Intelligent Peer-to-Peer Networks

Hermanni Hyytiala, Niko Kotilainen, Joni Toyryld and Mikko Vapa

Version 1.0, May 22, 2003

University of Jyviskyla
Department of Mathematical Information Technology

Abstract

Resource discovery is an essential problem in peer-to-peer networks as there
is no centralized index where to look for information about resources. One
solution for the problem is to use a search algorithm that locates the resources
based on the local information about the network. Traditionally these search
algorithms have been designed to be based on few rules and designed by
humans. The problem with these algorithms is that if the conditions in
the network change the algorithm becomes less efficient and won’t have the
flexibility to adapt to the new environment.

In this document we describe the use of evolutionary neural networks for
finding an efficient search algorithm. By using neural networks we can define
the network conditions and the quality of the algorithm and let the computer
find the solution for us. The initial test results indicate that without a
prior knowledge about good search algorithm an evolutionary optimization
process can produce candidates that are better compared to traditional search
algorithms used in peer-to-peer networks.

Contents

1 Introduction

2 Peer-to-Peer Resource Discovery Problem
2.1 Breadth-First Search Algorithm
2.2 Neural Network Algorithm - NeuroSearch

3 Neural Network Optimization Process using Gaussian Ran-
dom Variation

Bibliography

IT

1 Introduction

Evolutionary processes have become common in information technology re-
search because they provide simple means for global optimization which is
often needed when solving complex problems [3]. One such problem is re-
source discovery in peer-to-peer networks in which the total effect of local
decisions in the nodes produces global outcome that might not be easily fig-
ured out just by thinking. Therefore, we sought out to find a solution for
a complex problem using a flexible algorithm structure that could adapt to
different conditions.

Feedforward neural network [2]| (also called as Multi-Layer Perceptron,
MLP) is known as one example of flexible algorithm structure. This is be-
cause if there are enough neurons in the neural net it can work as an universal
approximator. Universal approximator feature means that if the structure is
properly taught neural network can learn to map any function that is given
as a training data. In our case we didn’t knew beforehand the right answers,
so we couldn’t use traditional teaching methods where all the input/output
pairs are known beforehand. Thus we had to rely on evolution and competi-
tion.

Evolutionary algorithms (such as genetic algorithm) use a process where
initial population is instantiated as candidate solutions and then refined in
forthcoming generations using mutation and crossover. Traditionally crossover
has been the fundamental part of the variation algorithm, but in recent years
its benefits have been questioned [1|. Especially in cases where there is no
clear building blocks that form the final solution crossover might not be use-
ful. This is also the case in neural networks where crossing two good networks
over won’t usually produce a good offspring. Because of this we decided to
include only the mutation operation and checked how far it might bring us.

Teaching problems in presence of no training data for neural networks can
be avoided if there is only a sufficient information to rank the candidates.
Generally this means that we don’t need exact output values of the neural
network but only some measurement that tells whether one neural net is
better than the other. This could be easily determined by measuring the
collective effect of neural network decisions. In peer-to-peer networks this
collective effect might for example be the number of packets the algorithm
used and the number of results the algorithm was able to retrieve. In fact
this was all that we needed for the system to be working.

2 Peer-to-Peer Resource
Discovery Problem

In the peer-to-peer resource discovery problem any node in the network can
possess resources and also query these resources from other nodes. The
problem consists of graph with nodes, links and resources. Resources are
identified by IDs and nodes can contain any number of resources. There
can also be duplicates of the same resource in different nodes. One node
knows only the resources it is hosting therefore all the other nodes must find
out where queried resources are located. Any node in the graph can start a
query which means that some of the links in the graph are traversed based
on a local decision and whenever the query reaches the node with the queried
resource ID, the node replies. Figure 2.1 illustrates the resource discovery
problem.

2.1 Breadth-First Search Algorithm

One possible solution for the resource discovery problem is the breadth-first
search algorithm (BFS). In BFS the node that starts a query passes the
query to all its neighbors. When the neighbors receive the query, they pass
it further to all their neighbors that the query has not yet traversed. The
query ends when there is no link that the query has not passed. This solution
is illustrated in Figure 2.2.

2.2 Neural Network Algorithm - NeuroSearch

Breadth-first search algorithm ensures that if resource is located in the net-
work it can also be found from the network. The drawback of the algorithm,
however, is that it uses lots of query packets to find the needed resources.
Therefore we designed an alternative algorithm that would overcome this
problem.

NeuroSearch makes decision to whom of the node’s neighbors the resource
request message is forwarded based on the output of the neural network
described in Figure 2.3. The resource reply message is forwarded back to the
neighbor which forwarded the request to the node.

When resource request arrives to the algorithm it goes through all the

2

Node 1 Node 2
Start query: Resources: X Resources: X, Y

lookup(W) . /\A i

N ’

Perform local ™"~ AR Pecﬁe%rig:olﬁ?al
decision: ! :
forwardTo(node2) forwardTo(node3)
Perform local ,"‘ . iR
decision:] 3 }
forwardTo(nodedy. __.- ~_ v N
Node 3 Node 4
Resources: Y, Z Resources: X, Y, Z, W

Figure 2.1: Resource discovery problem

node’s neighbor connections one by one with the neural network. The query
includes network’s weights.
The input parameters for the neural network are:

e Bias = 1 is the bias term.
e Hops is the number of the hops in the message.

e NeighborsOrder tells in which neighbor rank this connection is com-
pared to others. The connection with best rank has the value of 0.

e Neighbors is the number of the connection’s neighbors.

e Sent has value 1 if the message has already been forwarded to the
connection. Otherwise it has value of 0.

e Received has value 1 if the message came to the node from the connec-
tion, else it has value of 0.

Hops and NeighborsOrder are scaled with the function

flz) = (2.1)

Start query:
lookup(W)

. -

Node 4 has W!,.~~ .-~ HasW?

- . -

-
. ~

A Has W ? g *
y"“A ——————————————————————————— P»iNode 41
A . ’
iNode 3 ---------------------------- ~<..-’ Node 4 has
‘. ! Yes, | have!

the resource W

Figure 2.2: The breadth-first search represented as a graph model. In this
figure, there are four steps which are involved in the process of finding a
specific resource item in the graph. Step 1: Node 1 starts a lookup process
for resource W and sends the query to all its neighbor nodes. Step 2: The
neighbors of node 1 forwards the query to their neighbors respectively. Step
3: Node 4 replies to node 3 that it has the resource W. Step 4: Node 3 tells

to node 1 that node 4 has the resource W.

1. Hidden | ayer 2. Hidden | ayer
(16 nodes) (4 nodes)
1 1
1 >
S
Hops
J
Nei ghbor sOr der
Nei ghbor s
Sent g
Recei ved i g

Figure 2.3: Neural network for NeuroSearch

and Neighbors with .
fla)=1-—7 (2.2)
before giving them to the network. Scaling is made to ensure that all the
inputs are between 0 and 1.
There are two hidden layers in the network. In the first hidden layer there
are 15 nodes and in the second 3. Tanh is used as activation function in the
hidden layers:

2
tla) = —1. 2.3
(a) 14+exp—2xa (23)
Activation function in the output node is the threshold function:
0,z <0
s(a) = { 1250 (2.4)

If the output is 1, the message is forwarded to the connection.

3 Neural Network
Optimization Process using
Gaussian Random Variation

Our assumption is that we do not know which weights will make good neural
net. To find the appropriate weights we imitate the evolution where stronger
ones will survive. The decision, which neural nets are better than the others,
can be done for example by counting the packets sent to network and replies
received from it using following formula:

replies

fitness = (3.1)

packets

Higher fitness will prove better chance of survival to pass to the next round
and lower fitness value indicates that search is not working good enough.
Poorest neural nets will not send any packets further or they send every
packet flooding the whole network thus resulting near zero fitnesses.

Optimization process must have an initial population e.g., 100 neural nets
whose weights are randomly defined. Next every neural net will be tested
at the peer-to-peer network and fitness value is calculated. When all neural
nets have been tested we can choose for example 50 best as survivals of this
generation of evolution. The surviving 50 neural nets are then used to breed
new generation of neural nets. Everyone of those is copied and mutated and
after this process we will again have 100 neural nets ready for testing the
new generation.

Mutating neural net means that the values of the weights are slightly
changed from the original. This is done by random variation using normal
distribution (also called as Gaussian distribution). The variation function
looks like this:

0,(j) = oi(j)exp(TN;(0,1)),5 =1,..., Ny (3.2)

wi(7) = wi(j) + 0;(4)N;(0,1),5 =1, ..., N, (3.3)
where IV, is the total number of weights and bias terms in the neural network,
T = 1/sqrt(2sqrt(Ny)), N;(0,1) is a standard Gaussian random variable
resampled for every j, o is the self-adaptive parameter vector for defining
the step size for finding the new weight and w;(j) is the new weight value.

Bibliography

[1] Ankit Jain and David B. Fogel. “Case studies in applying fitness distri-

2]

3]

butions in evolutionary algorithms. ii. comparing the improvements from
crossover and gaussian mutation on simple neural networks”. In “Pro-
ceedings of the 2000 IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks”, (pp. 91-97). IEEE Press, 2000.

Tommi Kéarkkéinen. “Mlp-network in a layer-wise form: Derivations, con-
sequences and applications to weight decay”. Reports of the Department
of Mathematical Information Technology Series C. Software Engineering
and Computational Intelligence, 2000.

Kaisa Miettinen, Marko Mékeld, Pekka Neittaanméaki and Jacques Péri-
aux (eds.). Ewolutionary Algorithms in Engineering and Computer Sci-
ence. John Wiley & Sons, Ltd, 1999. ISBN 0471999024, 256 pp.

