinos but are released later. The time it
takes fro the photons to reach the neutrinos is, roughly and in Minkowskian
geometry, about 2τµ−2. With µ < 10−10 and τ about an hour, this amounts
to about 1016 years, which is about a million times the age of the universe.
Therefore photons do not catch up with neutrinos of such a high energy.

Globally the separation between the photon and the neutrino is described
by a Jacobi field J(t). If the photon is at γ(t), then the neutrino is at “γ(t)+
J(t)”. (The sum only makes sense to leading order.) Starting from the
Minkowskian description (7) of the kinematics and accounting for a general
four-velocity u of the exploding star, we find that the initial conditions of
the Jacobi field are:{

J(t) = −τu
DtJ(t) = 1

2µ
2 〈u, γ̇(t)〉 (u− γ̇(t)).

(8)

This neutrino Jacobi field describes the kinematics of one neutrino in rela-
tion to one photon: it is the infinitesimal deviation of the trajectory of a
neutrino from the corresponding photon with the same initial direction.
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In our measurements we do not know which photon corresponds to which
neutrino. Therefore we must consider the “neutrino cone” as a variation of
the light cone. Let us denote the future light cone of the supernova by

L+
x = {v ∈ TxM ; 〈v, v〉 = 0, 〈v, u〉 > 0}. (9)

The neutrino variation field V corresponding to u ∈ TxM and the fixed
parameters τ and µ is the section of the pullback bundle expx |∗Lx

TM given
by

V x(v) = J(1), (10)

where J is the neutrino Jacobi field along the geodesic t 7→ expx(tv).
Being a section of the pullback bundle means that the function V : Lx →

TM satisfies V (v) ∈ Texpx(v). If expx is a local diffeomorphism near v ∈
TxM , then the neutrino variation field V can be locally seen as the restriction
of a vector field to the light cone expx(L+

x ). The heuristic interpretation is
that a photon at expx(v) (with v ∈ L+

xM) corresponds to a neutrino at
“expx(v) + V x(v)”. (Again, the sum is only sensible to leading order.)

The neutrino variation field describes the infinitesimal difference between
the light cone and the neutrino cone. The physically measurable data con-
sists of a component of the neutrino variation field normal to the light
cone expx(L+

x ), and the data of two models are equivalent if these compo-
nents agree. The normal vectors and covectors of a light cone are lightlike,
so there is no canonical choice of normalization, but the equality of the nor-
mal component is independent of the choice of a normal covector field. We
are now ready to define our neutrino data geometrically and what it means
for two models to have equivalent data.

2.4. The data. As described in the previous subsection, a covector field
normal to a light cone is needed to restrict the measurement to the right
component. The light cone is expx(Lx) ⊂ M may fail to be a smooth
submanifold where there are conjugate points along null geodesics, so such
a covector field is best placed atop Ls ⊂ TxM instead of expx(Lx) ⊂M .

We say that ν : LxM → T ∗M is a proper conormal field of the light-
cone Lx if ν(v) = ρ(v)(d expx(v)v)[ for some non-vanishing smooth function
ρ : LxM → R. It follows quickly from conformal invariance of null geodesics
that this concept of a proper conormal field only depends on the conformal
class of the Lorentzian metric. Equivalence of neutrino data as defined be-
low will be independent of the choice of this conormal field. (It follows from
a Lorentzian version of the Gauss lemma that γ̇ is normal to the light cone
of any point on the null geodesic γ. The proof is identical to the Riemannian
version.)

Definition 7. Fix any τ, µ ∈ R. Let (M, g) be a smooth Lorentzian man-
ifold, U ⊂ M an open set, x ∈ M a point, and u ∈ TsM a unit lightlike
vector. Denote LUx = exp−1x (U)∩L+

x . Let ν : Lx → T ∗M be a proper conor-
mal field of the light cone LxM and V x : Lx → TM the neutrino variation
field corresponding to (u, τ, µ).

The neutrino data is the scalar map

D(M, g, U, x, u, ν, τ, µ) : LUx → R,
v 7→ ν(v)(V x(v)).

(11)



CONFORMAL NEUTRINO TOMOGRAPHY 9

Definition 8. Fix any τ, µ ∈ R. Let (M, g) be a smooth Lorentzian man-
ifold, U ⊂ M an open set, x ∈ M a point, and u ∈ TsM a unit lightlike
vector. Denote LUx = exp−1x (U)∩L+

x . Let ν : Lx → T ∗M be a proper conor-
mal field of the light cone LxM and V x : Lx → TM the neutrino variation
field corresponding to (u, τ, µ).

Let ĝ be a metric conformal to g and û ∈ TxM a unit timelike vector so
that 〈u, û〉g > 0 and so L+

x is the same for both metrics. Let β : Lx → Lx
be a radial1 function so that expx(v) = êxpx(β(v)) for all v ∈ L+

x . (This
function exists and is unique by conformal invariance of null geodesics.)

We say that the (M, g) and (M, ĝ) have equivalent neutrino data if

D(M, g, U, x, u, ν, τ, µ) = D(M, ĝ, U, x, û, ν ◦ β, τ, µ). (12)

Remark 9. Although the equivalence of data was formulated on the light
cone Lx ⊂ TxM at a point x possibly far from the measurement set U , the
equivalence only concerns quantities measurable in U . If L = expx(Lx) ∩ U
is a smooth submanifold, then equivalence may be formulated in terms of
various fields on L. A proper conormal field would simply be a non-vanishing
covector field L → T ∗M so that ker(ν(x)) = TxL. The neutrino data can
also be seen as a map L → R, and equivalence of data means simply that
the two functions are identical. We chose to wrote the definitions above in
terms of the tangent space TxM rather than the measurement set U so as to
allow for conjugate points and other non-smoothness.

In practice we assume that the conformal class has been determined by
photon measurements, and so knowledge of the manifold M , identification
of the source point x ∈M , and knowledge of the light cone L+

x can be fairly
assumed.

3. The uniqueness theorem

We will show that if two metrics g and ĝ are conformal in a suitable set,
then then equivalent neutrino data implies that they are equal. The various
sets should be thought of as follows:

• M is the whole spacetime.
• U ⊂M is where we measure.
• Ω ⊂M is where conformal equivalence of the two metrics is known.
• ω ⊂ M is the union of all light rays along which we do neutrino

measurements.

Theorem 10. Fix any model parameters τ, µ ∈ R. Let M be a smooth
manifold without boundary and U ⊂ Ω ⊂ M be open subsets. Suppose Ū is
compact and contained in Ω. Let g and ĝ be two Lorentzian metrics on M .

The neutrino data determines the conformal factor uniquely in the fol-
lowing sense. We make two assumptions:

(1) The two metrics are conformal:
• g = ĝ in U and
• g = cĝ in Ω for some smooth function c : Ω→ (0,∞).

1A function TxM → TxM is radial when every vector is multiplied by a scalar depending
on that vector.
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Take any collection Γ of (not necessarily maximal) future-oriented
lightlike geodesics in Ω so that for all γ ∈ Γ and t in the interval
where γ is defined there is t′ > t so that γ(t′) ∈ U . Let ω ⊂M be the
union of all the rays in Γ and Ω ⊂M any open subset containing ω.

(2) There are four-velocity fields so that the neutrino data is the same
for both models: Let u and û be unit (w.r.t. g and ĝ, respectively)
timelike vector fields on ω \ U . These vector fields need not be even
continuous. Suppose that for all x ∈ ω \ U the neutrino data for
(M, g, U, x, u, ν, τ, µ) is equivalent with that of (M, ĝ, U, x, û, ν, τ, µ)
in the sense of definition 8.

Then two conclusions hold:

(1) The two metrics agree in ω: The conformal factor satisfies c|ω ≡ 1
and thus g = ĝ in ω.

(2) The difference of four-velocities is normal to Γ: Take any x ∈ ω \U .
Whenever γ(t) = x for some γ ∈ Γ, then 〈u(x)− û(x), γ̇(t)〉 = 0. If
the set of directions provided by Γ at x is an open subset of the light
cone in TxM , then u(x) = û(x).

We pose very little restrictions on the collection Γ of light rays. It can
well consist of only a single ray, in which case our result proves uniqueness
along it. If all light rays that meet U are included, then Γ provides an open
subset of directions at all points and thus the stronger statement at the end
of the theorem holds true.

Proof. Let γ be a g-geodesic and γ̂ a ĝ-geodesic, both lightlike. We shift
parameters so that γ(0) = γ̂(0) ∈ U . Much of the notation becomes lighter
by using the abbreviation λ(s) = 〈u(s), γ̇(s)〉g.

Consider first just the geodesic γ(t) parametrized by an interval I ⊂ R
and a supernova at t = s along it. The neutrino Jacobi field Js along γ
corresponding to this supernova has the initial conditions (8):{

Js(s) = −τu(s)

DtJs(s) = 1
2µ

2λ(s)(u(s)− γ̇(s)).
(13)

We define the auxiliary function N : I2 → R by

N(t, s) = 〈γ̇(t), Js(t)〉g . (14)

The Jacobi equation and antisymmetry of the Riemann curvature tensor
give

∂2tN(t, s) = 0 (15)

for all t, s ∈ I. Therefore the initial conditions lead to the explicit expression

N(t, s) = −τλ(s) + 1
2µ

2λ(s)2(t− s). (16)

This formula provides a crucial link between the data and the desired quan-
tities.

Let us then turn to the geodesic γ̂(t̂). The parametrizations of the two

geodesics differ by a diffeomorphism α : Î → I so that γ̂(t̂) = γ(α(t̂)) and

α′(t̂) = c(γ̂(t)) > 0. (17)
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(This change of parameters corresponds to the radial map β that matches
the two parameters of any point on the light cone as seen in U .)

We decorate all objects related to the metric ĝ by hats, including N̂(t̂, ŝ)

and λ̂(ŝ). The inner products are all with respect to ĝ in these objects.
Equation (16) holds also when decorated with hats.

As the two metrics agree on U , we have α(t̂) = t̂ when t ≈ 0.2 As
pointed out above, equivalence of data is independent of the choice of a
proper conormal field. We may thus set ρ ≡ 1, so that ν = γ̇[ when we only
use equivalence along the line γ. This leads to the key identity

N(t̂, α(ŝ)) = N̂(t̂, ŝ) (18)

whenever t̂ ≈ 0 and ŝ ∈ Î. Equation (16) transforms this into

− τλ(α(ŝ)) + 1
2µ

2λ(α(ŝ))2(t̂− α(ŝ)) = −τ λ̂(ŝ) + 1
2µ

2λ̂(ŝ)2(t̂− ŝ). (19)

Differentiating equation (19) with respect to t̂ — which we may do as we
have an open set of observation times t̂ ≈ 0 — gives

1
2µ

2λ(α(ŝ))2 = 1
2µ

2λ̂(ŝ)2 (20)

and thus

λ(α(ŝ)) = λ̂(ŝ). (21)

This simplifies equation (19) to t̂ − α(ŝ) = t̂ − ŝ, whence α is the identity
function and thus c = α′ = 1 along this geodesic. Therefore c ≡ 1 along all
lines in Γ and thus on all of ω, concluding the proof of the first claim.

Now that the conformal factor is identically one, equation (21) yields
〈u(γ(s)), γ̇(s)〉 = 〈û(γ(s)), γ̇(s)〉. This holds for all curves in Γ through the
same point x := γ(s), whence u(x)− û(x) is orthogonal to all γ̇ at TxM for
γ ∈ Γ.

The very last claim follows from the following lemma. �

Let us denote the Minkowski space of dimension 1 + n by R1,n and the
subset of null vectors in it by L.

Lemma 11. Let n ≥ 2. If A ⊂ L is a non-empty open subset and 〈v, a〉 = 0
for all a ∈ A, then v = 0.

Proof. Take any interior point a ∈ A\{0}. Near a the light cone is a smooth
hypersurface, and considering small variations of a shows that 〈v, ξ〉 for all
ξ ∈ TaL. The unique direction orthogonal to L at a is that of a itself, and
so v = λa for some λ ∈ R.

Now take any other interior point a′ which is not a radial scaling of a.
The same argument shows that v is a scalar multiple of a′ as well. Thus v
lies on two different light rays through the origin and so v = 0. �
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