1 About Fourier series

In this presentation we prove theorem 2.3 of the lectures notes [1]. To prove it we need some basic tools and results from functional analysis. Because we are considering locally square-integrable 2π -periodic functions, we can restrict our attention to the cube $Q = [-\pi, \pi]^n$. Define inner product on Q as

$$\langle f, g \rangle = \frac{1}{(2\pi)^n} \int_O f(x) \overline{g(x)} dx,$$

when $f,g \in L^2(Q)$, so that the norm becomes $||f|| = \sqrt{\langle f,f \rangle}$.

Let $e_k: Q \to \mathbb{C}$, $e_k(x) = e^{ik \cdot x}$. By exercise 18 in [1], the set $\{e_k: k \in \mathbb{Z}^n\}$ is orthonormal, i.e. $\langle e_k, e_n \rangle = \delta_{kn}$ (note the factor $(2\pi)^{-n}$ in the inner product). Because $L^2(Q)$ is a Hilbert space, we would like to have an orthonormal basis in it. Clearly we have one candidate, i.e. the set $\{e_k: k \in \mathbb{Z}^n\}$. Let's then recall the many characterizations of orthonormal basis in a Hilbert space.

Theorem 1.1. *Let E be an orthonormal set in Hilbert space H. Then the following are equivalent:*

- (a) E is maximal orthonormal set with respect to set inclusion
- (b) if $x \in H$ such that $x \perp E$, then x = 0
- (c) $\langle E \rangle$ is dense in H
- (d) if $x \in H$, then $x = \sum_{e \in E} \langle x, e \rangle e$, where convergence is w.r.t. the induced norm
- (e) $||x||^2 = \sum_{e \in E} |\langle x, e \rangle|^2$ for every $x \in H$
- (f) $\langle x,y\rangle = \sum_{e \in E} \langle x,e\rangle \overline{\langle y,e\rangle}$ for every $x,y \in H$.

Proof. Proof is usually done in a course of functional analysis. See for example [2] p.155 theorem 9.12. \Box

If any of the conditions (a)-(f) holds, we say that E is an orthonormal basis/Hilbert basis for H, or that E is a complete orthonormal set. Existence of such set E is guaranteed by Zorn's lemma for every non-zero inner product space. Such sets also have the same cardinality.

Let $\ell^2(\mathbb{Z}^n)$ be the space of complex sequences $\omega: \mathbb{Z}^n \to \mathbb{C}$ with inner product

$$(\omega|\tau) = \sum_{k \in \mathbb{Z}^n} \omega(k) \overline{\tau(k)}$$

and norm $\|\omega\| = \sqrt{(\omega|\omega)}$. For the moment, let's believe that the set $\{e_k : k \in \mathbb{Z}^n\}$ is complete in $L^2(Q)$. Then we get:

(i) Condition (d) gives us representation of any function $f \in L^2(Q)$ as a Fourier-sum

$$f = \sum_{k \in \mathbb{Z}^n} \langle f, e_k \rangle e_k$$
 or $f(x) = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) e^{ik \cdot x}$,

where $\widehat{f}: \mathbb{Z}^n \to \mathbb{C}$ is defined as

$$\widehat{f}(k) = \langle f, e_k \rangle = \frac{1}{(2\pi)^n} \int_{\mathcal{O}} f(x) e^{-ik \cdot x} dx. \tag{1}$$

Remember that this convergence is in L^2 -sense; we haven't discussed anything about pointwise convergence.

(ii) Condition (e) tells that norms are preserved between f and \hat{f} since

$$||f||^2 = \sum_{k \in \mathbb{Z}^n} |\langle f, e_k \rangle|^2 = \sum_{k \in \mathbb{Z}^n} |\widehat{f}(k)|^2 = ||\widehat{f}||^2.$$

Therefore every $f \in L^2(Q)$ determines a function $\widehat{f} \in \ell^2(\mathbb{Z}^n)$ through equation (1). The converse is also true: if we have $\omega \in \ell^2(\mathbb{Z}^n)$, then we can set $f:Q \to \mathbb{C}$, $f(x) = \sum_{k \in \mathbb{Z}^n} \omega(k) e^{ik \cdot x}$. This defines a function on Q, because the sequence

$$f_n(x) = \sum_{\substack{k \in \mathbb{Z}^n \\ |k| < n}} \omega(k) e^{ik \cdot x}$$

is Cauchy in $L^2(Q)$, which is a complete normed space.

The previous discussion suggests us to define the following operator:

Definition 1.2. The Fourier transform on Q is a linear operator $\mathcal{F}: L^2(Q) \to \ell^2(\mathbb{Z}^n)$ defined as

$$\mathcal{F}(f)(k) = \widehat{f}(k) = \frac{1}{(2\pi)^n} \int_{\mathcal{Q}} f(x) e^{-ik \cdot x} \mathrm{d}x.$$

We immediately get the next result:

Theorem 1.3. The Fourier transform \mathcal{F} defined as above is an unitary isometry. The inverse Fourier transform $\mathcal{F}^{-1}: \ell^2(\mathbb{Z}^n) \to L^2(Q)$,

$$\mathcal{F}^{-1}(\omega)(x) = \sum_{k \in \mathbb{Z}^n} \omega(k) e^{ik \cdot x},$$

is also an unitary isometry.

Proof. \mathcal{F} is clearly injective, because $\mathcal{F}(f)=0$ implies $\langle f,e_k\rangle=0$ for all $k\in\mathbb{Z}^n$ and hence f=0 by condition (b). Define $T:\ell^2(\mathbb{Z}^n)\to L^2(Q)$, $T(\omega)(x)=\sum_{k\in\mathbb{Z}^n}\omega(k)e^{ik\cdot x}$. Then straight computation shows that T is the right inverse of \mathcal{F} , which means that \mathcal{F} is surjective and thus bijective. Hence $T=\mathcal{F}^{-1}$. Condition (e) says that \mathcal{F} is an isometry, see previous discussion (ii). Therefore also \mathcal{F}^{-1} is an isometry. From the definition of the adjoint operator one can see that $\langle f,\mathcal{F}^*(\omega)\rangle=(\mathcal{F}(f)|\omega)=\langle f,\mathcal{F}^{-1}(\omega)\rangle$. Thus \mathcal{F} is unitary and so is \mathcal{F}^{-1} .

We see that all the desired properties of Fourier transform \mathcal{F} will follow, if we can show that the set $\{e_k : k \in \mathbb{Z}^n\}$ forms orthonormal basis for $L^2(Q)$. To prove it we first need a couple of lemmas and definitions.

Definition 1.4. A sequence K_n of 2π -periodic continuous functions on \mathbb{R} is called an approximate identity, if

- (i) $K_n \ge 0$ for all $n \in \mathbb{N}$
- (ii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) dx = 1$ for all $n \in \mathbb{N}$
- (iii) for every $\delta > 0$ it holds that

$$\lim_{n\to\infty}\sup_{\delta\leq|x|\leq\pi}K_n(x)=0.$$

So for large n the function K_n resembles the Dirac comb. Approximate identities, as the name suggests, are used to approximate L^p -functions via convolution.

Definition 1.5. The convolution of 2π -periodic functions f and g is defined to be

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) dy = -(g * f)(x),$$

which is also a 2π -periodic function.

Lemma 1.6. Let K_n be an approximate identity. If $f \in L^p([-\pi, \pi])$ and $1 \le p < \infty$, or if f is continuous 2π -periodic function and $p = \infty$, then

$$\lim_{n\to\infty} ||K_n * f - f||_{L^p([-\pi,\pi])} = 0,$$

where the L^p -norm of a function $g \in L^p([-\pi,\pi])$ is defined as

$$||g||_{L^p([-\pi,\pi])} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(x)|^p dx\right)^{\frac{1}{p}}.$$

Proof. The proof is quite technical. Case $p = \infty$ is easier, case $1 \le p < \infty$ needs measure-theoretic tools (Lusin's theorem and integral form of the Minkowski inequality). Details can be found in [3].

Luckily in \mathbb{R} there exists an approximate identity, which consists of trigonometric polynomials:

Lemma 1.7. *The sequence* $Q_n : \mathbb{R} \to \mathbb{R}$ *,*

$$Q_n(x) = c_n \left(\frac{1 + \cos x}{2}\right)^n, \quad c_n = 2\pi \left(\int_{-\pi}^{\pi} \left(\frac{1 + \cos x}{2}\right)^n dx\right)^{-1},$$

is an approximate identity on the real line.

Proof. The first two properties are clear. For the third one, estimate constant c_n from above to get $c_n \leq \frac{\pi(n+1)}{2}$. Then use the fact that $Q_n'(x) \leq 0$ when $x \in]0, \pi[$ and $Q_n'(x) \geq 0$ when $x \in]-\pi, 0[$. Thus for $\delta \leq |x| \leq \pi$ we have

$$Q_n(x) \le Q_n(\delta) = c_n \left(\frac{1+\cos\delta}{2}\right)^n \le \frac{\pi(n+1)}{2} \left(\frac{1+\cos\delta}{2}\right)^n \to 0$$

since $\frac{1+\cos\delta}{2} < 1$ when $0 < \delta \le \pi$.

Remark 1.8. Lemmas 1.6 and 1.7 give the classical result due to Weierstrass: trigonometric polynomials are dense in the space of continuous 2π -periodic functions on the interval $[-\pi, \pi]$ equipped with the sup-norm. This can be seen by choosing the polynomial to be $P = Q_n * f$.

Now we have the right tools to prove the next theorem, which has an essential role in the proof of the main result 1.3.

Theorem 1.9. If $f \in L^2(Q)$ and $\langle f, e_k \rangle = 0$ for all $k \in \mathbb{Z}^n$, then f = 0. Hence by condition (b) the set $\{e_k : k \in \mathbb{Z}^n\}$ forms orthonormal basis for $L^2(Q)$.

Proof. Assume first n=1. Let $f \in L^2([-\pi,\pi])$ be such that $\langle f,e_k \rangle = 0$ for all $k \in \mathbb{Z}$. Then the inner product between f and any trigonometric polynomial $\sum_{k=-m}^m c_k e_k$ vanishes. Especially for any $x \in [-\pi,\pi]$ we have

$$0 = \langle f, Q_n(x - \cdot) \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \underbrace{\overline{Q_n(x - y)}}_{\in \mathbb{R}} dy = (f * Q_n)(x) = -(Q_n * f)(x).$$

Lemmas 1.6 and 1.7 give us that

$$0 \leftarrow \|Q_n * f - f\|_{L^2([-\pi,\pi])} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |\underbrace{(Q_n * f)(x)}_{=0} - f(x)|^2\right)^{\frac{1}{2}} = \|f\|.$$

Therefore f=0 and the set $\{e_k: k\in \mathbb{Z}\}$ is complete in $L^2([-\pi,\pi])$. Let us then assume that the claim holds for some n=m-1. Define a function

$$g(x_1) = \int_{[-\pi,\pi]^{m-1}} f(x)e^{-i(k_2x_2+...+k_mx_m)} dx_2...dx_m.$$

By Cauchy-Schwartz inequality one can see that $g \in L^2([-\pi, \pi])$. Now the condition $\langle f, e_k \rangle = 0$ for all $k \in \mathbb{Z}^m$ in terms of g means that

$$0 = \int_{[-\pi,\pi]^m} f(x)e^{-i(k_1x_1 + \dots + k_mx_m)} dx_1 \dots dx_m$$

$$\stackrel{Fubini}{=} \int_{-\pi}^{\pi} \int_{[-\pi,\pi]^{m-1}} f(x)e^{-i(k_2x_2 + \dots + k_mx_m)} dx_2 \dots dx_m \ e^{-ik_1x_1} dx_1$$

$$= \int_{-\pi}^{\pi} g(x_1)e^{-ik_1x_1} dx_1 = \langle g, e_{k_1} \rangle.$$

Thus $\langle g, e_{k_1} \rangle = 0$ for all $k_1 \in \mathbb{Z}$ and by the case n = 1 it must be that g = 0. This implies that for all $x_1 \in [-\pi, \pi]$

$$\int_{[-\pi,\pi]^{m-1}} f(x)e^{-i(k_2x_2+...+k_mx_m)} dx_2...dx_m = 0.$$

The induction assumption then gives that $f(x_1, \ldots, x_n) = 0$ for fixed x_1 . But since this holds for all $x_1 \in [-\pi, \pi]$, it has to be that f = 0, which proves the theorem.

References

- [1] Joonas Ilmavirta, Analysis and X-ray tomography, lecture notes, users.jyu.fi/jojapeil/opetus/mats4300xrt/mats4300-v3.pdf.
- [2] George Bachman and Lawrence Narici, Functional Analysis, Dover publications 2000.
- [3] Mikko Salo, Fourier analysis and distribution theory, lecture notes, users.jyu.fi/salomi/lecturenotes/FA_distributions.pdf.