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Abstract. If the integrals of a one-form over all lines meeting a small
open set vanish and the form is closed in this set, then the one-form is
exact in the whole Euclidean space. We obtain a unique continuation
result for the normal operator of the X-ray transform of one-forms, and
this leads to one of our two proofs of the partial data result. Our proofs
apply to compactly supported covector-valued distributions.

1. Introduction

Let f be a one-form on Rn where n ≥ 2. We define the X-ray transform
(also known as the Doppler transform in this case) of f by the formula

(1) X1f(γ) =

∫
γ
f

where γ is a line in Rn. We freely identify one-forms with vector fields, so
the differential of a scalar field corresponds to its gradient. We are interested
in the problem of reconstructing f from X1f . One-forms of the form f = dφ
where φ goes to zero at infinity are always in the kernel of X1. Thus one can
only try to recover the solenoidal part f s of the solenoidal decomposition f =
f s + dφ from the data X1f . The transform X1 is known to be solenoidally
injective [28, 36], i.e. X1f = 0 implies f = dφ for some scalar function φ.
We study whether this implication holds in the whole space also in the case
where we know X1f only for a subset of lines.

We consider the following partial data problem for X1. Let V ⊂ Rn be
a nonempty open set. Assume that we know df |V and X1f on all lines
intersecting V , where df is the exterior derivative or the curl of the one-
form f . Can we determine the solenoidal part f s – find f modulo potential
fields – from this data? We will study the uniqueness of the partial data
problem: If df |V = 0 and X1f = 0 on all lines intersecting V , does it follow
that f s = 0?

The partial data problem for X1 can be reduced to the following unique
continuation problem for the normal operator N1 = X∗1X1: if df |V = 0 and
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N1f |V = 0, does it follow that f s = 0? We prove that such unique continu-
ation property holds for compactly supported covector-valued distributions
under the weaker assumption that N1f vanishes to infinite order at some
point in V . The unique continuation of the normal operator implies unique-
ness for the partial data problem: The solenoidal part of a one-form f is
uniquely determined whenever one knows the curl of the one-form in V and
the integrals of f over all lines intersecting V .

For scalar fields the uniqueness of a corresponding partial data problem
and the unique continuation of the normal operator were proved in [15]. We
generalize the results to one-forms using the results for scalar fields in our
proofs. We also obtain partial data results and unique continuation results
for the generalized X-ray transform of one-forms XA = X1 ◦A where A is a
smooth invertible matrix-valued function. As a special case of this transform
we study the transverse ray transform in R2.

We give two alternative proofs for the partial data results. The first one
uses the unique continuation of the normal operator while the second one
works directly at the level of the X-ray transform and is based on Stokes’
theorem.

The X-ray transform of one-forms or vector fields has applications in the
determination of velocity fields of moving fluids using acoustic travel time
measurements [26] or Doppler backscattering measurements [27]. Medical
applications include ultrasound imaging of blood flows [17, 18, 38]. The
transverse ray transform of one-forms has applications in the temperature
measurements of flames [2, 34]. For two-tensors the applications include also
diffraction tomography [21], photoelasticity [11] and polarization tomogra-
phy [36]. For a more comprehensive treatment see the reviews [32, 33, 37]
and the references therein.

We will give our main results in section 1.1 and discuss related results
in section 1.2. The preliminaries are covered in section 2 and finally the
theorems are proven in section 3.

1.1. Main results. Here we give the main results of this paper. The proofs
can be found in section 3. First we briefly go through our notation; for more
detailed definitions see section 2.

Let E ′(Rn) be the space of compactly supported distributions. By f ∈
(E ′(Rn))n we mean that f = (f1, . . . , fn) where fi ∈ E ′(Rn) for all i =
1, . . . , n. We call (E ′(Rn))n the space of compactly supported covector-
valued distributions. We denote by X1 the X-ray transform of one-forms
and by N1 = X∗1X1 its normal operator; see (19) for an explicit formula.

We say that N1f vanishes to infinite order at x0 ∈ Rn if it is smooth in a
neighborhood of x0 and ∂β(N1f)i(x0) = 0 for all β ∈ Nn and i = 1, . . . , n.
We denote the exterior derivative of differential forms by d. When acting
on scalars, it corresponds to the gradient.

Our first result is a unique continuation property for the normal op-
erator N1. The corresponding result for scalar fields and the operator
N0 = X∗0X0 of the scalar X-ray transform X0 (see equation (12)) was proven
in [15, Theorem 1.1].
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Theorem 1.1. Let f ∈ (E ′(Rn))n and V ⊂ Rn some nonempty open set.
If df |V = 0 and N1f vanishes to infinite order at x0 ∈ V , then f = dφ for
some φ ∈ E ′(Rn).

We point out that as df vanishes in V , the distribution N1f is smooth
in V by lemma 3.3 and the vanishing condition at a point is well-defined.

Theorem 1.1 is also true under the weaker assumption that df |V = 0 and
d(N1f) vanishes to infinite order at x0 (see the proof in section 3.1). The
condition that f is closed in V (i.e. df |V = 0) is satisfied if, for example,
f |V = 0. When f is solenoidal (i.e. div(f) = 0), theorem 1.1 gives the
following unique continuation property: if f |V = N1f |V = 0, then f = 0.

The next result is stated directly at the level of the X-ray transform. The
corresponding problem with full data was solved in [36, Theorem 2.5.1].

Theorem 1.2. Let f ∈ (E ′(Rn))n and V ⊂ Rn some nonempty open set.
Assume that df |V = 0. Then X1f vanishes on all lines intersecting V if
and only if f = dφ for some φ ∈ E ′(Rn).

Remark 1.3. In theorems 1.1 and 1.2 the support of the potential φ is
contained in the convex hull of spt(f).

One can view theorems 1.1 and 1.2 in terms of the global solenoidal de-
composition f = f s + dφ (see section 2.1 and equation (4)). The conclusion
f = dφ for some φ ∈ E ′(Rn) is equivalent to f s = 0.

From theorem 1.2 we obtain the following local partial data result in a
bounded domain Ω ⊂ Rn. The X-ray transform of f ∈ (L2(Ω))n is defined

to be X1f := X1f̃ where f̃ is the zero extension of f to Rn.

Theorem 1.4. Let f ∈ (L2(Ω)))n where Ω ⊂ Rn is a bounded and smooth
convex domain and let V ⊂ Ω be some nonempty open set. Assume that
df |V = 0. Then X1f = 0 on all lines intersecting V if and only if f = dφ
for some φ ∈ H1

0 (Ω).

In terms of the local solenoidal decomposition f = f s
Ω + dφΩ (see sec-

tion 2.1 and equation (5)) the conclusion f = dφ for some φ ∈ H1
0 (Ω) is

equivalent to that f s
Ω = 0.

From theorem 1.1 we also obtain the following unique continuation and
partial data results for the transform XA = X1 ◦ A where A = A(x) is
smooth invertible matrix field. We denote by NA = AT ◦N1 ◦A the normal
operator of XA. When B is the constant matrix field B(v1, v2) = (v2,−v1)
where (v1, v2) ∈ R2 we write XB = X⊥ and call X⊥ the transverse ray
transform.

Corollary 1.5. Let f ∈ (E ′(Rn))n and V ⊂ Rn some nonempty open set.
If d(Af)|V = 0 and NAf |V = 0, then f = A−1(dψ) for some ψ ∈ E ′(Rn).

Corollary 1.6. Let f ∈ (E ′(Rn))n and V ⊂ Rn some nonempty open set.
Assume that d(Af)|V = 0. Then XAf vanishes on all lines intersecting V
if and only if f = A−1(dψ) for some ψ ∈ E ′(Rn).

In corollaries 1.5 and 1.6 the distribution ψ ∈ E ′(Rn) is the potential part
of the solenoidal decomposition of Af ∈ (E ′(Rn))n and spt(ψ) is contained
in the convex hull of spt(f). As a special case of the transform XA we obtain
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the next partial data result for the transverse ray transform X⊥ which is
similar to the full data result in [2].

Corollary 1.7. Let f ∈ (E ′(R2))2 and V ⊂ R2 some nonempty open set.
Assume that div(f)|V = 0. Then X⊥f vanishes on all lines intersecting V
if and only if div(f) = 0.

In particular, if df |V = div(f)|V = 0 and both X1f and X⊥f vanish on
all lines intersecting V , then f = 0.

Alternatively, one can conclude in the first claim of corollary 1.7 that
f = curl(ψ) for some ψ ∈ E ′(Rn) where curl(ψ) = (∂2ψ,−∂1ψ). In terms of
the global solenoidal decomposition this is equivalent to that f = f s. Also
in the latter claim it is enough to know the partial data of X1f for V ⊂ R2

and the partial data of X⊥f for W ⊂ R2 where V and W can be disjoint.

Remark 1.8. Some of the results above can be slightly generalized. Using
the same proof as in theorem 1.4 one can show that corollaries 1.6 and 1.7
hold also in the local case when f ∈ (L2(B))n. Also in corollary 1.5 one can
replace the condition NAf |V = 0 with the requirement that NAf vanishes
to infinite order at x0 ∈ V when A is a constant matrix field. Especially,
this holds for the normal operator of the transverse ray transform. One can
also see from theorem 1.2 and corollary 1.7 that the X-ray transform and
the transverse ray transform provide complementary information about the
one-form in R2.

We note that if A = A(x) is not invertible for all x ∈ Rn, we can still
conclude in corollary 1.6 that Af = dψ for some potential ψ ∈ E ′(Rn). Thus
we obtain the “pointwise projection” Af modulo potentials from the local
data for XAf . We also remark that in all of our results which consider
the X-ray transform in Rn we could replace the assumption of compact
support with rapid decay at infinity. If all the derivatives of the matrix
field A = Aij(x) grow at most polynomially, then the results are true for
one-forms which components are Schwartz functions. This follows since
the corresponding partial data result for scalar fields holds for Schwartz
functions [15] and our method of proof is based on reducing the problem of
one-forms to the problem of scalar fields.

1.2. Related results. Similar partial data results as in theorems 1.2 and 1.4
are previously known for scalar fields. If one knows the values of the scalar
function f in an open set V , then one can uniquely reconstruct f from its
local X-ray data [3, 15, 20]. In R2 uniqueness is also obtained under weaker
assumptions: if f is piecewise constant, piecewise polynomial or analytic
in V , then one can recover f uniquely from its integrals over the lines going
through V [19, 20, 44]. A complementary partial data result is the Helgason
support theorem [12]. According to Helgason’s theorem, if f |C = 0 and
the integrals of f vanish on all lines not intersecting a compact and convex
set C, then f = 0.

The normal operator of the X-ray transform of scalar fields admits a
similar unique continuation property as in theorem 1.1. If f is a function
which satisfies f |V = 0 and N0f vanishes to infinite order at some point in V ,
then f = 0 [15]. This is a special case of a more general unique continuation
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result for Riesz potentials [15] (see equation (12)). Unique continuation of
Riesz potentials is related to unique continuation of fractional Laplacians [4,
9, 15] (see also equation (13)).

Unique reconstruction of the solenoidal part of a one-form or vector
field with full data is known in Rn [18, 26, 38, 39] and on compact sim-
ple Riemannian manifolds with boundary [14, 28]. In Rn uniqueness holds
for compactly supported covector-valued distributions as well [36]. Some
partial data results are known for one-forms. The solenoidal part can
be reconstructed by knowing X1f on all lines parallel to a finite set of
planes [18, 31, 35]. When n ≥ 3, the solenoidal part can be locally recovered
near a strictly convex boundary point [40] or from the knowledge of X1f on
all lines intersecting a certain type of curve [43] (see also [8]). One can also
obtain information about the singularities of the curl of a compactly sup-
ported covector-valued distribution from its X-ray data on lines intersecting
a fixed curve [30]. There is a Helgason-type support theorem for one-forms:
if f |C = 0 and X1f = 0 on all lines not intersecting a convex and compact
set C, then the solenoidal part of f vanishes [39] (see also the discussion
after the alternative proof in section 3.2).

The transverse ray transform has been studied earlier with full data
in R2 [2, 25] and also on Riemannian manifolds [16, 36] (see also [1] for
a support theorem). The transverse ray transform is a special case of a
more general mixed ray transform [5, 6, 36]. In higher dimensions the trans-
verse ray transform is related to the normal Radon transform [37, 41]. In R2

and on certain Riemannian manifolds the knowledge of X1f and X⊥f fully
determines the one-form [2, 16]. By theorem 1.2 and corollary 1.7 this is true
in R2 also in the case of partial data. In higher dimensions f is determined
by X1f and the normal Radon transform of f [41]. A similar transform
to XA was studied in [16, 29].

Acknowledgements. K.M. was supported by Academy of Finland (Centre
of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and
309963). We are grateful to Lauri Oksanen for discussions.

2. Preliminaries

In this section we give a brief introduction to the theory of X-ray tomog-
raphy of scalar fields and one-forms in Rn. We also define the generalized
X-ray transform of one-forms. First we recall the definition and solenoidal
decomposition of covector-valued distributions. We mainly follow the con-
ventions of [7, 13, 24, 36, 39, 42] and refer the reader to them for further
details.

2.1. Covector-valued distributions and solenoidal decomposition.
We denote by D(Rn) the space of compactly supported smooth functions,
by S (Rn) the space of rapidly decreasing smooth functions (Schwartz space)
and by E(Rn) the space of smooth functions. All spaces are equipped with
their standard topologies. The spaces D′(Rn), S ′(Rn) and E ′(Rn) are the
corresponding topological duals. Elements of D′(Rn) are called distributions
and E ′(Rn) can be seen as the space of compactly supported distributions.
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We have the continuous inclusions E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn). We write
the dual pairing as 〈f, ϕ〉 when f is a distribution and ϕ is a test function.

We define the vector-valued test function space (D(Rn))n such that ϕ ∈
(D(Rn))n if and only if ϕ = (ϕ1, . . . , ϕn) and ϕi ∈ D(Rn) for all i = 1, . . . , n.
The topology of the space (D(Rn))n is defined as follows: a sequence ϕk con-
verges to zero in (D(Rn))n if and only if (ϕk)i converges to zero in D(Rn)
for all i = 1, . . . , n. We then define the space of covector-valued distribu-
tions (D′(Rn))n so that f ∈ (D′(Rn))n if and only if f = (f1, . . . , fn) and
fi ∈ D′(Rn) for all i = 1, . . . , n. The duality pairing of f ∈ (D′(Rn))n and
ϕ ∈ (D(Rn))n becomes

(2) 〈f, ϕ〉 =
n∑
i=1

〈fi, ϕi〉 .

The spaces (E(Rn))n, (S (Rn))n, (E ′(Rn))n and (S ′(Rn))n are defined in a
similar way and we call (E ′(Rn))n the space of compactly supported covector-
valued distributions. Covector-valued distributions are a special case of
currents which are continuous linear functionals in the space of differential
forms [7, Section III]. The components of the exterior derivative or the curl
of a one-form or covector-valued distribution are

(3) (df)ij = ∂ifj − ∂jfi.

One can split certain covector-valued distributions into a divergence-free
part and a potential part. If f ∈ (E ′(Rn))n, then we have the unique de-
composition [36]

(4) f = f s + dφ, div(f s) = 0

where φ ∈ S ′(Rn) and f s ∈ (S ′(Rn))n are smooth outside spt(f) and go to
zero at infinity. Here φ is defined so that it solves the equation ∆φ = div(f)
in the sense of distributions and f s = f − dφ. The decomposition (4)
is known as solenoidal decomposition or Helmholtz decomposition and it
holds also for f ∈ (S (Rn))n [36]. We call f solenoidal if div(f) = 0. For
the decomposition (4) this means that f = f s.

If f is supported in a fixed set, we can do the decomposition locally in
that set. If Ω ⊂ Rn is a regular enough bounded domain and f ∈ (L2(Ω))n,
we let φΩ to be the unique weak solution to the Poisson equation

(5)

{
∆φ = div(f) in Ω

φ ∈ H1
0 (Ω).

Then we have f = f s
Ω + dφΩ where f s

Ω = f −dφΩ ∈ (L2(Ω))n and div(f s
Ω) =

0. If f ∈ (C1,α(Ω))n for some 0 < α < 1, then there is unique classical
solution φΩ ∈ C2,α(Ω) to the boundary value problem (5) and the solenoidal
decomposition holds pointwise [10].

2.2. The X-ray transform of scalar fields. Let Γ be the set of all ori-
ented lines in Rn. The X-ray transform of a function f is defined as

(6) X0f(γ) =

∫
γ
fds, γ ∈ Γ
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whenever the integrals exist. The set Γ can be parameterized as

(7) Γ = {(z, θ) : θ ∈ Sn−1, z ∈ θ⊥}.
Then the X-ray transform becomes

(8) X0f(z, θ) =

∫
R
f(z + tθ)dt

and it is a continuous map X0 : D(Rn)→ D(Γ). One can define the adjoint
using the formula

(9) X∗0ψ(x) =

∫
Sn−1

ψ(x− (x · θ)θ, θ)dθ

and it follows that X∗0 : E(Γ) → E(Rn) is continuous. By duality we can
define X0 : E ′(Rn)→ E ′(Γ) and X∗0 : D′(Γ)→ D′(Rn) as

〈X0f, ϕ〉 = 〈f,X∗0ϕ〉(10)

〈X∗0g, η〉 = 〈g,X0η〉.(11)

The normal operator N0 = X∗0X0 is useful in studying the properties of
the X-ray transform since it takes functions on Rn to functions on Rn. It
has an expression

(12) N0f = 2(f ∗ |·|1−n)

for continuous functions f decreasing rapidly enough at infinity. By duality
the formula (12) holds also for compactly supported distributions and the
normal operator becomes a map N0 : E ′(Rn) → D′(Rn). One can invert f
from its X-ray transform using the normal operator by

(13) f = c0,n(−∆)1/2N0f,

where c0,n = (2π
∣∣Sn−2

∣∣)−1 is a constant depending on the dimension and

(−∆)1/2 is the fractional Laplacian of order 1/2. The inversion formula
(13) holds for f ∈ E ′(Rn) and for continuous functions f decreasing rapidly
enough at infinity.

2.3. The X-ray transform of one-forms. Let f be a one-form on Rn.
We define its X-ray transform as

(14) X1f(γ) =

∫
γ
f, γ ∈ Γ

whenever the integrals exist. Using the parametrization (7) for Γ we obtain

(15) X1f(z, θ) =

∫
R
f(z + tθ) · θdt.

It follows that X1 : (D(Rn))n → D(Γ) is continuous. The adjoint is defined
as

(16) (X∗1ψ)i(x) =

∫
Sn−1

θiψ(x− (x · θ)θ, θ)dθ

andX∗1 : E(Γ)→ (E(Rn))n is also continuous. Thus we can defineX1 : (E ′(Rn))n →
E ′(Γ) and X∗1 : D′(Γ)→ (D′(Rn))n as

〈X1f, ϕ〉 = 〈f,X∗1ϕ〉(17)

〈X∗1g, η〉 = 〈g,X1η〉 .(18)
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If f ∈ (Lp(Ω))n where Ω ⊂ Rn is a bounded domain and p ≥ 1, we define its

X-ray transform as X1f := X1f̃ where f̃ ∈ (E ′(Rn))n is the zero extension
of f .

Like in the scalar case we define the normal operator N1 = X∗1X1 and it
satisfies the formula

(19) (N1f)i =
n∑
j=1

2xixj

|x|n+1 ∗ fj .

The normal operator can be extended to a map N1 : (E ′(Rn))n → (D′(Rn))n

and the formula (19) holds for f ∈ (E ′(Rn))n and also for continuous one-
forms decreasing rapidly enough at infinity. One can invert the solenoidal
part of f using the normal operator by

(20) f s = c1,n(−∆)1/2N1f,

where c1,n = |Sn| is a constant depending on the dimension and (−∆)1/2

operates componentwise. The formula (20) holds for f ∈ (E ′(Rn))n and also
for continuous one-forms decreasing rapidly enough at infinity.

2.4. The generalized X-ray transform of one-forms. Let A = A(x)
be a smooth matrix-valued function on Rn such that for each x ∈ Rn the
matrix A(x) is invertible. We define the transform XA of a one-form f as

(21) XAf(γ) =

∫ ∞
−∞

A(γ(t))f(γ(t)) · γ̇(t)dt = X1(Af)(γ), γ ∈ Γ.

Thus XA can be seen as the X-ray transform of the “rotated” one-form Af .
The transform XA can also be defined on compactly supported covector-
valued distributions. We first let 〈Af, ϕ〉 =

〈
f,ATϕ

〉
for f ∈ (D′(Rn))n and

a test function ϕ where AT is the pointwise transpose of A and (ATϕ)(x) =
AT (x)ϕ(x). Then clearly A is a map A : (E ′(Rn))n → (E ′(Rn))n. Therefore
we can define XA : (E ′(Rn))n → D′(Γ) as XAf = X1(Af). One easily sees
that the adjoint is X∗A = AT ◦X∗1 and the normal operator becomes NA =
AT ◦N1 ◦A. By the discussion above the normal operator can be extended
to a map NA : (E ′(Rn))n → (D′(Rn))n.

Let B be the constant matrix field on R2 defined as B(v1e1 + v2e2) =
v2e1−v1e2 where {e1, e2} is any orthonormal basis of R2. The matrix B cor-
responds to a clockwise rotation by 90 degrees. We then define the transverse
ray transform X⊥ by letting X⊥ = XB. It follows that the transverse ray
transform provides complementary information about the solenoidal decom-
position compared to the X-ray transform, i.e. X1 determines the solenoidal
part and X⊥ determines the potential part of a one-form [2] (see also theo-
rem 1.2 and corollary 1.7).

3. Proofs of the main results

We give two alternative proofs for the partial data results. The first proof
uses the unique continuation of the normal operator and the second proof
works directly at the level of the X-ray transform. Both proofs are based on
the corresponding results for scalar fields.
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3.1. Proofs using the unique continuation of the normal operator.
In this section we prove our main results using the unique continuation
property of the normal operator. We need the following lemmas in our
proofs.

Lemma 3.1 ([15, Theorem 1.1]). Let V ⊂ Rn be some nonempty open set
and g ∈ E ′(Rn). If g|V = 0 and ∂β(N0g)(x0) = 0 for some x0 ∈ V and all
β ∈ Nn, then g = 0.

Lemma 3.2 (Poincaré lemma). Let g ∈ (D′(Rn))n such that dg = 0. Then
there is η ∈ D′(Rn) such that dη = g. If g ∈ (E ′(Rn))n, then η ∈ E ′(Rn).

The proof of lemma 3.2 can be found in [13, 22]. We first prove the
unique continuation result for the normal operator. The proof is based on
the fact that we can reduce the unique continuation problem of N1 to a
unique continuation problem of N0 acting on the components of df .

The assumptions of theorem 1.1 come in two stages. We first assume that
df |V = 0. To make sense of the next assumption that N1f vanishes at x0

to infinite order, we need to ensure that it is smooth near this point. This
is given by the next lemma.

Lemma 3.3. Let V ⊂ Rn be an open set and f ∈ (E ′(Rn))n. If df |V = 0,
then N1f |V is smooth.

Proof. Take any x0 ∈ V and a small open ball B centered at it and contained
in V . As df |B = 0, the Poincaré lemma applied in the ball B (lemma 3.2
is applicable because B is diffeomorphic to Rn) gives f |B = dh for some
h ∈ D′(B). Let B′ ⊂ B be a smaller ball with the same center, and let
χ ∈ D(B) be a bump function so that χ|B′ ≡ 1. If we let h′ = χh ∈ E ′(Rn),
then f = dh′ + g, where g ∈ (E ′(Rn))n with g|B′ = 0.

As X1(dh′) = 0 (cf. (26)), we have N1f = N1g. Because g|B′ = 0, it
follows from properties of convolutions that N1f is smooth in B′. Now
that N1f is smooth in a neighborhood of any point in V , the claim follows.

�

Proof of theorem 1.1. The normal operator has an expression

(22) (N1f)i =
n∑
j=1

2xixj

|x|n+1 ∗ fj .

We can write the kernel as

(23)
2xixj

|x|n+1 =
2

n− 1

(
δij |x|1−n − ∂i(xj |x|1−n)

)
and we obtain

(24) (N1f)i =
2

n− 1

(
1

2
N0fi −

n∑
j=1

xj |x|1−n ∗ ∂ifj
)
.

We can calculate that

(25) ∂k(N1f)i − ∂i(N1f)k =
1

n− 1
N0(∂kfi − ∂ifk).

This can be interpreted as d(N1f) = (n−1)−1N0(df), where the scalar nor-
mal operator N0 acts on the 2-form df componentwise to produce another
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2-form. The normal operator commutes with the exterior derivative in this
sense.

SinceN1f vanishes to infinite order at x0 ∈ V alsoN0(∂kfi−∂ifk) vanishes
to infinite order at x0. Using lemma 3.1 we obtain df = 0. By lemma 3.2
there is φ ∈ E ′(Rn) such that dφ = f . This concludes the proof. �

Lemma 3.1 is false if no restrictions are imposed on g|V [20, 24], and the
assumption g|V = 0 is the most convenient. Consequently, the assumption
df |V = 0 in theorem 1.1 is important. This condition is invariant under
gauge transformations of the field f .

If f s|V = N1f |V = 0, then one can alternatively use the unique contin-
uation of the fractional Laplacian (−∆)s, s ∈ (0, 1), to prove the unique

continuation of the normal operator [9]. This follows since (−∆)1/2f s =
c1,n(−∆)N1f where f s ∈ (Hr(Rn))n for some r ∈ R when f ∈ (E ′(Rn))n.

One can also make use of the fact that (−∆)−1/2 is a Riesz potential and
use its unique continuation properties [15] (see equation (20)).

The rest of the results follow easily from theorem 1.1.

Proof of theorem 1.2. Let f = dφ where φ ∈ E ′(Rn). Then dφ ∈ (E ′(Rn))n

and using the definition of the X-ray transform on distributions we obtain

(26) 〈X1(dφ), ϕ〉 = 〈dφ,X∗1ϕ〉 = 〈φ,div(X∗1ϕ)〉 = 0.

Here we used the fact that div(X∗1ϕ) = 0 which follows from a straight-
forward computation. This proves the other direction. Assume then that
df |V = 0. Since X1f = 0 on all lines intersecting V we obtain N1f |V = 0.
Theorem 1.1 implies that f = dφ for some φ ∈ E ′(Rn). This concludes the
proof. �

Proof of theorem 1.4. The other direction of the claim follows as in the proof
of theorem 1.2 since H1

0 (Ω) ⊂ E ′(Rn) in the sense of zero extension. Then

assume that df |V = 0 and X1f = 0 on all lines intersecting V . Let f̃ ∈
(E ′(Rn))n be the zero extension of f . The assumptions imply that df̃ |V = 0

and X1f̃ = 0 on all lines intersecting V . Theorem 1.2 implies that f̃ = dφ

for some φ ∈ E ′(Rn). Since ∆φ = div(f̃) ∈ H−1(Rn) we have φ ∈ H1(Rn) by
elliptic regularity. On the other hand, spt(φ) ⊂ Ω and hence φ ∈ H1

0 (Ω) [23,

Theorem 3.33]. The claim follows from the fact that dφ = f̃ = f in Ω. �

Proof of corollary 1.5. We know that the normal operator is NA = AT ◦N1◦
A. The assumptions imply that d(Af)|V = N1(Af)|V = 0. By theorem 1.1
we obtain that Af = dψ for some ψ ∈ E ′(Rn). This gives the claim. �

Proof of corollary 1.6. The claim follows directly from corollary 1.5 and
from the fact that XA = X1 ◦A. �

In theorems 1.1 and 1.2 one has spt(φ) ⊂ Conv(spt(f)) where Conv(spt(f))
is the convex hull of spt(f). This follows from the fact that φ has compact
support and dφ vanishes in the connected set Conv(spt(f))c. This was
pointed out in remark 1.3.

In corollaries 1.5 and 1.6 one also has spt(ψ) ⊂ Conv(spt(f)). This
holds since dψ vanishes in the connected set Conv(spt(Af))c and spt(Af) =
spt(f).
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Proof of corollary 1.7. Assume first that div(f) = 0. Since f is a covector-
valued distribution in R2 we can identify df = ∂1f2 − ∂2f1. It follows
that d(Bf) = − div(f) = 0 and thus Bf = dη for some η ∈ E ′(Rn) by
lemma 3.2. Therefore X⊥f = X1(Bf) = X1(dη) = 0. Assume then that
div(f)|V = 0 and X⊥f = 0 on all lines intersecting V . As above we obtain
that d(Bf)|V = 0 and X⊥f = 0 on all lines intersecting V . Corollary 1.6
implies that f = B−1(dψ) for some ψ ∈ E ′(Rn). From this we obtain that
div(f) = 0.

Assume then that df |V = div(f)|V = 0 and both X1f and X⊥f vanish on
all lines intersecting V . By the discussion above we obtain that div(f) = 0.
On the other hand, theorem 1.2 implies that f = dφ for some φ ∈ E ′(R2).
Therefore ∆φ = 0 and since φ has compact support we must have φ = 0,
i.e. f = 0. �

3.2. Proofs based on Stokes’ theorem. In this section we give alterna-
tive proofs for the partial data results using Stokes’ theorem in Rn. A similar
approach was used in [18, 38] in the case of full data. We prove the results
first for compactly supported smooth one-forms and then use standard mol-
lification argument to prove them for compactly supported covector-valued
distributions. We only need to prove theorem 1.2 since the rest of the partial
data results follow from it. We will use the following lemma.

Lemma 3.4 ([15, Theorem 1.2]). Let V ⊂ Rn be some nonempty open set
and g ∈ E ′(Rn). If g|V = 0 and X0g = 0 on all lines intersecting V , then
g = 0.

Alternative proof of theorem 1.2. By lemma 3.2 it suffices to show that df =
0. Assume first that n = 2 and f ∈ (D(R2))2. Let γ be any (oriented) line
going through V and ν the counterclockwise rotated normal to γ. We denote
by γh = hν + ~γ the reversed parallel line shifted by h > 0 in the direction
of ν so that γh also intersects V . By assumption

∫
γ f =

∫
γh
f = 0.

We form a closed loop γ̃h enclosing counterclockwise a rectangular re-
gion Rh such that the ends are outside spt(f) (see figure 1). When consid-
ered as chains, we have γ̃h = ∂Rh. As the chains γ − γh and γ̃h differ only
outside the support of f , the integrals coincide. By Stokes’ theorem

(27) 0 =

∫
γ
f −

∫
γh

f =

∫
γ̃h

f =

∫
∂Rh

f =

∫
Rh

df =

∫
Rh

?df dµ,

where ? is the Hodge star and µ is the 2-Hausdorff measure.
We aim to show that the scalar function ?df vanishes. Scaling with h,

we find

(28) 0 = lim
h→0

1

h

∫
Rh

?df dµ =

∫
γ
?df ds.

Now that ?df |V = 0 andX0(?df)(γ) = 0 for all lines γ meeting V , lemma 3.4
implies that ?df = 0 and thus also df = 0 in the whole plane.

Consider then the case n ≥ 3 for a compactly supported smooth one-
form f . Let P ⊂ Rn be any two-plane meeting V and ιP : P → Rn the
corresponding inclusion. By the argument above for the two-form ι∗P f in
the plane P we have that ι∗Pdf = 0 for all such planes.
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Take any point z ∈ Rn. For any plane P through z that intersects V
we have ι∗Pdf = 0. This is an open subset of the Grassmannian of 2-planes
through z, so df(z) = 0. As the point z was arbitrary, we have df = 0.

Finally, let f ∈ (E ′(Rn))n and define fε = f ∗ jε = (f1 ∗ jε, . . . , fn ∗ jε)
where jε ∈ D(Rn) is the standard mollifier. Then fε ∈ (D(Rn))n and 〈X1(f ∗
jε), ϕ〉 = 〈X1f,X0jε ~ ϕ〉 where

(29) (h~ g)(z, θ) =

∫
θ⊥
h(z − y, θ)g(y, θ)dy.

Hence there is a nonempty open set W ⊂ V such that for small ε > 0 we
have fε|W = 0 and X1fε = 0 on all lines intersecting W . Using the above
reasoning for smooth one-forms we obtain 0 = dfε = df ∗ jε for small ε > 0.
Taking ε→ 0 we get df = 0. �

Figure 1. Basic idea of the alternative proof of theorem 1.4
when n = 2. We may assume that f is supported in a ball Br.
We form a closed loop γ̃h with the lines γ and γh (dashed)
enclosing the rectangular region Rh. Then we apply Stokes’
theorem and a limit argument h→ 0 together with a known
partial data result for scalar fields to obtain that df = 0.

Now the proof of theorem 1.4 follows in the same way from theorem 1.2

as before using the zero extension f̃ . Corollaries 1.6 and 1.7 are also direct
consequences of theorem 1.2 since XA = X1 ◦ A. Moreover, the above
alternative proof can be used to prove a complementary support theorem for
the transformXA: if d(Af)|C = 0 andXAf = 0 on all lines not intersecting a
convex and compact set C, then f = A−1(dψ) for some potential ψ. See [39]
for a similar support theorem for the X-ray transform X1.
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