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ABSTRACT. We prove solenoidal injectivity for the geodesic X-ray transform
of tensor fields on simple Riemannian manifolds with C1'! metrics and non-
positive sectional curvature. The proof of the result rests on Pestov energy
estimates for a transport equation on the non-smooth unit sphere bundle of
the manifold.

Our low regularity setting requires keeping track of regularity and making
use of many functions on the sphere bundle having more vertical than hori-
zontal regularity. Some of the methods, such as boundary determination up
to gauge and regularity estimates for the integral function, have to be changed
substantially from the smooth proof. The natural differential operators such
as covariant derivatives are not smooth.

1. INTRODUCTION

What are the minimal smoothness assumptions on a Riemannian metric under
which the geodesic X-ray transform of tensor fields on the Riemannian manifold is
solenoidally injective? Solenoidal injectivity on smooth simple manifolds with neg-
ative curvature was proved in [PS88]. Since [PS88|, many solenoidal injectivity re-
sults have been shown under different variations of the geometric setup. Solenoidal
injectivity is known for all real analytic simple Riemannian metrics [SU05| and
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for all smooth simple Riemannian metrics with certain bounds on their terminator
values [PSUIL5]. The study of the X-ray transform on manifolds with Riemannian
metrics of low regularity was started recently [IK21], where the authors prove that
the X-ray transform of scalar functions is injective on all simple manifolds with C'!
Riemannian metrics. We extend this result and prove that the X-ray transform of
tensor fields of any order is solenoidally injective for all simple C1'! Riemannian
metrics with almost everywhere non-positive sectional curvature.

X-ray tomography problems of 2-tensor fields naturally arise as linearized prob-
lems of travel time tomography or boundary rigidity [SUVZI19]. The travel time
problem arises in applications, such as seismological imaging, where one asks whether
the sound speed in a medium can uniquely be determined from the knowledge of the
arrival times of waves on the boundary. Because of the geophysical nature of such
problems, it is relevant to ask how well the studied model corresponds to the real
world. From this point of view, the smoothness assumption of the model manifold
is merely a mathematical convenience, which is why we have set out to relax such
assumptions.

Our main objective is to optimize the regularity assumptions imposed on the Rie-
mannian metric g of the manifold. We focus on global and uniform non-smoothness
(as opposed to, say, interfaces with jump discontinuities), and as in [IK21] the
natural optimality to aim at remains C''. If g is only assumed to be in the
Hoélder space C1* for a < 1, the geodesic equation fails to have unique solu-
tions [Har50, [SS18] and the X-ray transform itself becomes ill-defined. In this sense
our result is optimal on the Holder scale, as we provide a solenoidal injectivity
result (theorem [I)) for the class of simple C'! Riemannian metrics with almost
everywhere non-positive sectional curvature.

The non-positivity assumption on the curvature is likely unnecessary — milder
assumptions on top of simplicity could suffice. However, even in the smooth case
relaxing the curvature assumption causes technical difficulties and solenoidal in-
jectivity for all simple Riemannian metrics is not understood. Since our setting
is complicated enough as it is, we decided not to include manifolds with possible
positive curvature.

A popular method for proving injectivity results relies on interplay between
the X-ray transform and a transport equation. In the smooth case, the transport
equation is studied using the so called Pestov identity and energy estimates derived
from it (see e.g. [PSU23| [PSU14b, TMT9] and references therein).

We employ a similar approach in our non-smooth setting. Our proof is struc-
turally the same as those in smooth geometry, so the main content of this article
is to ensure that everything is well defined and behaved in our non-smooth setting:
the unit sphere bundle and operators on it, commutator formulas, function spaces,
Santalé’s formula, and others.

1.1. Main results. We record as our main result the following kernel description
for the geodesic X-ray transform of tensor fields. In the literature of the geo-
desic X-ray transform similar results are often called solenoidal injectivity results.
Throughout the article M will be a compact and connected smooth manifold with a
smooth boundary M. The dimension of M will always be n > 2. The manifold M
comes equipped with a C! regular Riemannian metric g i.e. g is continuously
differentiable and the derivative is Lipschitz.
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We define what it means for (M, g) to be simple in section 2l Simple C*:!
manifolds have global coordinates by definition, but for smooth simple manifolds
this is a consequence of the definitions. When g € C° the definition of C'+! sim-
plicity is equivalent to the classical definition [IK21, Theorem 2] and thus assuming

existence of global coordinates is not superfluous. The X-ray transform of tensor
fields is defined section in [Z.1.4]

Theorem 1. Let (M,g) be a simple C*' manifold (see section [Z1)) with almost
everywhere non-positive sectional curvature. Let m > 1 be an integer.

(1) If p € CYY(M) is a symmetric (m — 1)-tensor field vanishing on OM,
then the X-ray transform I(cVp) of its symmetrized covariant derivative
vanishes.

(2) If the X-ray transform If of a symmetric m-tensor field f € CY1(M)
vanishes, there is a symmetric (m — 1)-tensor field p € Lip(M) vanishing
on OM so that f = oVp almost everywhere on M.

1.2. Regularity discussion. Claims [I and [2] in theorem [ are not symmetric.
The difference is in the regularity of the potential p and we believe this is only a
consequence of our proof techniques.

There are two notions of smoothness of any given order of a tensor field: regu-
larity with respect to the smooth structure and existence of high order covariant
derivatives. The covariant concept of smoothness is more natural on a Riemann-
ian manifold. For a typical tensor field f that is C'*® smooth in the sense of the
smooth structure, the covariant derivative V f is typically only Lipschitz when
g € C11. The metric tensor ¢ and its tensor powers are examples of non-vanishing
and non-smooth (in the sense of the smooth structure) tensor fields for which co-
variant derivatives of all orders are well defined. Thus neither of the two notions
of smoothness implies the other in general. The two notions of C'*! and less reg-
ular Holder spaces of tensor fields agree, but they disagree for higher regularity.
Therefore there are, for example, two different spaces C?! and we do not use such
confusing spaces at all.

We focus on optimizing the regularity of the Riemannian metric g, but we did
not pursue optimizing regularity of the tensor fields f or p, the boundary 0M or
the integral function u/ of f (see equation (3)).

It is important for our key regularity result (lemma B below) that the boundary
values of the tensor field are determined by the data to the extent allowed by gauge
freedom. A boundary determination result for 2-tensor fields in the smooth case,
where g is C°°, can be found in [SUQ5, Lemma 4.1]. Their result is based on clever
analysis of equation 2f;; = p;; + pj;; in boundary normal coordinates. Although
the argument in [SU05] works nicely in the smooth case, it does not give the desired
result if ¢ is only C™' and f is C'''. The immediate conclusion of their argument
in the non-smooth case would be that p has derivatives in some directions and is
Lipschitz continuous, whereas in lemma 2l we find a p in the class C'>'. The other
difficulty in adapting similar arguments to the non-smooth case is the regularity of
boundary normal coordinates.

To avoid these issues we prove a boundary determination result (lemma [2)) by
a more explicit approach. Our construction gives a potential p € C11(M) satis-
fying oVplaar = flomr when f € CHH(M). The cost of our method compared to
the method of [SU05| is losing control of the 1-jets in any neighbourhood of the
boundary, but leading order boundary determination suffices for our needs.
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We lose a derivative in the regularity of p twice in our argument:

(1) We lose a derivative of p in the boundary determination result. Even if
the tensor field f € C»'(M) and the Riemannian metric g € C*!(M)
are assumed to have any (finite) amounts of derivatives, we only get p €
cmin(kD.1 (D). Particularly, p is only C', when g and f are C%'. To our
knowledge, our boundary determination result is optimal in the literature
for differentiability of the potential p with properties cVp = f and p =0
on the boundary.

One might expect flonr = oVplan, where f € CHY (M) and p €
C?1(M). The space C*!(M) is problematic as described above. In order
to improve the regularity of p one needs to make sense of higher regularity
and prove a suitable ellipticity result, but we will not explore this avenue.

(2) Secondly, we lose a derivative of p in the transition of regularity from
the spherical harmonic components of f to the spherical harmonic com-
ponents of the integral function u := u/ of f (see section Z.I)). Consider
the smooth case, where g € C*°, and let f = f,,, + fin—2 + frn—a + -
and v = Um—1 + Um—3 + Um—5 + --- be the spherical harmonic decom-
positions of f and uw. The geodesic vector field X on the unit sphere
bundle of M splits into the two operators X; and X_ in each spher-
ical harmonic degree (see section [Z). Projecting the transport equa-
tion Xu = — f into each spherical harmonic degree gives X {um—1 = —fm
and Xjup—1 = —fr — X_ugyq1 for k < m —2 with ¥k = m (mod 2). The
operator X is known to be an elliptic pseudodifferential operator of order
one (see e.g. [PSU15H]) and thus by elliptic regularity we see that each uy
has one more derivative than the corresponding component f41. This ar-
gument shows that u has one more derivative than f, proving that p is C1:!
when f is Lipschitz.

However, when g € C11(M) the phase space SM is not equipped with
a smooth structure and the meaning of ellipticity and its implications such
as existence of a parametrix, become less clear. The exact formulation and
application of ellipticity in the present low regularity setting would be a
considerable task and would still not give fully matching regularities in the
two parts of theorem [II Therefore we take a simpler route and do not
pursue a fully symmetric version of our main theorem.

1.3. Related results. The study of the X-ray transform via the transport equa-
tion and Pestov identity approach begun with the work of Mukhometov [Muk75|
Muk81l, [Muk77b|, where injectivity results for the transform of scalar functions
were proved. Since Mukhometov’s seminal articles, the Pestov identity method
has been applied to the case of 1-forms in [AR97] and to higher order tensors
in [PSU1L5| [PSU13|. Besides manifolds with boundaries, Pestov identities are use-
ful in the study of integral data of functions and tensor fields over closed curves
on closed Anosov manifolds [CS98, [DS03, [PSUT4al, [PSUTS, [US0O0]. The method
is even applicable in non-compact geometries. For results on Cartan—Hadamard
manifolds see [Lehl6, [LRS04]. There are plenty of other geometrical variations
of the problem, which have been studied employing a Pestov identity. These in-
clude reflecting obstacles inside the manifold [IS16, TP18], attenuations and Higgs
fields [SULIl [PSU12 [GPSUI16|], manifolds with magnetic flows [DPSUQT, [Ain13|
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MP11] and non-Abelian variations [FU0I, [PS20, MNP21]. The Pestov identity ap-
proach has been studied in more general geometries than Riemannian. For results
in Finsler geometry see [AD18] [M22] and for pseudo-Riemannian geometry [[lm16].

Only few injectivity results exist outside smooth geometry, whether Riemannian
or not. Injectivity of the scalar X-ray transform is known spherically symmetric C!
regular manifolds satisfying the Herglotz condition, when the conformal factor of
the metric is C! [dHIT7]. The scalar (and 1-form) X-ray transform is (solenoidally)
injective on simple C1'! manifolds [IK21]. The proof of injectivity in [IK21] is based
on a Pestov identity.

The boundary rigidity problem is a geometrization of the travel time tomography
problem and its linearization is the X-ray tomography problem of 2-tensor fields.
For results in boundary rigidity see [Muk77al, [UhI14l [Cro91l, [Cro90, [SU9S, IMR78|
PU0S, IGCMMTL17, [LSU03, BI10]. For a comprehensive survey on results in travel
time tomography and tensor tomography see [SUVZ19, TM19].

1.4. Acknowledgements. Both authors we supported by the Academy of Finland
(JI by grant 351665, AK by grant 351656).

2. PROOF OF THE MAIN THEOREM

2.1. Basic definitions and notation. In this subsection we present enough ter-
minology and notation to state and prove our main theorem. The preliminaries of
the non-smooth setting are complemented in section Bl

Throughout the article M will be a compact and connected smooth manifold
with a smooth boundary OM. The manifold M is equipped with a C1! regular
Riemannian metric g.

2.1.1. Bundles. The tangent bundle T'M of M has a subbundle SM called the unit
sphere bundle, which consists of the unit vectors in TM. As the level set F~1(1)
of the CY'! map F: TM — R defined by F(x,v) = g,(v,v) the unit sphere bundle
is a C™! submanifold of TM. The boundary

O(SM) ={(z,v) e SM : z€OM} (1)

of SM is divided into inwards and outwards pointing parts 0y, (SM) and Oout (SM)
with respect to the inner product (-, -) , and a unit normal vector field v to the
boundary 9M. The subset of 9(SM) consisting of the vectors v such that (v,v), =0
is denoted by dg(SM) and it is disjoint from O, (SM) and Dout (SM). ‘

Let m: SM — M be the standard projection and let 7#*(T M) be the pullback
of TM over SM. We denote by N the subbundle of 7*(T'M) with the fiber N, .,
being the g-orthogonal complement of v in T, M.

2.1.2. Horizontal-vertical decomposition. The tangent bundle T(SM) of SM has
an orthogonal splitting T(SM) = RX @ H @V with respect to the so-called Sasaki
metric, where H and V are the horizontal and vertical subbundles respectively
and X is the geodesic vector field on SM. We denote RX @ H by H and call it
the total horizontal subbundle. Elements of H and V are respectively referred to
as horizontal and vertical derivatives or vectors on SM. The summands H and V
are each naturally identified with a copy of the bundle N. The horizontal-vertical
geometry is essentially the same as the smooth one (see [Pat99]) and works fine
when g € C1L.
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2.1.3. Geodesic flow. Given z € SM, there is a unique unit speed geodesic 7,
corresponding to the initial condition z. We define the geodesic flow on the unit
sphere bundle to be the collection of (partially defined) maps ¢,: SM — SM,
d+(2) = (72(t),42(t)), where t goes through all real numbers so that the right-hand
side is defined. The infinitesimal generator X of the flow is called the geodesic vector
field on SM. For any z € SM, the geodesic v, is defined on a maximal interval of
existence [—7_(z), 74 (z)], where 7_(z) and 74 (z) are positive. We call 7(z) := 74 (2)
the travel time function on SM. The geodesic vector field X acts naturally on
functions by differentiation and on sections W of the bundle NV it acts by

XW(z) = D:W(¢1(2))li=o, (2)

where D; is the covariant derivative along the curve t — ¢;(z). The result XW of
the action () is again a section of N.

2.1.4. The X-ray transform. Any symmetric m-tensor field f on M can be consid-
ered as a function on the unit sphere bundle. Given (z,v) € SM we let f(z,v) ==
fz(v,...,v). In lemmalf and proposition [T and their proofs we denote the induced
maps by Az f: SeM — Rand \f: SM — R with Af(z,v) = A\, f(v). Otherwise we
freely identify f with \f since there is no danger of confusion.

The integral function u/: SM — R of a continuous symmetric m-tensor field f
is defined by

7(z,v)
uw (z,v) = (T, v
() / A (e, v)) dt 3)

for all (z,v) € SM. The X-ray transform of f is the restriction of the integral
function to the inward pointing part of the boundary 9(SM) i.e. If = U'f|61n(SM)-

2.1.5. Differentiability. We exclude the rank of the tensor field from our notations
for function spaces. For tensor fields the derivatives are covariant. We use the
subscript 0 to indicate zero boundary values. Thus, for example, f € Cé’a(M )
for a tensor field f means that f|opr = 0 and Vf is a-Holder. We use two kinds
of functions on the sphere bundle SM, scalars (e.g. C1(SM)) and sections of the
bundle N (e.g. C*(N)) defined in subsection 2.T.11

We define CF*CLA(SM) as the subset of C(SM) consisting of functions with k
many «-Holder horizontal derivatives and [ many [S-Holder vertical derivatives as

well as any combination of k horizontal and [ vertical derivatives, which are assumed
to be w-Holder for w := min(«, 8). We let

Oy Co(SM) = [ Ca*CL (SM). (4)
1=0
According to the splitting T(SM) = RX ®H @&V, the gradient of a C* function u
on SM can be written as

Vu = ((Xu)X, %u, %u) (5)

h
This gives rise to two new differential operators; the vertical gradient V and the

v h v
horizontal gradient V. Both Vu and Vu are naturally identified with sections
of the bundle N. The horizontal and vertical divergences are the L? adjoints of

v
the corresponding gradients. The vertical Laplacian on the sphere bundle is A =

v v
—divV; see Appendix [A] for details on the differential operators.
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2.1.6. Curvature. We say that the sectional curvature of the manifold M is almost
everywhere non-positive, if for almost all x € M it holds that (R(w,v)v, w}Q(I) <0
for all linearly independent v, w € T, M. Here R is the Riemannian curvature tensor
of g and it is interpreted as an L> tensor field, which is reasonable since g € C1'! =
W?2°°, The curvature tensor R: L>°(N) — L*°(N) acts on sections of the bundle N
by R(z,v)W (x,v) = R(W(x,v),v)v producing again sections of the bundle N.

2.1.7. Sobolev spaces. There are natural L? spaces for functions on the sphere bun-
dle as well as for sections of the bundle N, which we will denote by L?(SM)
and L?(N). We define the Sobolev spaces H(lo)(SM) and H(lo) (N, X) respectively

defined as completions of C(lo) (SM) and C(lo) (N) with respect to the norms

2 2

+ {|Vu

L2(SM)

, and
L2(SM)

h
2 2 2
mmeam:=umu%5M)+HXumﬂwM>+HVu

2 2 2
Wz v, x) = IW 2y + 1 X W2y -
(6)

The optional subindices 0 indicate zero boundary values.

2.1.8. Spherical harmonics. Given x € M, the unit sphere S, M has the Laplace—
v ..
Beltrami operator A, = —¢"(x)0,i0,;. Letting x € M vary we get a second
v v v
order operator A = —divV on the unit sphere bundle called the vertical Laplacian,

where —div is the formal L?-adjoint of v.

Let S"~1 C R™ be the Euclidean unit sphere. It is well-know that any func-
tion f € L?(S™"!) can be decomposed as an L?-convergent series f = >oneo frs
where fj are eigenfunctions of the spherical Laplacian on S"~! corresponding to the
eigenvalues k(k + n — 2). Similarly, any function v € L?(SM) can be decomposed

as an L?(SM)-convergent series u = Y-, ug, where Auk = k(k 4+ n — 2)uy, for
all k € N. We call uy, the kth spherical harmonic component of u. For k € {0,1},
k,l € Nand a, € [0,1] we let

QF QLB (m) = {u e CP*CLP(SM) : Au = m(m+n—2)u} (7)
and
Q0 (m) = [ Q! (m). ®)
leN

Furthermore, we denote
AFAL(m) = {u € HEHL(SM) = Au=m(m+n —2)u}. 9)

For all m € N there are operators X4 : QLQ>(m) — Q2O (m £ 1) with the
convention that QYQ%°(—1) = 0 so that X = X; + X_. These mapping properties
and validity of this decomposition in low regularity are addressed in proposition 12

2.1.9. Simple CY'' manifolds. The global index form @ of the manifold (M, g) (not
of a single geodesic) is the quadratic form defined for W € H} (N, X) by

QW) = [|IXWI[72( ) = (RW, W) 12y, (10)
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In [IK21l Lemma 11], the authors proved that there are no conjugate points on
a Riemannian manifold (M, g), g € C*, if the global index form @ of (M, g) is
positive definite.

We conclude this subsection by recalling a definition of a simple manifold in the
case g € C11. The definition is equivalent to the definition of traditional simple
manifold when g € C* [IK21]. Let M C R™ be the closed Euclidean unit ball
and let g be a Ct! regular Riemannian metric on M. We say that (M,g) is a
simple C™' Riemannian manifold if the following hold:

Al: Thereis € > 0 so that Q(W) > ¢ HW||%2(N) for all W € H} (N, X).

A2: Any two points of M can be joined by a unique geodesic in the interior
of M, whose length depends continuously on its end points.

A3: The squared travel time function 72 (see 2L1.3)) is Lipschitz on SM.

2.2. Proof of the theorem. In this subsection we prove our main result, the-
orem [[l We state the lemmas required for the proof of [I and the proofs of the
lemmas are postponed to sections [l [B, and

Lemma 2 (Boundary determination). Let (M, g) be a simple C** manifold. If f €
CYY(M) is a symmetric m-tensor field with I f = 0, then there is a symmetric (m—
1)-tensor field p € CHY(M) so that floam = oVploar and plaa = 0.

Lemma 3 (Regularity of spherical harmonic components). Let (M,g) be a sim-
ple CHY manifold. Let f € Lipy(M) be a symmetric m-tensor field on M with I f =
0 and let u == u' be the integral function of f defined by (). If the spherical har-
monic decomposition of u is u =Y poq Uk, then uy € Qg’lﬂ‘?" (k) and ug|spsary =0
for all k € N.

Lemma 4. Let (M,g) be a simple C*1 manifold. Let f € Lipy(M) be a symmet-
ric m-tensor field on M with If =0 and let u = u/ be the integral function of f
defined by @)). Then X, u € L*(SM).

Lemma [ follows immediately from lemmas Bl and [I7]
Recall that n is the dimension of M. For natural numbers & and [ we define the
two constants
l

2k -1
C(n, k) = %_—::72_3 and B(n,l,k): H (n, k+ 2p). (11)

Lemma 5. Let (M,g) be a simple C*' manifold with almost everywhere non-
positive sectional curvature. Let f € Lipg(M) be a symmetric m-tensor field
with If = 0 and denote by u = u'/ the integral function of f defined by (3.
If the spherical harmonic decomposition of w is w = Y po, Uk, then for all k > m
and ! € N we have

2 2
||X+uk||L2(SM) < B(n,l,k) ||X+Uk+2l||L2(SM) . (12)

Lemma 6 (Injectivity of X ). Let (M,g) be a simple C*' manifold with al-
most everywhere non-positive sectional curvature. Suppose that u € leﬂ‘?o(k)
and ulgsary = 0. Then X yu =0 implies that u = 0.

Lemma 7. Let (M,g) be a simple CY' manifold. Let f € Lip(M) be a symmet-
ric m-tensor field. Suppose that p is a symmetric (m—1)-tensor field and u = —\p is
a Lipschitz function in SM so that Xu = —\f everywhere in SM. Then cVp = f
almost everywhere in M.
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Proof of theorem . Item[I} Suppose that p € CH1(M) is a symmetric (m—1)tensor
field vanishing on 9(M). Then using the fundamental theorem of calculus along
each geodesic If = I(cVp) = 0 (see [PSU23| Lemma 6.4.2]), which proves item [II

Item Suppose that the X-ray transform of a symmetric m-tensor field f €
C11(M) vanishes. We will prove that there is a symmetric (m — 1)-tensor field p
vanishing on OM so that f = oVp.

By boundary determination lemmallthere is a symmetric (m—1)-tensor field py €
CHY(M) so that poloas = 0 and floyr = oVpoloar. Let f:=f—0oVpy. Then f €
Lipy(M) is a symmetric m-tensor field on M and If=If=0. )

Letu = 220:0 uy, be the spherical harmonic decomposition of u := u/. Then u;, €
Q210 (k) by lemma Bl First, we prove that ugx = 0 for all k for which k = m
(mod 2).

Since for all (z,v) € SM it holds that f(z, —v) = (—1)"f(x,v), we have

T (2, —v)
u(z, —v) = / F (), Ao (1)) dt
0 (13)

0
= (—1)m/ F Ve (), Aan(t)) dt.

—7_(z,v)

Therefore
u(ZE, _U) + (—l)mu(x,v) = (_1)m1f(¢777(z,v)(x7 v)) =0. (14)

This shows that u(z, —v) = (=1)™"u(z,v) for all (z,v) € SM and thus u; = 0
whenever k = m (mod 2). Next, we will show that u; = 0 for all & > m.

Let mgo > m and suppose that A, := ||X+um0||i2(SM) > 0. For alll € N lemmal]
yields the estimate

— 2 2
B(n,l,mg)~" HX+Umo||L2(SM) < |‘X+Umo+2l||L2(SM)- (15)

By an elementary estimate (see [I[P18, Lemma 13]) there is a constant Ay > 0 only
depending on mg and n so that

1 Al e 1/2
B(n,l >l > Agl™ /=, 16
o) = (14 ) 2y (16)
Thus the estimate (15 gives
Z ||X+Umo+21||2L2(5M) > A1 Ay Z 1712 = . (17)
=1 =1
On the other hand X, u € L?(SM) by lemma [l Hence orthogonality implies that
2 2 2
Z ||X+Umo+2l||L2(5M) < Z ||X+Uk||L2(SM) < ||X+U||L2(SM) < 0. (18)
=1 k=0

This contradiction proves that ||X+Uk||2L2(SM) = 0 for all k > m. Since additionally
urlacsary = 0 for k > m, lemma [6 says ux = 0 for all & > m.

We have shown ug = 0 for kK > m and ux = 0 for kK = m (mod 2). Thus —u €
Lipy(SM) is identified with a symmetric (m — 1)-tensor field p; € Lipy(M). As u
solves the transport equation Xu = — f everywhere on SM we have oVp; = f
almost everywhere on M by lemma [l Thus we conclude that f = oVp almost
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everywhere in M, where p := pg + p1 € Lip(M) is a symmetric (m — 1)-tensor field
with plaar = 0. O

3. PRELIMINARIES

In this article we consider compact and connected smooth manifolds with smooth
boundaries. We assume that such a manifold M comes equipped with a symmetric
and positive definite 2-tensor field g so that its component functions g;; are C'*!-
functions on M. In this case we refer to g as a C%' Riemannian metric and
to (M, g) as a (non-smooth) Riemannian manifold.

3.1. Spaces of tensor fields. Since g is a C™' Riemannian metric, component-
wise differentiability and existence of covariant derivatives are not the same. Even
if the components of a tensor field f in any local coordinates are C* functions
for k > 2 (which is possible since M is assumed to have a smooth structure), the
covariant derivative V f falls into Lip(M). Since most of our considerations are re-
lated to the metric structure and componentwise differentiability is not compatible
with the covariant derivative, the correct definition of a C':! tensor field is by co-
variant differentiability. However, with covariant differentiability we are restricted
to CH(M) and higher regularity does not exist on the Holder scale.

The space L*(M) of L?-tensor fields of order m on M is defined to be the
completion of the space of continuous m-tensor fields with respect to the norm
induced by the inner product

(f’ h)Lz(M) = /M gjlkl o g‘]mkmvf.]l]m hkl"'km dV(] (19)

Here dVj, is the Riemannian volume form of M. The space H'(M) of H'-tensor
fields of order m on M is defined to be the closure of the space of continuously
differentiable m-tensor fields with respect to the norm

Hf”?{l(M) = Hf“i?(M) + ”foi?(M) : (20)

Let p € [1,00). The spaces LP(M) and WHP(M) of LP- and W1P-tensor fields
of order m are defined analogously to the spaces L?(M) and H(M).

We could give definitions of the spaces H2(M) and W?P(M) for tensor fields
of any order similar to the definitions of spaces H'(M) and W1?(M). Again,
since g is only a C1! regular Riemannian metric, there are no spaces H3(M)
and W3P(M) compatible with the geometry. A compatible space should be defined
using covariant derivatives in the norms, which would force the spaces W¥? (M)
trivial, when k& > 3.

If f € CYM) is a symmetric m-tensor field on M, its symmetrized covariant

derivative is oV f. The symmetrization o is defined for all m-tensor fields h on M
by

1
(Uh’>j1"'jm = m! Zh’jﬂ'(l)"'jﬂ'(m) (21)

where the summation is over all permuations 7 of {1,...,m}. Note that since
loVfll 2 < [IVf]l 2 the symmetrized covariant derivative is bounded between
Sobolev spaces.

The trace of a symmetric m-tensor field f on M is denoted by tr,(f). In local
coordinates trg(f)i,.in, 5 = ¢°F fikir-in_». A symmetric m-tensor field is called
trace-free, if its trace is zero.
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3.2. Vertical and horizontal differentiability. Let M be a compact smooth
manifold with a smooth boundary and let g be a C*! Riemannian metric on M.
Let ¥k € N and o € [0,1] be so that kK + a < 2. For Il € N and 8 € [0,1] the
set CF*CLA(SM) consists of all functions u € C(SM) with

Hy---Hpue C¥(SM) and V;---Viue€ C*P(SM) (22)

for any k vector fields Hy,...,Hy € H and any [ vector fields Vi,...,Vj € V.
Additionally, we require that for any k + [ vector fields Z1, ..., Zy4 € T(SM) out
of which exactly k are in H and exactly [ are in V we have

Zy - Zyyu € C¥¥(SM), where w = min(a, ). (23)

We let
Cy“C(SM) = [ CrCLH (SM). (24)
leN

Remark 8. In the definition of CF*CLA(SM) the vertical differentiability indices I
and [ can surpass the smoothness of charts of SM. It is not necessary for SM to
have C*° smooth charts, since vertical vector fields operate on a fixed fiber and for
a fixed point x in M the scaling s(z,v) = (x,v |U|g_1) is smooth on T, M \ 0. The
slit tangent space T, M \ 0 has a smooth structure even if M does not.

Remark 9. Any commutator [H,V] = HV — VH, where H € H and V € V, can
be defined classically on the space CLCL(SM), since for any u € CLCL(SM) the
derivatives HVu and V Hu are in C(SM).

The set Cff “CLA(N) consists of all continuous sections W of the bundle N
with W9 in CF*CLA(SM) when W = W9d,;. A section W of the bundle N is
continuous, if it is continuous as a map SM — T'M.

As one might expect vertical operators preserve horizontal differentiability and
horizontal operators preserve vertical differentiability. That is

X: CFoCbP(SM) — CF LB (SM), (25)
X ok kaclB (N - Cffl’aC‘I,’B(N), (26)
V: CRCLB(SM) 5 OO ClLA (N, (27)
div: CFOCLB(NY = Clecl=18 (5, (28)
Vi CRCLB(SM) — CETLCLA(N),  and (29)
div: CEaCLB(NY — CF1CbP (SM). (30)

3.3. Sobolev spaces of different vertical and horizontal indices. Definitions
of standard Sobolev spaces on SM are available in appendix [A.2] and we only
define Sobolev spaces for scalar functions on SM of different vertical and horizontal
indices. If k,1 € {0,1} and u is a scalar function in CFCL(SM) we define the
HEHL(SM)-norm of u to be

2 2

+1 %u

L*(N)

. (31)
L2(N)

h
2 2 2
Nl 1 snny = 1l z2sary + B N1 X ullp2spn + HVu



12 TENSOR TOMOGRAPHY ON MANIFOLDS OF LOW REGULARITY

The Sobolev space HFHL(SM) for k,l € {0,1} is defined to be the completion
of CFCL(SM) with respect to the norm ”'HH,ng(SM)'

Similarly, we define spaces HYH2(SM) and HIH2(SM) to be the completions
of CYC2(SM) and of CLC2%(SM) with respect to the norms

2

Iullgmcsny = Nl + [Bu o (32)
L2(SM)
ull 3 2 snry = 1l i mra sary + 1l 2 s (33)
v 2 v 2
+ HXAu + | Axu (34)
L2(SM) L2(SM)

Note that the norm on Hy}H2(SM) does not cover all possible combinations of a

v \4
horizontal derivative and two vertical derivatives (e.g. divX'V). This is intentional,
since the missing combinations will not be needed.

Proposition 10. Let M be a compact smooth manifold with a smooth boundary
and let g be a CY' Riemannian metric on M. The following commutator formulas

hold on HIH2(SM):

v h
[Xv V] = —V, (35)
h v v h
divV —divV = (n — 1) X, (36)
v v h
[X,A] =2divV + (n — 1) X. (37)

The following commutator formula holds on HRH}(N):

\ h
[X, div] = —div. (38)
Proof. See appendix [A.3] O

3.4. Vertical Fourier analysis. In this subsection we recall the identification of
trace-free symmetric tensor fields and spherical harmonics i.e. the vertical Fourier
modes. We state and prove proposition [[1] in order to emphasis what changes in
the these well known results when applied to a case of non-smooth Riemannian
metrics. More details in the case of C"*°-smooth Riemannian metrics can be found
for example in [PSU23| and [DS11].

Proposition 11. Let M be a compact smooth manifold with a smooth boundary
and let g be a CY' Riemannian metric on M. Let k € {0,1} and a € [0,1].
The map \: f — Af is defines a linear isomorphism from the space of symmetric
trace-free m-tensor fields in C**(M) to the space Q2“Q°(m). There is a con-
stant Cy,., > 0 so that for all symmetric trace-free m-tensor fields f € CO(M) we
have

H)‘fHL2(SM) =Cmn ||fHL2(M) . (39)

Furthermore, there are positive constants ¢,C > 0 so that for any two m-tensor
fields f and h in C°(M) we have

c(Mf, )‘h)L2(SM) <(f, h)L2(M) < C(Mf, )\h)p(sz\/[)- (40)
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Proof. As in the smooth case [DS11] Lemma 2.5.] the map A, isomophically maps
trace-free m-tensors to spherical harmonics S, M of degree m. Since the dependence
on z is of the form Af(z,v) = f;,. ;. (z)v7" ---vim the map A maps on trace-free
m-tensor fields in C*(M) into QF*Q°(m).

For any symmetric and trace-free m-tensor fields f,h € C°(M), a fiberwise
calculation [DS11, Lemma 2.4.] shows that for all z € M we have

[ OO aS, = Coun (1), (41)
Sz M

for some C,, , > 0. Since the computation is fiberwise, it remains valid when g €
Cl1. Integrating equation (@Il over M gives

(A, /\h)L2(SM) =Cmn (f, h)L2(M) ) (42)

which proves [BY). Furthermore, the last claim [@Q) follows from ([Il), since any
symmetric m-tensor field can be decomposed into a sum of symmetric trace-free
tensor fields of orders less than or equal to m [PSU23]. O

3.5. Decomposition of the geodesic vector field. In this subsection we recall
the fact that the geodesic vector field maps from spherical harmonic degree m to
spherical harmonic degrees m — 1 and m + 1. This mapping property induces a
decomposition of X into operators X; and X_. See [PSU23| Section 6.6.] for
details of the decomposition when g € C'°°. We record in proposition what
changes in the decomposition, when the Riemannian metric g is only C*'-smooth.

Proposition 12. Let M be a compact smooth manifold with a smooth boundary
and let g be a CY' Riemannian metric on M. The geodesic vector field maps

X: QL% (m) = Q20 (m — 1) ® QVQ° (m + 1). (43)

Therefore X decomposes into operators Xy and X_ in each spherical harmonic
degree so that

X QL% (m) — Q2% (m £ 1). (44)

Proof. Let u € QQ2°(m) and pick a point x € M. Then Xu(z,v) = v/§;u(z,v) for
all v € S, M, where v/ is a spherical harmonic of degree 1 on S, M and 6;u(z, ) is a
spherical harmonic of degree m on S, M. Since any product of spherical harmonics
of degrees 1 and m is a sum of spherical harmonics of degrees m —1 and m + 1 we
see that

X: QL% (m) = Q0% (m — 1) @ Q90 (m + 1). (45)

Here the spherical harmonic components of Xu have one horizontal derivative less
than u since X € H. O

Remark 13. Since X maps continuously with respect to the H'- and L?-norms
the mapping properties from proposition carry over to the Sobolev space. In
other words

X:ALAZ(m) = ADAZ(m — 1) @ AAZ(m + 1), and

46
Xo: ALA2(m) — AA2(m 1), (46)
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As stated above, proposition [I2 gives degreewise defined operators X and X,
acting on AfA2(SM). If u € HfH2(SM) and u = Y -, uy is the spherical har-
monic decomposition of u, we define

Xeu=> Xiu. (47)
k=0
We prove in lemma [I7] that the series in ([@7) converges (absolutely) in L?(SM).
The following lemma [I4lis a low regularity version of [PSUTS| Lemma 3.3.], the
only difference being the regularity of w.

Lemma 14. Let M be a compact smooth manifold with a smooth boundary and
let g be a C*' Riemannian metric on M. If u € ALA2(m) then

v

Xy, Alu=—-2m+n—1)X u, and (48)
[X_,Alu=(2m +n—3)X_u. (49)

Proof. By density it is enough to prove the claimed formulas for v € QLQ°(m).
By eigenvalue property of u and by the mapping property of X we have

XJFAu: m(m+n—2)X u. (50)

Similarly, by the eigenvalue property of X u we have

AX u=(m+1)((m+1)+n—2)Xu. (51)
Subtracting (B0) from (GBI shows that

v

(X4, Alu=—-2m+n—-1)X u. (52)
The identity (@) can be proved similarly. (Il

4. BOUNDARY DETERMINATION AND REGULARITY LEMMAS

This section is devoted to the study of the integral function uf of a tensor
field f with vanishing X-ray transform. We prove a vital boundary determination
result (lemma [2]) that allows us to prove that u/ is a Lipschitz function on SM in
subsection[£2l In subsection 4.3 we exploit the particular form of the identification
of trace-free tensor fields and spherical harmonics to prove our main regularity
lemma [

4.1. Boundary determination. The boundary determination lemma[2]is proved
in two parts. In lemma [I8] we give an explicit local construction. In more detail,
we prove that if I f vanishes for some tensor field f, then in local coordinates near
any boundary point we construct a tensor field p so that the symmetrized covariant
derivative of p equals f when restricted to the boundary. We prove that lemma
follows from the local construction by a partitions of unity argument.

Lemma 15. Let (M, g) be a simple C** manifold and suppose that f € CH1(M)
is a symmetric m-tensor field on M so that in I f = 0. For each x € OM there is a
neighbourhood W C M of x and a symmetric (m — 1)-tensor field p € CH1(W) so
that plwron = 0 and oVplwron = flwron -
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Proof. Let o € 9M be a boundary point. Choose a neighbourhood W C M of x,
where we have C'°° coordinates ¢: W — R"™ so that

(W NIM) = {z" =0} and o(W N M™)={z">0}. (53)
The smooth coordinate function ¢ exists, since M is a smooth manifold with a
smooth boundary. Denote & := (z!,...,2" 1) so that z = (%, 2").

In these coordinates the required tensor field p can be defined in the following
way. Givenl € {0,...,m—1} and j1,...,5 € {1,...,n— 1} we let the component
of p corresponding to the indices j; ---jin---n be

A n m .
pjl...jln~~n($,$ ):: mx fjl"'jzn“'n(xvo)' (54)

Here the index n appears m — 1 —{times in pj,...j,n...n, and m—1{ times in f;, ..., n...n-
We can insist that p is symmetric by requiring

Pjr-jm—1 (iv xn) = Pty dn(m-1) (i'v xn)v (55)
where 7 is any permutation of {1,...,m — 1} so that jr(1) < -+ < jr(m-1). This
causes no contradictions, since f is symmetric. Clearly, it holds that p|un—o = 0
and p € CHY(M) since f € CHY(M).

It remains to show that oVp|zn—g = f|zn=0, which follows from two claims:
(1) We prove fj,...j,. (&,2™) = 0 in the coordinates in W when ji,...,jm €
{1,...,n—1}.
(2) We verify that (6Vp)j, .. j.len=0 = fj;...j,. in the coordinates in W.
Both claims are proved in appendix [Bl The idea is that item [ follows from the
fact If = 0, and item [Z can then be verified by a straightforward computation in
the coordinates in W. O

Proof of lemma[2. Let f € CYY(M) be a symmetric m-tensor field with If = 0.
We construct a symmetric (m — 1)-tensor field p € C*1(M) so that ployr = 0
and UVP|8M = f|6M-

For each © € OM pick a neighbourhood W, C M of z and a symmetric (m — 1)-
tensor field p, € CYY(W,). Such neighbourhoods W, and tensor fields p, exist by
lemma Since M is compact, there is a finite subcover {W,,}*_; of the open
cover {W,}.con of OM. Denote W; := W, and p; = p,,. We add W := M\OM to
get a finite open cover of M. Choose a partition of unity {¢;}? ; U{o} subordinate
to {W;}_, U{Wp}. We let the tensor field py corresponding to Wy to be identically
zero. The products v;p; are C*! tensor fields in neighbourhoods W; and we can
extend them by zero outside W; to get C! tensor fields on M since each W;\supp 1;
is open. We define an (m — 1)-tensor field p by

p(x) =Y di(@)pi(x). (56)
=0

Since 1;p; are zero outside supp; and p;|aarnsuppw; = 0 by construction, we see
that plaasr = 0. The final step is to check that Vp = f on the boundary OM. By
the product rule we have V(i;p;) = Vib; ® p; + ¢;(Vp;) for all i. Since V; is a
one-form, p; is symmetric and symmetrization does not affect scalar functions, we
have

n n

oVp =" [0((Vs) @ pi) + (i (Vpi)] = D _[(0V) @ pi) + ¢s(aVpi)].  (57)

=0 =0
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Since 1; = 0 in M \ supp ¢; we have ocV; = 0 in the same open set M \ supp ;.
Together with p; = 0 on OM N suppvy; € IM N W; vanishing of the covariant
derivative oV1); in M \ supp v; implies

oVplom = Z(‘/’i(gvpi))bM = ZU%(UVPH@MmWi)

1=0 =0

" n (58)
=3 Wi(flosew,) =Y _(@if)lorr = flon-
i=0 i=0
Thus p has the desired properties. ([

4.2. Regularity of the integral function. Let (M, g) be a simple C*'! manifold
and let f € CHY(M) be a symmetric m-tensor field with If = 0. Since the main
objective is to prove that there is a symmetric (m — 1)-tensor field p on M so
that oVp = f and by lemma Bl we can find a tensor field p € C*(M) with this
property on the boundary OM, we can move to studying tensor fields f € Lipy (M)
vanishing on the boundary. The following lemma is a special case of [IK21, Lemma
21]. We record it for the convenience of the reader.

Lemma 16. Let (M, g) be a simple C*' manifold. Let f € Lipy(M) be a symmet-
ric m-tensor field on M and let u := uf be the integral function of f defined by ().
Then u € Lip(SM).

Proof. Since f is in Lipy(M) the corresponding function on the sphere bundle is
in Lipg(SM). It was shown in [IK21 Lemma 21] that the integral function of a
function in Lipy(SM) is again a Lipschitz function on SM. O

Next we prove lemmal[fli.e. we prove that if a Lipschitz function v on SM arising
from of tensor field —p satisfies the transport equation Xu = —f, then oVp = f
holds pointwise almost everywhere.

Proof of lemma[7 Let f € Lip(M) is a symmetric m-tensor field. Suppose that p €
Lip(M) is a symmetric m-tensor field so that the Lipschitz function u :== —Ap solves
the transport equation Xu = —f everywhere in SM. We prove that oVp = f
almost everywhere on SM by proving that

(cVp—f, 77)L2(M) =0 (59)

for all symmetric m-tensor fields n € C}(M). Since by proposition [l there are
positive constants ¢, C' > 0 so that

¢ (May Ah2) pasary < (hay he) p2apy < € (Mha, Aha) 2 g (60)
for all symmetric m-tensor fields hq, he € Lip(M) it is enough to prove that

Consider a maximal geodesic v of M so that v(0) = z € OM and 4(0) = v €
On(SM). We denote z := (z,v) and write n :== A\ and f := Af. Furthermore, we
denote 0(t) := ¢+ (z) and n(t) = n(6(t)). Then we have

7(2) 7(2)
| ovmemm = [ 060, soma . 62)
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Since «y is a geodesic, it satisfies V4% = 0. Therefore the Leibniz rule implies

() ()
/ (VD)) (Y(®), - -, 3(@))n(t) dt = / O (D ey (Y(#), -+, 7(8)))n(t) dt
0 0 (63)

7(2)
_ / Paey () A(O)en(t) .

By assumption w(0(t)) = —p~ ) (¥(t),...,7(t)) for all t € [0, 7(2)] and thus
7(2) 7(2)
[ oGO aeemed = [ a®)an
0 0
7(2)
_ / Du(O()n(t)dt (64)
0

7(2)
= [ s an

where the last equality holds since Xu = —f and X is the infinitesimal generator
of the geodesic flow ¢;. Together equations (62)), (63) and (64]) show that

7(2) 7(2)
| vavpemmoa = [ rewma (65)
0 0
We integrate (G0 over 0i, (SM) and use Santald’s formula (lemma [24]) to see that

7(2)
[ 0oomaz, = [ [ 0ovnem sy,
SM Oin (SM)

0
()
- [ s sy, (66)
A (SM) Jo
= / fndE,.
SM
Equation (@) follows immediately from (G6]), which finishes the proof. O

4.3. Regularity of the spherical harmonic components. In this subsection
we use the special form of spherical harmonics and the identification of trace-free
tensor fields and spherical harmonics to prove lemma Also, we prove that the
degreewise definition of operators X1 acting on functions on SM is reasonable by
proving that series in (7)) converge absolutely in L?(SM).

Proof of lemmald Let f € Lipy(M) be a symmetric m-tensor field with vanishing
X-ray transform and let v := uf be the integral function of f defined by (3.
The integral function w is in Lip(SM) by lemma We prove that the spherical
harmonic components uy of u are in Q9'Q2°(k) and that uklacsary = 0.
For a fixed € M the fiber S, M is isometric to the Euclidean unit sphere S~ C
R™ via the map
Sp: SeM — S sy (v) = g(a)?, (67)
where g(x)l/ 2 is the unique square root of a positive definite matrix g(x). Since u
is in Lip(SM), its restriction u, = u(x, -) to Sy M is in Lip(SyM). Thus the
functions 7, on S"~! corresponding to u, via s, has a decomposition
Uy = Z (as Ok) p2(5n-1) Phs (68)

k=0
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where ¢y, is the eigenfunction of the Laplacian on S™~! corresponding to the eigen-
value k(k 4+ n —2). Tracing back through s, we find a L?(S, M) convergent decom-

position
o0

Uy = Z (uwv wk)L2(SzM) (o (69)
k=0
where ¥ (v) = ¢ (55 (v)). On the level of the bundle SM, we denote ¥ (x,v) ==
or(s;1(v)), and thus get the formula uy = (W, ¥r) p2(s, ar) Yk Here 1y is in
CH1(SM), since ¢y, is in C°°(S™1) and the map (z,v) — s,(v) is in CHL(SM).
This proves that u, € Lip(SM). We note that by lemma [II] for all k& there
is a symmetric and trace-free k-tensor field hy € Lip(M) so that ug(z,v) =
(hi)jy..j (@)07 - w7, This proves that u, € Qp'Q(k) for all k, since wuy is
polynomial in v.
Finally, we prove that uy|g(sar) = 0. Since the X-ray transform of f is zero, the
restriction of u on the boundary 9(SM) is zero. Thus for any = € 9M we have

0= lu(z, ||L2 S M) — Z (e (2 ||L2 8. M) - (70)

Therefore, since ug(z, ) € C°(S; M), we have ug(x,-) = 0 pointwise on S, M for
all k, which implies that ux|g(sary = 0 for all k. O

Lemma 17. Let (M, g) be a simple C*' manifold. Given u € HF H2(SM), if u =
Y peo Uk is the spherical harmonic decomposition of u, then the series Y po o X+ug
converge absolutely in L?(SM). Here we use the convention that X _ug = 0.

Proof. We prove convergence of both of series ZZOZO X_uy at once by proving that

2 2 2
Z ||X+Uk||L2(SM) + Z ||X—Uk||L2(SM) < ||u||Hh1H9(SM) : (71)
k=0 k=1

The proof of (1)) is identical to the proofs of [PSU15, Lemma 4.4] and [LRS04,
Lemma 5.1], where the authors proved that

h
1 gsnny + 1K —tlagsany < 1 Xelaggnn + Hv (72)

L2(SM)

The major difference to the results in [PSUL5] and [LRS04] is that we work in
non-smooth geometry instead of a smooth geometry, so the tools in the proof have
changed. For completeness, we repeat the arguments in appendix [C] to document
the fact that all steps go through in lower regularity with suitably chosen function
spaces. ([

Remark 18. For u € Hy H2(SM) we defined X+u to be the series > o X+ up,
when u = Z,;“;O ug is the spherical harmonic decomposition of u. By lemma [I7]
both X u and X _u are well defined functions in L?(SM) and by orthogonality

o0
2 2
[ X+ullp2(sar) = Z [ Xtukllz2(sar - (73)
k=0
5. ENERGY ESTIMATES AND A SANTALO FORMULA

In this section we show that the L2-estimate in lemma [B] follows from the Pestov
identity, and we establish the Santalé’s formula in low regularity in lemma



TENSOR TOMOGRAPHY ON MANIFOLDS OF LOW REGULARITY 19

5.1. Pestov energy identity. Let (M, g) be a simple C''! manifold. Recall that
the global index form @ of (M, g) is defined by

QW) = IXW L2y = (RW, W) 12y (74)
for W € H} (N, X).

Lemma 19 (Pestov identity). Let (M,g) be a simple C** manifold with almost
everywhere non-positive sectional curvature. If u € leﬂ‘?o(k) and ulpcsary = 0,

then

v 2

VXu

= (Fu) + 0= 1 Xl (75)
L2(N)

Proof. Since u € Q' (k), we have u € Lip,(SM), VXu e L?(N) and XVu e
L?(N). It was proved that in [IK21, Lemma 9] that the Pestov identity (73] holds
for this class of functions on simple C'*'! manifolds. O

When g € C* the estimate in Lemma 20 was derived in [IP18 Section 6]. We
present a proof compatible with low regularity employing the Pestov identity in
Lemma [T9

Lemma 20. Let (M,g) be a simple CY'' manifold with almost everywhere non-
positive sectional curvature. If u € QU QX (k) and ulp(sary = 0, then

(Xu, X, ﬁ]u) <0. (76)
L2(SM)

Proof. Since the sectional curvature of (M, g) is almost everywhere non-positive,
QW) > || XW||? for all W € H}(N, X) and we have

Y 2 .2

VXu > | XVu

L2(N)

2
+ (n = 1) [| Xullz2sar) (77)

L*(N)

by the Pestov identity (lemma[Id]). On the other hand, using commutator formulas

from proposition [I0] we see that

2 2

v v h
HXVu = (|VXu—Vu
v 2 v h h 2
=||VXu|l —2 (VXU, Vu) + |[Vu (78)
v 2 v h h 2
= ||VXul||l + (Xu,2diVVu> + {|Vu

Combining estimate (7)) and equation (78) and applying the commutator for-
mula [B7) we get
2

v h h
0> (Xu,2divVu) + Hw +(n—1) | Xul

v h
> (Xu, 2divVu + (n — 1)Xu) (79)

as claimed. O
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Lemma 21. Let (M,g) be a simple CY' manifold with almost everywhere non-
positive sectional curvature. Suppose that f € Lipy(M) is a symmetric m-tensor
field on M with vanishing X-ray transform If. Let u = u’ be the integral function
of f defined by @). If k > m or k =m (mod 2), we have

||X+Uk||L2 (SM) — =X uk+2|IL2(SM) (80)

Proof. Since f € Lipy(M) and the X-ray transform of f vanishes, we have u €
Lipy(SM) by lemmal[l6 By the fundamental theorem of calculus w solves Xu = — f
and projecting this transport equation onto spherical harmonic degree k + 1 gives

= frrr = Xqup + X upyo (81)
If k >mork=m (mod 2), then fr41 = 0 and the claim (80) follows by taking L2-
norms. O

Recall that the constants C(n,k) and B(n,l, k) in lemma [{ are

l

2% |
C(n k) = %1% and  B(n,1,k) H (n, k + 2p). (82)

Lemma 22. Let (M,g) be a simple CY' manifold with almost everywhere non-
positive sectional curvature. Suppose that f € Lipy(M) is a symmetric m-tensor
field with I f = 0. Letu == u/ be integral function of f defined by @)). If 2k+n—3 >
0, we have

2 2
1X uilZasnry < COn k) 1X sl asnn - (83)

where uy, are the spherical harmonic components of u.

Proof. Let 2k+n—3 > 0. Since u;, € QY Q% (k) by lemmalB] we can use lemma 20,
which together with commutator formulas in [I4] gives

2k +n— 1) | Xyu|® > 2k +n — 1) | Xyuz® + (Xuk, X, A]uk>

= 2k +n—1) | X u)? + (X+uk, (X, A]uk>

(84)
+ <Xuk, [X,, A]uk)
= 2k +n—3) | X_u?.
Dividing by 2k +n — 3 > 0 proves the claimed estimate (83). O

Proof of lemmald Let f € Lipy(M) be a symmetric m-tensor field so that If =0
and denote by u := u/ its integral function defined by [@)). Let & > m. By lemma[3
we have u € Q2" Q% (k) and thus lemmas 21] and 22 we get

||X+Uk||2L2(SM) = ||X7Uk+2||2L2(SM) <C(n,k+2) ||X+uk+2||i2(SM) : (85)

Iterating lemmas 2] and 2] a total of | € N times yields
l
X un]|* < [ X yuryar]|* T Cnok+2p) = B(n, k) [ X yurya]|® (86)
p=1

as claimed. O
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5.2. Santald’s formula. The proof of Santald’s formula on a smooth simple man-
ifolds (M, g) is based on the so called Liouville’s theorem and can be found e.g.
in [PSU23]. We give a similar proof of the formula on a simple C** manifold based
on the following formulation of Liouville’s theorem.

Lemma 23. Let (M, g) be a simple C*'! manifold. Denote by Lx the Lie derivative
into the direction of the geodesic vector field X on SM. Then for any u € Lip(SM)
it holds that

/ uLx (d%,) = 0. (87)
SM

The proof of lemma 23] is based on smooth approximation of the Riemannian
metric g and can be found in Appendix

If v is the inner unit normal vector field to M, let p(z,v) = (v(z),v) () for
all (z,v) € SM. If w is a differential k-form on SM, then denote by ixw the con-
traction of w with the geodesic vector field X i.e. for any vector fields Y7,..., Y1
on SM, we let ixw(Y1,...,Yp—1) =w(X,Y1,..., Y 1).

Lemma 24 (Santald’s formula). Let (M, g) be a simple C*' manifold. For any

function f € Lipy(SM) the integral of f over SM with respect to dX, can be written
as

7(2)
/S gz, - /8 . /O F(6n(2)) dt p(z)dS . (88)

Here j: O(SM) — SM is the inclusion map and j*g is the Riemannian metric
of OM induced by the inclusion j.

Proof. Let f € Lipy(SM) and consider its integral function u := u/. The integral

function satisfies Xu = —f and u € Lip(SM) by lemma By Cartan’s formula
we have

/S | Ix(ud®) - /S ixd(uds) + /S dlixud®), (89)

where d is the exterior derivative. Since udX is a volume form, the first term on
the right in ([89) vanishes. By Stoke’s theorem

SM

(SM)

As in the smooth case ([PSU23| Proposition 3.6.6.]), we compute that

/ §*(uixdS,) = / (7 u) (" ixdS,)
a(SM)

SM

- [ ez, (01)
SM

- / (G u)pdS;e,.
SM
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Finally, since j*u is merely a restriction to the boundary, we invoke the definition
of v and lemma 23] to see that

fdx, = /SM Lx(u)dS

_/SMLX(udE)—/SMuLx(dE)

SM

SM
= / (JFu)pdS g
a(SM)
7(2)
— [ [ et dmas,,.
asm) Jo
Since 7(z) = 0 for z ¢ 91, (SM) the claim (B8] follows at once from ([@2)). O

6. FRIEDRICH’S INEQUALITIES

In this section we prove that L?-norms of scalar functions on SM and sections
of the bundle N are bounded above by constant multiples of L?-norms of their
derivatives along the geodesic flow. We call these estimates Friedrich’s inequalities
on SM. We apply the inequalities to prove lemma [0

Lemma 25. Let (M,g) be a simple CY' manifold with almost everywhere non-
positive sectional curvature. Let d be the diameter of M. Then

P\ Xull}aoary = ulloonr  and | XW [Ty > 1Wl5ay  (93)
for any w € HY(SM) and W € H}(N, X).

Proof. First, we prove the inequality for functions. By densitiy is enough to consider
the case u € C}(SM). By Santald’s formula (lemma 24]) we can write

7(2)
IXulacsan = [ o | Xt depas,e, (94)

where j: O(SM) — SM is the inclusion. Let us denote u,(t) := u(¢¢(z)). Thenu, €
H([0,7(2)]) and we have

d

Xu(éi(2)) = -u(6era(2)

= iuz(t + )

= = . (1). (95)

s=0

s=0
By the usual Friedrich’s inequality of H}([0,7(z)]) we see that

() ) () ) (=) )
d2/ |, (t)] dtZ7‘(z)2/ |1, (t)] dtz/ lu. (t)|" dt. (96)
0 0 0

Combining equation ([@5) with inequality ([@6) we get

7(2)
Xl 2@ [ o apasy,

7(2)
> / / s (O dt pdSe
A (SM) Jo

2
= ||“||L2(SM) )

(97)
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which is the claimed inequality for functions.
Next, we prove the inequality for sections of the bundle N. Let W € HJ (N, X).
In this case Santald’s formulas (lemma 24)) gives

7(z)
XW sy = [ [ X @) E dtpl) s 99)
Oin(SM) JO

We let W, (t) .= W(¢¢(2)). Then W,(t) is a H vector field along 7, and it holds
that XW(¢.(2)) = D:W,(t). Choose a parallel frame (E4,..., E,) along .. Then
we have DWW, = WjEi, when W, = W!E;. Since W, is a H& vector field along .
we have W! € H}([0,7(2)]) for all i. Thus we read from equation (@) that

)| |
dQ/ ’W§
0

From equations (@8] and (@9) we see that

2 )
dtz/ |W|™ dt. (99)
0

7(2)
/ |DW.(8)] dt u(z) dSp(sar
A (sM) Jo

n 7(2)
X
; Oin(SM) JO

2
EIXW Gy = &

. 2
Wi dt (=) dSasay

(100)
n =)
> Z/ / (W] dt u(2) S5
= Jom(sM) Jo
= HW||2Lz(N) )
which is the second claimed inequality. (]

Proof of lemma[B. Let u € Q)'Q(k) be so that ulp(sary = 0 and Xyu = 0. By
lemma [I4] we have

2k+n—3)| X ull®=-Ck+n—1)| X ul®+ 2k +n—3) | X_ul?
= ([X+,A]U7X+u) + ([X,A]U,Xu)

= ([X+,ﬁ]u,Xu> + ([X—,A]u,Xu> (101)

- ([X, A]u,Xu) .

The last inner product in (I0I]) is non-positive by lemmaP0l Thus X_u = 0 almost
everywhere on SM. Let d be the diameter of M. Lemma 28] then provides

HUHiz(SM) <d? ||Xu|‘i2(5M) = d2(||X+u||i2(SM) + ”X*u“i%SM)) =0. (102)

Thus v = 0 almost everywhere on SM, but since u is continuous we have shown
that © = 0 everywhere on SM. O

Even though we do not need the result, we next show for completeness that there
are no conjugate points in the sense of the global index form @ when the sectional
curvature is non-positive.
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Proposition 26. Let M be the closed Fuclidean unit ball in R™. Suppose that M
comes equipped with a CY' Riemannian metric g so that the sectional curvature
of (M, g) is almost everywhere non-positive. Then there is € > 0 so that Q(W) >
e|WIi%s () for all W € HY(N, X).
Proof. Since the sectional curvature is almost everywhere non-positive,

(RW, W) 2y = / (R(W(z,v),v)v, W(z,v)), d¥; <0 (103)

(z,v)eSM ’

for all W € H}(N, X), since W(z,v) and v are always orthogonal. Thus Q(W) >

||XW||iQ(N) for all W € H}(N, X). Then it follows from lemma 25 that for all W €
H}(N, X) we have

1
Q) = |IXWa(v) = 5 W) - (104)
We take e = 1/d? which finishes the proof. O

APPENDIX A. DIFFERENTIAL OPERATORS ON THE UNIT SPHERE BUNDLE

This appendix complements the preliminaries in section Bl by providing coordi-
nate formulas of the various differential operators on S M, definitions of the standard
Sobolev spaces on SM and a proof of proposition [I0l concerning commutators of
the differential operators.

A.1l. Coordinate formulas. Let x be some coordinates on M and (z,v) the co-
ordinates on TM and (z,v, X, V) the coordinates on TT M. We denote

511 = 8901 - I‘likvkavz. (105)

The vectors d,: form a basis for the horizontal subbundle of TT'M and the vec-
tors 0, form a basis for the vertical bundle of TT'M.

Recall from section the subbundle N of 7*T'M, where w: SM — M is the
unit sphere bundle.

The horizontal and vertical subbundles H and V of TSM are canonically iden-
tified with N via the maps H78,; — H’9,; and V*9,. — V*0,.. With these
identifications we have

T(SM)=HOVORX =NoONDR. (106)

The actions of vector fields on SM on functions u in C*(SM) can be regarded

as actions of vector fields on TM via the scaling map s: TM \ 0 — SM defined

by s(z,v) = (z,v |v|;l). More precisely, if u € C1(SM), then we have the basic
derivatives §; and 0, defined by

0ju =04 (uos)|sm, and Oku = dyr(uos)|sm. (107)

The usual differential operators that act on functions on the unit sphere bundle
and on sections of the bundle N. The geodesic vector field X is a differential
operator that acts both on functions on SM and sections of the bundle N. The
actions on a scalar function v and on a section W are

Xu=v6u and XW = (XW'),, + T, v/ WF9,. (108)

Vertical and horizontal gradients are differential operators defined respectively by

v .. h .. .
Vu=(¢"0iu)0,; and Vu= (¢""6u— (Xu)v?)0,;. (109)
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v h
The formal adjoint operators of —V and —V are the vertical and horizontal diver-
gences

\4 . h . .
div(W) = 9;W’ and div(W) = (§; + T, )W, (110)

A.2. Standard Sobolev spaces. Let M be a compact smooth manifold with a
smooth boundary and let ¢ be a C'»! Riemannian metric on M. For two continuous
functions v and w on SM define

(w, W) p2(sar) = /SM uw dX,. (111)

Formula (III)) defines an inner product on C(SM) and we let L?(SM) be the
completion of C(SM) with respect to the norm induced by (-,)2(gps)- For two
continuous sections W and Z of the bundle N we let

W2y = [ auWiZ 0z, (12)

and we define L2(V) to be the completion of C'(IV) with respect to the norm induced
by the inner product (I12)).

The vertical and horizontal divergences are the formal adjoints of the vertical
and horizontal gradients with respect to these inner products. Let u € C'(SM)
and W € C1(SM). If either u or W vanishes on the boundary 9(SM), then

\4 v h h
(Vu, W) =— <u,diVW> and (Vu, W> =— (u,divW) . (113)
L2 L2 2 2

A.3. Proof of commmutator formulas. We prove the commutator formulas in
proposition

Proof of proposition [l By density it is enough to prove the claimed formulas
for u € CLC2(SM). Then the commutators are well defined as a classical dif-
ferential operators. As in the smooth case (see [PSU1H, Appendix A]) we can
compute that

[0;,v"]u = (5;—% —gpv'vfu and [0, g% o]u = —I‘ljmgmkaku. (114)

Using the equation (14 we find that (for more details see [PSUI5, Appendix A))
v h . h

(X, V] = =Vu+v([6;, 9" Om]u+T" ;1g"" 0nu) 0, = —Vu. (115)

N h v h
The claimed identity [X,div] = —div follows from [X, V] = —V by taking adjoints.
Similarly (again, see [PSUIL5L Appendix A] for details), we can compute that

h v v h .
divVu — divVu = [0k, ¥ 0)]u + gklfjkjalu + (Xu)(0pv*) = (n — 1) Xu.  (116)

Again, direct computation in local coordinates is valid since the second order deriva-
tives of uw only contain one horizontal and one vertical derivative.

The formula for [X, A] follows from other formulas since
X, AJu = — XdivVu + divVXu
h v v \4 v \4 v h
= divVu — divX Vu + divX Vu + divVu (117)

v h
= 2divVu + (n — 1) Xu,
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where each step is valid since u € CfC2(SM). O

APPENDIX B. COMPLETION OF THE PROOF OF BOUNDARY DETERMINATION

We complete the details in the proof of lemma by proving items [I] and
Recall that we work in local coordinates ¢: W — R™ so that

(W NOM) = {z" =0}, and (W N M™)={z">0}. (118)

We denote # = (z1,...,2"71). The local tensor field p is defined in these coordi-
nates by

pjl---jm---n(ja In) = m— lxnfjl...jln...n(j?, O), (119)

where n appears m — 1 — [ times in pj,...j,n...n and m — 1 times in f;,...j;n...n-

First, we prove item [II To prove that f;,...;.(Z,2") = 0 for all ji,...,jm €
{1,...,n — 1} it is enough to prove that f,(v,...,v) = 0 for all tangential direc-
tions v € S;(OM), where x € W. Given v € S,(0M) we choose a sequence of
vectors vy, € S M so that 7(x,vr) > 0, 7(x,vr) — 0 and vy — v as k — co. The
vectors vy exist by C! simplicity as explained in [IK21, Lemma 23]. Since If = 0
and the lengths of the geodesics corresponding to (x,v) € SM become arbitrarily
short we see that

7(x,vK)
Falvre o 0) = Tim —— )/0 FGe(mop)) dt = Tim LE) o (190

k— o0 T(x, Vg k—o0 T(x, ’U;g)

which concludes to proof of item [1I

We proceed proving item[2l Letl € {0,...,m—1} and jy,...,5 € {1,...,n—1}.
To compute the restriction to boundary of the component functions of cVp, we first
compute Vy,pj,...jyn--n(&,0) and V,, p (%,0). We have

i Feginen

Vnpjl...jm...n = 8npj1---jln---n

l
k
- E L. Pjr ke jineen
s=1

m—1
§ k
— anpjl"'jln“'k“'n'
s=I+1

(121)

Thus by the construction of p we find that

m

vnpjl---jln---n(i'a LL‘n) = mfjl...jm...nn(i', 0)

m

l
n k ~
— l:E ZlFnjsfjl...k...jln...nn(:r,0) (122)

m

m m—1
k A
_l:En Z anfjl---jln---kmnn(xv0)-
s=Il+1

On the boundary {z™ = 0} equation (I22)) reduces to

m

X m N
Vnpjl...jm...n(x, 0) = mfjl”'jln”'n"(x7 O) (123)
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As in equation (IZI) we have

Vjspjy»»j:---jm---n = 8jspj1...j:...jln...n
-1
- ZI"“ i Diikeiim-e-
JogrPir-e ke jin-m
= (124)
m—1
S
jszle“'JL""'k'“"'
r=1
By the construction of p, equation (I24) gives
. m .
m -1
k A
_ m_ZxﬂZl—‘jszfjl,..k,,,jm...nn(l',0) (125)
r=1
m m—1
k A
— m— l.’L'n Z Fjsnfjl"'jl’ﬂ'”k'”"'ﬂ(x70)'
r=1
Therefore on the boundary {z™ = 0} we get
2 R 1) B ) (126)
Now we are ready to compute (6Vp)j, . jn-n, when I € {0,...,m — 1}. De-
note ji41 = -+ = jm = n. There are (m —1)(m — 1)! permutations 7 of {1,...,m}
so that jr1) = n, when no restrictions are set on the remaining jr(2),---,Jx(m)-
Thus using symmetry of p we find that
(m —1)(m —1)! :

) (m—1)!
VnPji-jinen + Zvjspjl...j;...jm.._n

s=1

l
m—1 1
= Tvnpjl...jln...n + E Z vjspjl»»»j:---jm»»»n'

s=1

(127)
Evaluating (I27) on the boundary {z"™ = 0} and substituting (I23]) and (I26) results

m

(an)jl___jm...n(:i:, O) = fjl"'jln"'n(ja O) (128)

The last step is to prove that

(va)jl...jm(j?,O) = fjl"'jm(‘i70) (129)
when ji,...,Jm € {1,...,n — 1}. By the definition of the symmetrized covariant
derivative )

(UVP)jr"jm = ml Z vjnu)pjn(z)'"jn(m) (130)
where the summation is over all permutations 7 of {1,...,m}. Since jr ) < n for
all k € {1,...,m}, we can compute as in (I23]) to see that

vjnu)pjn(z)'"jn(m) |$”:0 =0 (131)
for all permutations 7 of {1,...,m}. Thus

(va)jl“'jm|1n:0 =0= fjl"'jm|$":0' (132)
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We have finally used item [ of the proof, where we proved that f,(v,...,v) =0 for
all v € Sz(0M) with € W. This concludes the proof item 2 and thus the proof
of lemma [I3] is completed.

APPENDIX C. A REGULARITY COMPUTATION

The following calculation completes the proof of lemma [3l It is based on the
proofs of [PSUTH, Lemma 4.4] and [LRS04, Lemma 5.1].

h
Let u € Hy HZ(SM) and let wy, € Q4Q° (k) be so that w|g(say = 0. Then Vu €
HIH!(SM) and thus

h v v h
(Vu, Vwk> =— (diVVu, wk> . (133)
L2(N) L2(N)

Using propostion [I0] the right side can rewritten as
v h 1 v n—1
— | divVu,wy | = —5 (X, Alu,wy, | + — (Xu,wy) . (134)

If u, € ALA2(k) are the spherical harmonic components of u, then by orthogonality
and lemma [T4] we have

<[X, A]u,wk> - ([X+,A]uk1 + [X,A]ukﬂ,wk)

2k + 3 2k + 1 (135)
n— n—
=|——FFXjup1 + ———X_upq1,wy |
2 2
Together equations (I33), (I34) and ([I35) show that
h \4
(Vu, Vwk) =((k+n—-2)Xtup—1 — kX _upt1, wg) . (136)

Then we let w € CiCZ(SM) so that wl|gsary = 0. If we decompose w into
spherical harmonics wy, then wy € QO (k). We sum equation (I36) over k € N

and use k(k +n — 2)w, = Awy, to get

h v >
<Vu, Vw) = Z (E4+n—2)X up—1 + kX _upy1,wr)
k=0

0

1

X un -
+ Uk 1+k—|—n—2

X gy, Awk> (137)

x| =

M

k

Il
o

I
M8

\4 1 1 v
\ [EX+U]§_1 + mX_uk+1:| ,Vwk> .

E
Il

Thus there is W(u) € HYH}(N) so that d‘llv(W(u)) =0 and

v i% Ly 1 x W (w) (138)
u= “Xiup 1 +———X u u).
2 [t R A— k+1
It follows from the eigenvalue property that
.12
Vg = k(k+n—2) ukll72 (s - (139)
L2(N)
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Thus equation (I38) yields

2 2

v —ik<k+ 2) |- X1+ X |+ (W)
u = - n — & +Uk—1 k n—9 —Uk+41 U
Z( |X+uk =2 (X w1, X—wgqr) (140)
k 2
+ e - st |* ) + W (w)]|

Again, by orthogonality we have

IXul* = [ X pur—1 + X ugpa
k=0

oo (141)
=3 (1w )+ 2 (X, X i) + X )
k=0
We sum equations and [[47] to get
2
2 2 a
||U||H}}H$(5M) = [ Xul” + || Vu
= k+n—2
= Z <1 + T) X k1 ])?
k=0
(142)

+Z(1+k+ )Hx i |* + W ()]

o0
2 2
>3 | X pura +Z||X—uk+1|| :
k=0 k=0
which is estimate ([ZT]).

APPENDIX D. PROOF OF LIOUVILLE’S THEOREM

This appendix is devoted to the proof of lemma We let M be a compact
smooth manifold with a smooth boundary. Suppose that we are given two C*! Rie-
mannian metrics g and h on M. Let the corresponding unit sphere bundles be S, M
and S, M. There is a natural radial C!-diffeomorphism (z,v) — (z,v |v|;1)
from S, M to S, M, the inverse map from Sy, M to S, M being (x, w) — (x, w |w|;1).

In the proof of lemma 23l we use three types of Riemannian metrics on M. We will
have a C™!' Riemannian metric g and two types of smooth Riemannian metrics h
and §. We denote the corresponding radial diffeomorphisms by

§: SpM — SM, s: SpM — S;M, and #: SM — S,M. (143)

In the proof of lemma we will use the convention that the unit sphere bundle
related g is denoted SM = Se M, the operators and differential forms related to g
are decorated with « on top or as a subscript, the sphere bundle, operators and
differential forms related to h are decorated with subscripts A and the bundles and
the operators related to the metric g are written without decorations.
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Proof of lemmal23. The proof is based on smooth approximations of the Riemann-
ian metric g. Let h be a smooth fixed reference Riemannian metric on M. Let (§)
be a sequence of smooth Riemannian metrics on M so that

Gik = g i WpPO(M) and T T in LS(M). (144)

Existence of such sequence was proved in [IK21| Lemma 18]. Let v € Lip(SM) and
denote % := 7*u and @ = s*u. We note that 1 = §*i. We will prove that

lim [ @Lg(dE) = / uL x (d). (145)
a0 JSM SM

Establishing equation (48] proves the claim, since by Liouville’s theorem [PSU23]

Lemma 3.6.4.] we have

Lg(d$) =0 (146)
for all @ € N and thus the limit integral in equation (I45) is zero.

Recall that & = s*u = §*ti. Thus by basic properties of pullback it is enough
prove that

lim 5" (L gdS) = / is*(Lxdy) (147)
a7 S, M SpM
The manifold M is the Euclidean unit ball in R and we let (z!,...,2") be usual
Cartesian coordinates on M. We consider coordinates (x!,... 2" w!,... , w")
on SpM and corresponding coordinates
(zt, ..., 2™ 8 ..., 0") on SM  and (... 2" vl . 0") on SM

so that $(z,w) = (z,0) and s(z,w) = (z,v). We associate to (z, w) the coordinate
vector fields Oy1,...,0um, 01, ..., 0~ and similarly O,1,...,0;n,0q,...,0x, and
Opty.ovyOpnyOp1y ..., Opn are associated to (x,0) and (x,v). We let
dat, ..., d2z", dwt,. .., dw",
dzt,...,dz",dd, ..., dd", and (148)
dzt, ... da"™, dot, ... do"
be the dual basis one-forms characterized by
dz? (9,6) = 0L, da? () =0, dw’(9,r) =0, dw’ (d,e) =57,
dz? (9,r) = 61, da? (D) =0, dd?(9pr) =0, dd7(dge) = &, (149)
da? (D) = 6L, da? () =0, dv?(9pr) =0, dv(dye) = 6.

Next, we will write the integrals in equation (I47) in coordinates on SpM and we
will argue that equation ([47) follows from (I44]). We will derive a local coordinate
formula for Lx(dX). A similar formula for L )cé(di) can be derived analogously.
Then we will compute how the coordinate presentations transform under the pull-
backs s* and §*.

We denote by |g| the determinant of g. Since d¥ is a volume form (differential
form of the highest order), Cartan’s formula implies that

Lx(d%) = d(ixdD). (150)

Since
ixde' = dz'(X) = dz' (v 0, — Fljkvjvk&,z) = (151)
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and
ixdv' = dv’(X) = dv' (v 0,5 — Fljkvjvkﬁvz) = —Fijkvjvk (152)

we see that

ixdS =Y v'lg| de' A Adai A Adz Adot A Ade"
=t (153)

n

—I—Z(—Fijkvjvk lg)) dat Ao Ada™ A do? /\-~-/\d/17i/\-~-/\dv",
i=1

where dz? and dv? indicate that one-forms da’ and dv’ are omitted from the wedge
product. From ([I53)) it follows that
d(ixd®) =Y (=)0, (0" [g))dat A+ Ada™ Advt A Ade”
i=1
+ Z(—l)””*lavi(—l"ijkvjvk lg))dzt A--- Adz™ Adot A2 Ado"
i=1

(=1)" 71 (0 (v [g]) + (=1)" 10, (T 70" | g]))

|

1
x dzt A Adz Adot A - A do™.

3

(154)
Similarly, we see that
Lo(dS) = (1) 0, (8" [g]) da’ A+ Ada™ A A~ AdD"
=1
+ ) (1) T (<1 5765 |g]) dat A Ada™ AT A AdD”
=1

-y

1
x dzt A Adz AdBEA - A dE™

(=1)" (@ (8 131) + (=)™ 05 (I 507 8* |1))

(155)
Next, we pullback formulas (I54) and ({I55) onto S, M. We can compute
s*dv’ = d(s*v?) = d(w’ |w], ") = w] ! dw! +wld(jw]; ). (156)
If we write
d(jwl, ") = pida® + Ndw', (157)

then
pe = i’ (O, ) = d(|w] ;) (Opr) = O Jw|, " and Mg = Oy |, 1. (158)

Thus
s*dv? = w! (O Jw| ) ) dak + (|w] ! 67, 4+ w? Dy Jw] ;) du®. (159)
Similarly we get

§*di7 = w! (D [w|,)dzF 4 (Jw] " 67 + w? Oy [w] ") dw®. (160)
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Since s and § act identically on the base point =, we have

s*(dzt Ao Ada™) =dat A---Ade™ and §F(dzt Ao Ad2™) =dat A Ade™.
(161)
Using the fact that a wedge product vanishes whenever repetition appears we get

s*(dzt A Adz" Adot A Ade™) =dat A Ada™
A (Jwl 67 + w! (D Jw] ;1)) dw?
VAN
A (Jw] 1 0+ w™ (D |w] ) 1)) duw®
=dz! A--- Adz"A

N\ (w67 + w (Dr [w] ;1)) duw?.
j=1
(162)

By a similar computation

s*(dzt Ao Ada™ Adot A Ade™) =dat A Ada™A
T .
A (], 87+ w? (D w]))dw”
j=1

(163)
To complete formulas for the pullback of (I54]) and ([I53) we use the facts that s* =

syt and §* = §;! to compute

§% 0y = Opi + (0iw’)0y; and  §%0, = Opi + (0giw’)Oys (164)
as well as

§%0yi = (0piw’)0yps  and  §"0g = (o w? )i (165)

Thus we get

5" (010" |g]) = O (w' 0], [g) + (Daiww”) (D (w' ] ;™ |g]), (166)

§ (00" [§1) = Ot (w' ol 131) + (Ourtw?) (Do (' [w] 1 |GD), (167
and

5% 0,1 (I v’ v* |g|) = Jk 191 (D) Dyt (' o] ;™ o ), (168)

8705 (1787 8% []) = 1751131 (9 w") Dot (w 0] 0¥ o] ). (169)

The formulas we get for the pullbacks of Lx(dX) along s and of L )%(di) along §
are

n

S*Lx(dE)—Z(—l)i1<3mi(wilw| 191) + (D w? ) (s (w* ], [9]))

i=1

(1) ] (B ) (™ ] |w|gl>) (170)

dz' A+ Ada™ A /\ (|w|;1 5i + W (O |w|;1))dwk

Jj=1
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and

n

§*Ls?(di)—z:(—l)i1<3mi(uﬁ [l 181) + (D) (B (" ], 31]))

i=1

DR 1] (B ) (™ o] |w|a1>> )

dzt A---Ada™ A /\ (|w|;1 67+ w? (D |w|;l))dwlC

Jj=1

From formulas (I70) and ([I7I]) we see that can conclude the equation (I47) if the
following holds:

O (w' [w| 13D TT (i3t 67) TT (w? (D fwl 1))

jES - ifS/ L . » (172)
— O (w' [wl  gl) TT(wl, * 60) TT (w (@ Tl 1)),
Jes Jjes’
(Biw?) (B (w" [w] 1 131)) TL(lwl " 6 TT (w? (@ 0] 1))
JjeES jes’
= (D) (D (w" [l gl)) T (ol " 67) T (w7 (D ] 1)),
JES JES’
(173)
54151 (0w (@ (w™ [w] w0 ] 7)) TT (wl ot 60) T (@ (B [wl 1)
JES JjES’
= T gl (Qumw) @y (w™ [ ! ol ) TT (ol 63) TT (@ (Or w], ™))
JeES JjeSs’
(174)

in L'(S, M), where S and S’ are any subsets of {1,...,n}. We chose the approxi-
mating sequence (§) so that

Gik = g I WPO(M) and TP T, in LiS(M). (175)
From (I75) we see that
s (W' [w| 3 [3]) = B (w [w] ;™ [g]),
w6 = |w| ;™ 61,
w (D [w] 1)) = @ (D [w] ;1))
Do (w* |w] 1 |§] = Do (w” [w] ;" |9l (176)
18] = T Ll
do;mwl — Oym,
Dt (w™ [w] 1w fw| 1) = Dy (w™ ] ] )

in L>®(SpM). Thus we can take products and we conclude that ([I72), (m)
and (I74) hold, which finishes the proof.
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