FYSH300 fall 2013

Exercise 5, return by Tue Oct 22nd at 12.00 to box in the lobby, discussed Tue Oct 22nd, at 16.15 in FYS3 note exceptional time and place

- 1. $p\bar{p}$ annihilation happens at rest through the S-wave. Explain using parity why the process $p\bar{p} \to \pi^0\pi^0$ cannot happen through the strong interaction.
- 2. The $\eta(547)$ meson is a spin-0 particle which decays through the electromagnetic (or strong) interaction to three pions:

$$\eta \rightarrow \pi^0 + \pi^0 + \pi^0$$

$$\eta \to \pi^+ + \pi^- + \pi^0$$
.

Figure out the parity P_{η} of the η and explain why the decay processes

$$\eta \rightarrow \pi^+ + \pi^-$$

$$\eta \to \pi^0 + \pi^0$$

are not observed.

- 3. (a) If a meson M decays via the strong interaction to two pions $\pi^+\pi^-$, show that then the relation $P_M = C_M = (-1)^{J_M}$ holds.
 - (b) The mesons $\rho^0(770)$ and $f_2^0(1275)$ decay through the strong interaction to a pion pair $\pi^+\pi^-$. The ρ has spin $J_{\rho}=1$ and the f_2 has spin $J_{f_2}=2$. Are the decays $\rho^0 \to \pi^0 \gamma$ and $f_2^0 \to \pi^0 \gamma$ possible through the electromagnetic interaction? Are the decays $\rho^0 \to \pi^0 \pi^0$ and $f_2^0 \to \pi^0 \pi^0$ possible through any interaction?
- 4. The baryonic resonance N^+ has isospin $I = I_3 = \frac{1}{2}$. Show using isospin invariance that

$$\frac{\Gamma(N^+ \to n\pi^+)}{\Gamma(N^+ \to p\pi^0)} = 2. \tag{1}$$

5. Using the isospin invariance of the strong interaction show the following ratio for cross sections

$$\frac{\sigma(pp \to \pi^+ d)}{\sigma(np \to \pi^0 d)} = 2. \tag{2}$$

The deuteron isospin is $I_d=0$ and the pion isospin is $I_\pi=1$.

6. Recall the properties of the Pauli matrices $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$. The symmetry group of rotations, and of isospin, is SU(2), i.e. the group of unitary 2×2 matrices with determinant=1. SU(2) is a 3-dimensional group, and the 3 generators of the spin-1/2 representation of the SU(2) group are $\sigma_{1,2,3}/2$. This means that in a rotation by angle $\theta = |\boldsymbol{\theta}|$ around the axis $\boldsymbol{\theta}/\theta$ a spin-1/2 state transforms as

$$\begin{pmatrix} a \\ b \end{pmatrix} \to e^{i\boldsymbol{\theta}\cdot\boldsymbol{\sigma}/2} \begin{pmatrix} a \\ b \end{pmatrix} \tag{3}$$

- (a) Calculate the 2×2 matrix $U(\boldsymbol{\theta}) = e^{i\boldsymbol{\theta}\cdot\boldsymbol{\sigma}/2}$
- (b) Show that this matrix is unitary $U(\theta)^{\dagger}U(\theta) = 1$ and has $\det U(\theta) = 1$
- (c) What is $U(\boldsymbol{\theta})$ with $\boldsymbol{\theta} = (0, 0, \pi)$? What about $(0, \pi, 0)$?