
This still contains part of the IR divergence and the UV infinity from the

vertex loop. In the next section we sort out their destiny.

7.3 The electron self energy

Based on the LSZ theorem the external electron legs are to be multiplied by

the renormalization constant
√
Z defined as the pole of the full propagator.

The first QED contribution is given by the following diagram:

p p

p−k

k

As part of a larger diagram, this piece will correspond to an expression,

∫

d4k

(2π)4
i(/p+m)

p2 −m2
(−ieγµ)

i(/k +m)

k2 −m2 + iǫ
(−ieγν)

i(/p+m)

p2 −m2

−igµν
(p− k)2 + iǫ

=
i(/p+m)

p2 −m2

[

−e2
∫

d4k

(2π)4
γµ

(/k +m)

k2 −m2 + iǫ
γµ

1

(p− k)2 + iǫ

]

i(/p+m)

p2 −m2

=
i(/p+m)

p2 −m2
[−iΣ2(p)]

i(/p+m)

p2 −m2
, (7.59)

when we define

−iΣ2(p) ≡ −e2
∫

d4k

(2π)4
γµ

/k +m

k2 −m2 + iǫ
γµ

1

(p− k)2 + iǫ
. (7.60)

We can process the loop integral with the methods of the previous section.

By using the Feynman parameters,

∫

d4k

(2π)4
1

k2 −m2 + iǫ

1

(p− k)2 + iǫ
(7.61)

=

∫ 1

0

dx

∫

d4k

(2π)4
1

[

k2 − 2x(p · k) + xp2 − (1− x)m2 + iǫ
]2 .

7-17



Completing the square, k2 − 2x(p · k) = (k − xp)2 − x2p2, and defining a

new integration variable ℓ ≡ k − xp,
∫

d4k

(2π)4
1

k2 −m2 + iǫ

1

(p− k)2 + iǫ
=

∫ 1

0

dx

∫

d4ℓ

(2π)4
1

[

ℓ2 −∆+ iǫ
]2 ,

where ∆ = −x(1− x)p2 + (1− x)m2. In the numerator,

γµ(/k +m)γµ = −2/k + 4m→ −2(/ℓ + x/p) + 4m. (7.62)

Dropping the term linear in ℓ (integrates to zero), we get

∫

d4k

(2π)4
γµ(/k +m)γµ

k2 −m2 + iǫ

1

(p− k)2 + iǫ
=

∫ 1

0

dx

∫

d4ℓ

(2π)4
−2x/p+ 4m

[

ℓ2 −∆+ iǫ
]2 .

When k is large, the integral behaves as
∫

d4k/k4 which gives a logarithmic

UV divergence. In addition, in the limit x→ 1 we see that ∆ → 0 which

yields an IR divergence. We regulate these using the same technique as

in the case of vertex correction. The infrared divergence gets regulated by

giving the photon a small mass µ2,

1

(p− k)2 + iǫ
→ 1

(p− k)2 − µ2 + iǫ
, (7.63)

and the Pauli-Villars prescription removes the UV divergence when we include

the subtraction term,

1

(p− k)2 + iǫ
→ 1

(p− k)2 − µ2 + iǫ
− 1

(p− k)2 − Λ2 + iǫ
. (7.64)

Doing this,
∫

d4k

(2π)4
γµ(/k +m)γµ

k2 −m2 + iǫ

1

(p− k)2 + iǫ
−→ (7.65)

∫ 1

0

dx
(

−2x/p+ 4m
)

∫

d4ℓ

(2π)4

[

1
[

ℓ2 −∆+ iǫ
]2 −

1
[

ℓ2 −∆Λ + iǫ
]2

]

,

where now

∆ = −x(1− x)p2 + (1− x)m2 + xµ2 , (7.66)

∆Λ = −x(1− x)p2 + (1− x)m2 + xΛ2 . (7.67)
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By doing the Wick rotation,

∫

d4ℓ

(2π)4

[

1
[

ℓ2 −∆+ iǫ
]2 −

1
[

ℓ2 −∆Λ + iǫ
]2

]

=
i

(4π)2
log

(

∆Λ

∆

)

,

so overall, when Λ2 → ∞, we find

Σ2(p) =
α

2π

∫ 1

0

dx
(

−x/p+ 2m
)

log

(

xΛ2

−x(1− x)p2 + (1− x)m2 + xµ2

)

(7.68)

We now proceed as in Section 5, and sum the contribution of the just-

computed diagram to all orders. At this point we should also remember

that the mass m in the above expression should actually be the unphysical

bare mass m0.

+ + + . . . . .

This diagrammatic sum corresponds to an expression,

i(/p+m0)

p2 −m2
0

+
i(/p+m0)

p2 −m2
0

[−iΣ2(p)]
i(/p+m0)

p2 −m2
0

(7.69)

+
i(/p+m0)

p2 −m2
0

[−iΣ2(p)]
i(/p+m0)

p2 −m2
0

[−iΣ2(p)]
i(/p+m0)

p2 −m2
0

+ · · ·

By using a shorter form,

i(/p+m0)

p2 −m2
0

=
i

/p−m0
, (7.70)

where (/p−m0)
−1 refers to the inverse of (/p−m0) we can write the above
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sum as,

i

/p−m0
+

i

/p−m0
[−iΣ2(p)]

i

/p−m0
(7.71)

+
i

/p−m0
[−iΣ2(p)]

i

/p−m0
[−iΣ2(p)]

i

/p−m0
+ · · ·

=
i

/p−m0
+

i

/p−m0

Σ2(p)

/p−m0
+

i

/p−m0

(

Σ2(p)

/p−m0

)2

+ · · ·

=
i

/p−m0

[

1 +
Σ2(p)

/p−m0
+

(

Σ2(p)

/p−m0

)2

+ · · ·
]

.

where we used the fact that (/p−m0) and its inverse commute with Σ2(p).

Formally this is a geometric series which we can sum:

i

/p−m0

[

1 +
Σ2(p)

/p−m0
+

(

Σ2(p)

/p−m0

)2

+ · · ·
]

=
i

/p−m0

1

1− Σ2(p)

/p−m0

=
i

/p−m0 − Σ2(p)
. (7.72)

More explicitly,

1

/p−m0 − Σ2(p)
=

/p
[

1− Σ′(p2)
]

+m0

[

1 + Σ′′(p2)
]

p2 [1− Σ′(p2)]2 −m2
0 [1 + Σ′′(p2)]2

, (7.73)

where

Σ′(p2) ≡ − α

2π

∫ 1

0

dxx log

(

xΛ2

−x(1− x)p2 + (1− x)m2 + xµ2

)

,

Σ′′(p2) ≡ 2
α

2π

∫ 1

0

dx log

(

xΛ2

−x(1− x)p2 + (1− x)m2 + xµ2

)

.

Based on the general discussion of Section 5 the summed propagator (7.73)

should have a pole at the physical mass, p2 = m2. We find this as a solution

of the equation
[

p2
[

1− Σ′(p2)
]2 −m2

0

[

1 + Σ′′(p2)
]2
]

∣

∣

∣

= 0 . (7.74)

p2=m2
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Near this pole, the summed propagator is of the form,

Z2

i(/p+m)

p2 −m2
, (7.75)

where Z2 is the renormalization factor related to the electron field (the one

that appears in the LSZ theorem). After a bit of tinkering, we find (Ex.),

m2 = m2
0 ×

[[

1 +
α

2π

∫ 1

0

dx (4− 2x) log

[

xΛ2

(1− x)2m2
0 + xµ2

]

]]

Z2 = 1 +
α

2π

∫ 1

0

dx

[[

− x log

[

xΛ2

(1− x)2m2 + xµ2

]

(7.76)

+ (2− x)
2m2x(1− x)

(1− x)2m2 + xµ2

]]

To this order in coupling constant α, we can equally well use m2 or m2
0 in

what is inside the double square brackets.

The results above indicate that the mass parameter m0 that appears in the

Lagrangian and what we call a physical mass m are different by a divergent

factor. The physical mass m is of course finite which indicates that m0 has

to be divergent as well. The equation above implies that we should define,

m2
0 = m2 ×

[[

1− α

2π

∫ 1

0

dx (4− 2x) log

[

xΛ2

(1− x)2m2 + xµ2

]

]]

,

and use this definition in calculations – we recall that the quantity that

appears in the Feynman rules is m0. When doing so, part of the UV infini-

ties coming from the loop diagrams cancel. It is important that the above

definition is made only once – the same definition removes UV infinities

from all kinds of processes, not just the one we have considered here. From

the view point of the process considered now this does not really show

up as the leading-order diagram does not contain an electron propagator.

The procedure outlined here is called the mass renormalization. The
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definition of m0 is, however, not unique and from the viewpoint of removing

divergences we could add or subtract whatever finite terms. Different choices

are called schemes. The definition above is a common one and known as

the on-shell scheme or pole-mass scheme. It is also worth pointing

out that in the massless case the mass renormalization is not need but

m0 = m = 0.

The renormalization constant Z2 contains both UV- and IR divergences.

They are easily isolated from the complete expression (7.76),

UV part:

α

2π

∫ 1

0

dx

[[

− x log

[

xΛ2

(1− x)2m2 + xµ2

]

]]

(7.77)

=
α

2π

∫ 1

0

dx

[[

− x log

(

Λ2

m2

)

]]

+ · · ·

=− 1

2

α

2π
log

(

Λ2

m2

)

+ · · ·

IR part:

α

2π

∫ 1

0

dx

[[

(2− x)
2m2x(1− x)

(1− x)2m2 + xµ2

]]

(7.78)

=2m2 α

2π

∫ 1

0

dx

[[

[1 + (1− x)]
[−(1− x) + 1] (1− x)

(1− x)2m2 + xµ2

]]

=2m2 α

2π

∫ 1

0

dx
(1− x)

(1− x)2m2 + µ2

[

1 +O(1− x)

]

=
α

2π
log

(

m2

µ2

)

The renormalization factor Z2 is thus,

Z2 = 1 +
α

2π

[

−1

2
log

(

Λ2

m2

)

+ log

(

m2

µ2

)]

+ finite terms
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According to the LSZ theorem each external electron enters the scattering

amplitude with a factor of
√
Z2, so in total we have a factor Z2

2 multiplying

the cross section. To order α,

Z2
2 = 1 +

α

2π

[

− log

(

Λ2

m2

)

+ 2 log

(

m2

µ2

)]

+ finite terms .

The contribution of the external-leg corrections to the cross section is thus,

dσexternal leg(p, p′) = dσ0(p, p′)×
(

Z2
2 − 1

)

(7.79)

= dσ0(p, p′)× α

2π

[

− log

(

Λ2

m2

)

+ 2 log

(

m2

µ2

)]

+ finite terms

To close this section, we compare the obtained result with Eq. (7.58), the

sum of braking radiation and vertex correction,

dσrad(p, p′) + dσvertex(p, p′) = finite terms (7.80)

+ dσ0(p, p′)× α

2π

{

log

(

Λ2

−q2
)

− 2 log

(−q2
µ2

)

}

.

Remarkably, the divergence structure is exactly the same but the signs are

the opposite! Thus the sum of all three contributions is finite

dσrad(p, p′) + dσvertex(p, p′) + dσexternal leg(p, p′) (7.81)

= dσ0(p, p′)× α

2π

{

log

(

m2

−q2
)

− 2 log

(−q2
m2

)

}

+ · · ·

= a finite number .
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We have now seen how different radiation/loop diagrams can yield infini-

ties but when appropriately combined, it is possible to find a finite result.

The cancellation of infrared divegences is known as the Kinoshita-Lee-

Nauenberg theorem, and in the case of UV divergences what we have

seen is part of the renormalization which we will discuss more in the

following section.

p p’

k

p pp’ p ’

k

+

+ 2 R e

p p’ p p’*

2 2

+Z2
2

= finite!!!
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7.4 Photon self energy

A diagram which yields a contribution of the same order in the QED coupling

as the previous diagrams is the one in which we draw an electron loop on

the photon line:

q

k + q k

p p ’

This is also a virtual correction so it does not change the kinematics. In the

Feynman gauge this corresponds to a matrix element,

iMγ(p, p′) = −ie [us′(p′)γµus(p)]×
−igµα
q2 + iǫ

[

iΠαβ(q)
] −igβν
q2 + iǫ

Φν(q) ,

where

iΠαβ(q) = −(−ie)2
∫

d4k

(2π)4
Tr

[

γβ
i(/k +m)

k2 −m2 + iǫ
γα

i(/k + /q +m)

(k + q)2 −m2 + iǫ

]

= −e2
∫

d4k

(2π)4
Tr

[

γβ
(/k +m)

k2 −m2 + iǫ
γα

(/k + /q +m)

(k + q)2 −m2 + iǫ

]

(7.82)

= −4e2
∫

d4k

(2π)4
kα(k + q)β + kβ(k + q)α − gαβ

(

k2 + k · q −m2
)

[k2 −m2 + iǫ] [(k + q)2 −m2 + iǫ]
.

The overall minus sign comes from the factor (−1) in the context of closed

fermion loop. We proceed as in the previous loop calculations and use the
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Feynman parametrization:

1

[k2 −m2 + iǫ] [(k + q)2 −m2 + iǫ]
(7.83)

=

∫ 1

0

dxdyδ (1− x− y)
1

[

y [k2 −m2 + iǫ] + x [(k + q)2 −m2 + iǫ]
]2

=

∫ 1

0

dxdyδ (1− x− y)
1

[

(k2 −m2 + iǫ)(x+ y) + x [2k · q + q2]
]2

=

∫ 1

0

dx
1

[

k2 + 2xk · q −m2 + xq2 + iǫ
]2 .

We complete the square, k2 + 2xk · q = (k + xq)2 − x2q2, so that

1

[k2 −m2 + iǫ] [(k + q)2 −m2 + iǫ]
=

∫ 1

0

dx
1

[

ℓ2 −∆+ iǫ
]2 , (7.84)

with

ℓ = k + xq , (7.85)

∆ = m2 − x(1− x)q2 > 0 . (7.86)

In the numerator of (7.82),

kα(k + q)β + kβ(k + q)α − gαβ
(

k2 + k · q −m2
)

(7.87)

= (ℓ− xq)α((ℓ− xq) + q)β + (ℓ− xq)β((ℓ− xq) + q)α

− gαβ
(

(ℓ− xq)2 + (ℓ− xq) · q −m2
)

=̂2ℓαℓβ − gαβℓ2 − 2x(1− x)qαqβ + gαβ
(

m2 + x(1− x)q2
)

,

where we discarded the terms linear in ℓ. Thus, at this point,

iΠαβ(q) = −4e2
∫ 1

0

dx

∫

d4ℓ

(2π)4
1

[

ℓ2 −∆+ iǫ
]2 (7.88)

[

2ℓαℓβ − gαβℓ2 − 2x(1− x)qαqβ + gαβ
(

m2 + x(1− x)q2
)

]

.
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This is again UV divergent but this time there’s no IR divergence since ∆ > 0

due to the electron mass. We could use the Pauli-Villars regularization but

for fermion loops it’s not as convenient as with photon loops. At this point

we well shift to the modern dimensional regularization.

Dimensional regularization

The idea is super simple: A typical loop integral is of the form,

∫

d4ℓ

(2π)4
1

[ℓ2 −∆+ iǫ]2
. (7.89)

by Wick’s rotation,

∫

d4ℓ

(2π)4
1

[ℓ2 −∆+ iǫ]2
= i

∫

d4ℓE
(2π)4

1

[ℓ2E +∆]
2 . (7.90)

This is clearly infinite,

∫

d4ℓE
(2π)4

1

(ℓ2E +∆)
2 =

∫

dΩ4

(2π)4

∫ ∞

0

d|ℓE||ℓE|3

(ℓ2E +∆)
2 ∼ log(∞) . (7.91)

If, instead of 4 space-time dimensions, we have d dimensions,

∫

ddℓ

(2π)d
1

[ℓ2 −∆+ iǫ]2
, (7.92)

performing the Wick rotation,

∫

ddℓ

(2π)d
1

[ℓ2 −∆+ iǫ]2
= i

∫

ddℓE
(2π)d

1

[ℓ2E +∆]
2 , (7.93)

we find a finite result:
∫

ddℓE
(2π)d

1

(ℓ2E +∆)
2 =

∫

dΩd

(2π)d

∫ ∞

0

d|ℓE||ℓE|d−1

(ℓ2E +∆)
2 <∞ , if d < 4.

(7.94)

Thus, we can regularize the UV divergence by reducing the number of

space-time dimensions. Also the IR divergence can be regularized by this

method but in this case we need to increase the number of dimensions.
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Sometimes – or actually very often – both are regularized at once by dim.reg.

which is bit of a tricky business.

The angular integral in d dimensions goes with a Gaussian integral,

(√
π
)d

=

(
∫

dxe−x2

)d

=

∫

ddx exp

[

−
d

∑

i=1

x2i

]

(7.95)

=

∫

dΩd

∫ ∞

0

dxxd−1e−x2

,

and making a change of variables y = x2, dy = 2xdx,

(√
π
)d

=

(
∫

dΩd

)

1

2

∫ ∞

0

dyy(d/2−1)e−y .

We can identify here the integral representation of the Γ function,

Γ(z) =

∫ ∞

0

dxxz−1e−x , Re (z) > 0 (7.96)

so

(√
π
)d

=

(
∫

dΩd

)

1

2
Γ

(

d

2

)

.

Thus,

∫

dΩd =
2πd/2

Γ (d/2)
. (7.97)

Also the radial part of (7.94) can be turned into Γ functions:

∫ ∞

0

d|ℓE||ℓE|d−1

(|ℓE|2 +∆)2
=

1

2

∫ ∞

0

d|ℓE|2(|ℓE|2)d/2−1

(|ℓE|2 +∆)2
(7.98)

We do a change of variables, x = ∆/(|ℓE|2+∆), dx = −d|ℓE|2∆/(|ℓE|2+
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and thus Γ(2 − d/2) is singular when d = 4. It is customary to write

d = 4− ǫ, where ǫ > 0, and by using the definition of the Γ function,

Γ

(

2− d

2

)

= Γ
( ǫ

2

)

=
2

ǫ
− γE +O(ǫ), (7.102)

where γE is the Euler-Mascheroni constant,

γE ≡ −
∫ ∞

0

e−x log x ≈ 0.5772 . (7.103)

By using this expansion, we can finally write the singularity structure of the

integral (7.101) explicitly,

∫

ddℓE
(2π)d

1

(ℓ2E +∆)
2 =

1

(4π)d/2

(

1

∆

)2−d

2

Γ(2− d/2) (7.104)

ǫ→0
=

1

(4π)2

[

2

ǫ
− γE − log∆ + log(4π)

]

.

We see that the logarithmic UV divergence corresponds in dimensional

regulariztion to 1/ǫ pole. It should be born in mind that the parameter

ǫ appearing here has nothing to do with the ǫ that appears in

the propagators!

With a bit of tinkering, one can verify the following general identities,

∫

dNℓ

(2π)N
1

[

ℓ2 −∆+ iǫ
]m =

i(−1)m

(4π)N/2

Γ (m−N/2)

Γ (m)

(

1

∆

)m−N/2

(7.105)

∫

dNℓ

(2π)N
ℓ2

[

ℓ2 −∆+ iǫ
]m =

−i(−1)m

(4π)N/2

N

2

Γ (m−N/2− 1)

Γ (m)

(

1

∆

)m−N/2−1

When the dimension of the space time is N , the energy-momentum vectors

are of the form,

pµ = (p0, p1, p2, . . . , pN−1), (7.106)

and thus also the indices of the metric tensor gµν run from 0 to N − 1,

gµνgµν = N . (7.107)
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For this reason also the γ-matrix algebra slightly changes. This is not unique,

but usually the following identities are retained intact,

{γµ, γν} = 2gµν , Tr (I) = 4 , (7.108)

and it follows that

γµγνγµ = −(N − 2)γν (7.109)

γµγνγργµ = 4gρν + (N − 4)γνγρ (7.110)

γµγνγργσγµ = −2γσγργν + (4−N)γνγργσ (7.111)

∫

dNℓ

(2π)N
ℓµℓν

D(ℓ2)
=

1

N
gµν

∫

dNℓ

(2π)N
ℓ2

D(ℓ2)
. (7.112)

Lastly, the QED coupling becomes dimensionful quantity. Since the action,

S =

∫

d4xLQED (7.113)

is dimensionless, in 4 dimensions we have dim[LQED] = 4 (in dimensions of

mass). The QED Lagrangian density was,

LQED = −1

4
FµνF

µν + ψ
(

i/∂ −m
)

ψ − eψγµψAµ , (7.114)

so we can infer,

dim[ψ] = 3/2 , (7.115)

dim[A] = 1 , (7.116)

dim[e] = 0 . (7.117)

When the space-time dimension is N , we have dim[LN
QED] = N , and

dim[ψ] = (N − 1)/2 , (7.118)

dim[A] = N/2− 1 , (7.119)

dim[e] = 2−N/2 . (7.120)
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When N = 4−ǫ, then dim[e] = ǫ/2. Often, the dimension of the spacetime

is written explicitly using an arbitrary mass scale µD as,

e→ eµ
2−N/2
D . (7.121)

Let’s now continue with the photon self-energy diagram from Eq. (7.88),

but now in N dimensions,

iΠαβ(q) = −4e2µ4−N
D

∫ 1

0

dx

∫

dNℓ

(2π)N
1

[

ℓ2 −∆+ iǫ
]2 (7.122)

[

2ℓαℓβ − gαβℓ2 − 2x(1− x)qαqβ + gαβ
(

m2 + x(1− x)q2
)

]

= −4e2µ4−N
D

∫ 1

0

dx

∫

dNℓ

(2π)N
1

[

ℓ2 −∆+ iǫ
]2

[

(2/N − 1)gαβℓ2 − 2x(1− x)qαqβ + gαβ
(

m2 + x(1− x)q2
)

]

.

The required ℓ integrals are,

•
∫

dNℓ

(2π)N
1

[

ℓ2 −∆+ iǫ
]2 =

i

(4π)N/2
Γ (2−N/2)

(

1

∆

)2−N/2

(7.123)

•
∫

dNℓ

(2π)N
(2/N − 1)ℓ2
[

ℓ2 −∆+ iǫ
]2 =

−i
(4π)N/2

N

2
(2/N − 1)Γ (1−N/2)

(

1

∆

)2−N/2−1

=
−i

(4π)N/2
(1− N

2
)Γ (1−N/2)

(

1

∆

)2−N/2−1

=
−i

(4π)N/2
Γ (2−N/2)

(

1

∆

)2−N/2−1

.
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Using these, we get,

iΠαβ(q) = (7.124)

= −4e2µ4−N
D

∫ 1

0

dx

[

i

(4π)N/2

(

1

∆

)2−N/2

Γ (2−N/2)

]

[

(−m2 + x(1− x)q2)gαβ − 2x(1− x)qαqβ + gαβ
(

m2 + x(1− x)q2
)

]

.

The lowest line simplifies to

2x(1− x)
[

q2gαβ − qαqβ
]

, (7.125)

so finally,

iΠαβ(q) =
[

q2gαβ − qαqβ
]

× iΠ(q2) (7.126)

iΠ(q2) =
−8ie2µ4−N

D

(4π)N/2

∫ 1

0

dxx(1− x)

[

(

1

∆

)2−N/2

Γ (2−N/2)

]

ǫ→0
=

−2iα

π

∫ 1

0

dxx(1− x)

[

2

ǫ
− γE + log

µ2D
∆

+ log(4π)

]

We note that Παβ(q) fulfills the Ward identity,

qαΠ
αβ(q) = qβΠ

αβ(q) = 0 , (7.127)

as we might have expected. We proceed as in the electron self-energy

calculation and sum the obtained result to all orders,

+ + + . . .

This corresponds to,

−igµν
q2

+
−igµα
q2

iΠαβ(q)
−igβν
q2

+
−igµα
q2

iΠαβ(q)
−igβρ
q2

iΠρσ(q)
−igσν
q2

+ · · ·
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and after some small tinkering,

−i
q2 [1− Π(q)]

(

gµν −
qµqν
q2

)

− i

(

qµqν
q4

)

. (7.128)

Those terms which are proportional to qµqν will, according to the Ward

identity, yield zero in scattering amplitudes so only the gµν term is relevant.

The full propagator thus reads,

−igµν
q2 [1− Π(q)]

. (7.129)

The summed propagator clearly has a pole at q2 = 0 so the photon

remains massless. Close to the pole the propagator behaves, obviously,

as

−igµνZ3

q2
, (7.130)

where Z3 is the renormalization constant related to the photon field,

Z3 =
1

[1− Π(0)]
= 1− α

3π

[

2

ǫ
− γE + log

µ2D
m2

+ log(4π)

]

. (7.131)

This is what we would use (according to the LSZ theorem) if our scattering

amplitude contains external photons.

Now we don’t have external photons in the game, but the virtual electron

loop yields a multiplicative factor Z3(q
2) ≡ 1/

[

1− Π(q2)
]

:

+ + . . .  =
q

q

q ×Z3(q
2)

So where should we stuff the UV-divergence that Z3(q
2) entails? In analogy

to the mass renormalization, this infinity is absorbed into a redefinition

of the electric charge — charge renormalization. We now denote the
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charge that appears in the original Lagrangian by e0 and call it the bare

charge. Since an internal photon propagator always starts and ends to a

vertex factor −ie0γµ, it is natural to share the contribution of Z3(q
2) evenly

with both. In addition, as Z3(q
2) depends on the scale q2, we define an

effective charge/coupling or running charge/coupling,

eeff(q
2) ≡ e0

√

Z3(q2) , (7.132)

or in terms of the fine-structure constant α = e2/4π,

αeff(q
2) ≡ α0 Z3(q

2) . (7.133)

This would indicate that the measured charge will depend on a scale (momen-

tum transfer). The charge that an experimentalist will measure is definitely

a finite number, so because Z3(q
2) is infinite, also the bare charge α0 has

to be infinite as well.

The effective coupling αeff(q
2) thus depends on the scale. How? According

to the definition,

αeff(q
2) =

α0

1− Π(q2)
, (7.134)

so
1

αeff(q2)
=

1

α0
− Π(q2)

α0
. (7.135)

The low-energy measurement give α ≡ αeff(0) ≈ 1/137, so we use this as

a reference value,

1

αeff(q2)
=

1

α0
− Π(0)

α0
+

Π(0)

α0
− Π(q2)

α0
(7.136)

=
1

α
− 1

α0

[

Π(q2)− Π(0)
]

According to Eq. (7.126),

Π(q2)− Π(0) =
−2α0

π

∫ 1

0

dxx(1− x) log
m2

m2 − x(1− x)q2
(7.137)

−q2≫m2

−−−−−→ α0

3π

[

log

(−q2
m2

)

− 5

3

]

,
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so

1

αeff(q2)
=

1

α
− 1

3π

[

log

(−q2
m2

)

− 5

3

]

. (7.138)

This gives the final form of the scale-dependent coupling (to first order),

αeff(q
2) =

α

1− α
3π log

(

−q2

m2

) , −q2 ≫ m2 . (7.139)

When −q2 grows, the denominator of the equation above diminishes, so the

coupling becomes stronger. The change is relatively slow (logarithmic) but it

has been verified experimentally. Below we show some result from the LEP

collider for the angular dependence in e+e− → e+e− process [Phys.Lett.

B623 (2005) 26-36].

Without a scale-dependent coupling the shape of the theoretical curve

deviates from the measurements. Accounting for the scale dependence in
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coupling even visually improves the correspondence. Below still the extracted

αeff(q
2).

The measurements thus clearly prefer the scale dependence of the coupling

constant.

One can, of course, always express the physical cross sections also in terms

of scale-independent coupling e.g. α = αeff(q
2 = 0) ≈ 1/137 which also

removes the 1/ǫ poles and dependence of the unphysical parameter µ2D per-

fectly fine. However, in this case our expression for the cross section would

explicitly involve powers of logarithms of the form α log(−q2/m2) which

can be large if −q2 ≫ m2 and thereby worsen the convergence of the pertur-

bative series. By expressing the cross sections in terms of running coupling

αeff(q
2) effectively resums these logarithms into the definition of the coupling

stabilizing the perturbative series. The fact that αeff(q
2) resums such loga-

rithms to all orders can be seen also by expanding Eq. (7.139) in powers of α.

7-37



The scale dependence or running of the coupling is often expressed in

terms of the so-called β function,

β(Q2) ≡ Q2 dαeff(Q
2)

dQ2
, Q2 ≡ −q2 . (7.140)

From Eq. (7.139) we can easily check that for QED (to lowest order),

β(Q2) =
α2
eff(Q

2)

3π
, Q2 ≫ m2 . (7.141)

This also clearly shows that the coupling constant monotonically increases

as the scale Q2 grows.

The fact that the behaviour of QED coupling αeff(Q
2) is completely dictated

by the photons self energy diagram is not general but is specific to QED.

Let us denote the UV-divergent part of the loop-corrected vertex by 1/Z̃1,

= = −ieγµ × Z̃−1
1 (q2)

According to Eq. (7.56), with Pauli-Villars regularization,

Z̃−1
1 (q2) = 1 +

α0

2π

[

1

2
log

(

Λ2

−q2
)

+ · · ·
]

.

or the same in dimensional regularization (Ex.),

Z̃−1
1 (q2) = 1 +

α0

2π

1

2

[

2

ǫ
− γE + log(4π) + log

(

µ2D
−q2

)

+ · · ·
]

. (7.142)

We then denote the UV-divergent part of the electron self-energy (after

mass renormalization) by Z̃2. According to Eq. (7.76), with Pauli-Villars
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regularization,

Z̃2(q
2) = 1− α

2π

[

1

2
log

(

Λ2

−q2
)

+ · · ·
]

which in dimensional regularization corresponds to (Ex.),

Z̃2(q
2) = 1− α0

2π

1

2

[

2

ǫ
− γE + log(4π) + log

(

µ2D
−q2

)

+ · · ·
]

. (7.143)

Both external electrons contribute by
√

Z̃2. Finally, we denote by Z̃3(q
2)

the UV-divergent part of the photon self-energy correction,

Z̃3(q
2) = 1− α0

3π

[

2

ǫ
+ log

(

µ2D
−q2

)

− γE + log(4π) · · ·
]

In general we should define the scale-dependent coupling by

eeff(q
2) ≡ e0

Z̃2(q
2)
√

Z̃3(q2)

Z̃1(q2)
, (7.144)

but in QED it so happens that Z̃2(q
2)/Z̃1(q

2) is not UV divergent so only

the photon self-energy correction is enough to renormalize the QED coupling.

In other theories (e.g. QCD), this may not be the case and all the legs i

connecting to a given vertex will give one
√

Z̃i and the vertex-correction

itself one Z̃−1
1 .

Schemes and scales

What terms to include into the renormalizaton factors Z̃i(q
2) when defining

the running coupling constant by Eq. (7.144) is not unique. Different choices

are called renormalization schemes. In dimensional regularization by

far the most common is the so-called modified minimal subtraction
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scheme or just MS scheme in short. In this scheme one defines,

Z̃3(q
2)

MS
= 1− α0

3π

[

2

ǫ
− γE + log(4π) + log

(

µ2D
−q2

)]

, (7.145)

Z̃2(q
2)

MS
= 1− α0

2π

1

2

[

2

ǫ
− γE + log(4π) + log

(

µ2D
−q2

)]

, (7.146)

Z̃−1
1 (q2)

MS
= 1 +

α0

2π

1

2

[

2

ǫ
− γE + log(4π) + log

(

µ2D
−q2

)]

. (7.147)

so the definition absorbs not only the 1/ǫ pole but also factors γE ja log(4π)

typical to the dimensional regularization. In the so-called minimal sub-

traction scheme or MS scheme in short, these terms are left out from

the definition.

To some extent, the choice of scheme affects e.g. what kind of β function

we get. At least the first five terms of the QED β function have been

calculated. In the MS scheme the first three terms are,

β(Q2) =
α2
eff(Q

2)

3π
+
α3
eff(Q

2)

4π2
− 31α4

eff(Q
2)

288π3
. (7.148)

Another ambiguity is related to the scale q2. As we see from the definition

(7.144), we can express e0 in terms of whatever scale q2. It is natural to

tie this scale to some invariant scale that appears in the process but there

is no single correct way to choose this. The chosen scale is called the

renormalization scale.

In a physical observable, two different renormalization schemes or scale

choices formally differ by a factor that is higher order in coupling than the

precision of the calculation. In this sense all schemes and scales are equally

good. Numerically they are not exactly equal, though. By performing the

calculation in more than one scheme and with several scale choices serves

as a tool to test the perturbative reliability of the result.
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