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1 Deeply inelastic scattering and the parton model

1.1 General structure

k1

kn

k,s

k′,s′

p,σ

q=k−k′

X

Figure 1: Schematic picture of the deeply inelastic scattering. The variables k and P denote the
incoming momenta, whereas k′ and k1, . . . , kn are all outgoing. The spin states are marked by s,
s′ and σ.

In the deeply inelastic scattering (DIS) a lepton projectile hits a target nucleon (here we will
implicitly think of a proton target, but in general is can be any hadron) breaking it apart to a
state X consisting of a plethora of various particles with invariant mass M2

X �M2, where M
denotes the rest mass of the nucleon. In the simplest case the lepton is an electron or muon and
the interaction is dominantly mediated by exchanging a virtual photon, as illustrated in Fig. 1.
In the target rest frame, the four-momenta of the particles can be chosen as

k = (E,k) = (E, 0, 0, E)
k′ = (E′,k′) = (E′, E′ sin θ cosφ,E′ sin θ sinφ,E′ cos θ)

P = (P 0,P) = (M, 0, 0, 0)
q = (ν,q) = (E − E′,k− k′),

(1)

where we have neglected the lepton mass m`. The standard invariant DIS-variables are

Q2 ≡ −q2 = 4EE′ sin2 (θ/2) (Virtuality)

x ≡ Q2

2P · q =
Q2

2Mν
(Bjorken x) (2)

y ≡ P · q
P · k =

ν

E
(Inelasticity),

where the latter equalities refer to the target rest frame. The invariant mass W of the final state
X is

W 2 ≡ (P + q)2 = M2 +Q2 1− x
x

. (3)

For lepton-proton scattering we have the condition W 2 ≥ M2
proton following from the baryon-

number conservation. From Eq. (3) we see that (for a proton target) W 2 = M2
proton when

x = 1. That is, x = 1 corresponds to an elastic scattering. The differential, spin-independent
cross-section for this process can be written as

dσ =
1

4
√

(k · p)2 −m2
`M

2

d3k′

(2π)32E′
∑

n

∫ n∏

i=1

d3ki

(2π)32k0
i

(2π)4δ(4)(P + k − k′ −
n∑

j=1

kj)|Mn|2 (4)
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where the matrix element is

Mn =
[
u(k′, s′)(−ieγµ)u(k, s)

](
− igµν

q2

)
〈n, out|eĴν(0)|(P, σ), in〉 . (5)

Squaring and averaging over the spins,

|Mn|2 =
e4

q4

1

2

∑

s,s′

[
u(k′, s′)γµu(k, s)

] [
u(k′, s′)γνu(k, s)

]∗

︸ ︷︷ ︸
Lµν

(6)

× 1

2

∑

σ

〈n, out|Ĵµ(0)|(P, σ), in〉〈n, out|Ĵν(0)|(P, σ), in〉∗

such that 4πMWµν “hadronic tensor“

dσ =
1

2s

e4

q4

d3k′

(2π)32E′
Lµν× 1

2

∑

σ

∑

n

∫ n∏

i=1

d3ki

(2π)32k0
i

(2π)4δ(4)(P + q −
n∑

j=1

kj) (7)

〈n, out|Ĵµ(0)|(P, σ), in〉〈n, out|Ĵν(0)|(P, σ), in〉∗ .

That is, we can write the cross section as

dσ =
4πM

2s

e4

q4

d3k′

(2π)32E′
LµνWµν (8)

where e is the QED coupling constant and

Lµν ≡ 1

2
Tr[ /k′γµ/kγν ] = 2

[
k′µkν + kµk′ν − (k · k′)gµν

]
(9)

4πMWµν ≡ 1

2

∑

n

∑

σ

n∏

i=1

d3ki

(2π)32k0
i

(2π)4δ(4)(P + q −
n∑

j=1

kj) (10)

〈n, out|Ĵµ(0)|(P, σ), in〉〈n, out|Ĵν(0)|(P, σ), in〉∗

are the leptonic and hadronic tensors. In contrast to the leptonic tensor Lµν , the non-perturbative
nature of QCD makes it impossible to compute Wµν directly but its general form can nevertheless
be written down without much further input. Indeed, since Lµν is real and symmetric under
interchange of indices, the relevant part of the hadronic tensor should satisfy Wµν = W ∗µν = Wνµ.
A further restriction is provided by the Ward identity qµWµν = qνWµν = 0. The general
expression satisfying these conditions can be written as

Wµν = −W1

(
gµν −

qµqν
q2

)
+
W2

M2

(
Pµ −

P · q
q2

qµ

)(
Pν −

P · q
q2

qν

)
, (11)

where W1 and W2 are, a priori unknown coefficients. They can only depend on the momenta P
and q, and thus (for Lorentz invariance), on x, Q2 (neglecting M2). It is traditional to define
the dimensionless structure functions

F1(x,Q2) ≡MW1 F2(x,Q2) ≡ νW2, (12)
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which, in the M2 � Q2 limit, can be projected from the hadronic tensor as

F2

x
=

(
−gµν +

12x2

Q2
PµP ν

)
MWµν (13)

F1 =

(
−1

2
gµν +

2x2

Q2
PµP ν

)
MWµν =

F2

2x
−
(

4x2

Q2
PµP ν

)
MWµν ,

where the proton mass M has been neglected in comparison to Q2. In terms of the structure
functions F1 and F2 the cross-section in Eq. (8) can expressed in an invariant way

d2σ

dxdQ2
=

4πα2
em

Q4

1

x

[
xy2F1 + F2

(
1− y − xyM2

s−M2

)]
, (14)

where s ≡ (P + k)2 denotes the center-of-mass energy, and αem ≡ e2/4π stands for the QED
fine-structure constant. Often, the data are presented as reduced cross sections, defined as

dσreduced ≡
xQ4

2πα2
emY+

d2σ

dxdQ2
= F2 −

y2

Y+
FL,

where Y+ ≡ 1 + (1 − y)2, and FL ≡ F2 − 2xF1 is the longitudinal structure function. At
high Q2 also a third structure function F3 appears due to exchange of a Z boson.

1.2 Parton model

The parton model [1, 2] can be motivated by considering the DIS not in the target-rest-frame
but in the electron-proton center-of-mass system. In such a frame, the nucleon appears Lorentz
contracted, and the time dilatation slows down the intrinsic interaction rate of the fundamental
constituents of the nucleon, the partons. During the short period it takes for the electron to
traverse across the nucleon, the state of the nucleon wave function can thus be envisioned as
being frozen to a superposition of free partons collinear with the nucleon. Mathematically, the
parton model is defined by the relation

dσparton model =
∑

q

∫ 1

0
dξdσ̂q0(ξP )fq(ξ), (15)

where σ̂q0(ξP ) is the leading order (Born) cross-section for the electron-parton scattering, with
the parton carrying a momentum p = ξP . The functions fq(ξ) are called parton distributions,
and represent the number density of partons of flavor q in the nucleon.

p′

p

q

Figure 2: The leading-order diagram for photon-quark interaction.

dσ̂q0(p = ξP ) =
1

2ŝ

d3k′

(2π)32E′

∫
d3p′

(2π)32p′0
(2π)4δ(4)(p+ k − k′ − p′)|M0|2 (16)
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where the leading-order matrix element is

M0 =
[
u(k′, s′`)(−ieγµ)u(k, s`)

](
− igµν

q2

)[
u(p′, s′q)(−ieeqγν)u(p, sq)

]
. (17)

Squaring & summing,

|Mn|2 =
e4

q4

1

2

∑

s`,s
′
`

[
u(k′, s′`)γ

µu(k, s`)
] [
u(k′, s′`)γ

νu(k, s`)
]∗

︸ ︷︷ ︸
Lµν

(18)

×
e2
q

2

∑

sq ,s′q

[
u(p′, s′q)γ

µu(p, sq)
] [
u(p′, s′q)γ

νu(p, sq)
]∗

such that

dσ̂q0(p = ξP ) =
1

2ŝ

e4

q4

d3k′

(2π)32E′
Lµν×

∫
d3p′

(2π)32p′0
(2π)4δ(4)(p+ k − k′ − p′)

e2
q

2
Tr[/p′γµ/pγν ] . (19)

Using the δ-function identity ∫
d3p′

2p′0
=

∫
d4p′θ(p′0)δ(p′2)

we get 4πMŴ q
µν “quark tensor“

dσ̂q0(p = ξP ) =
1

2ŝ

e4

q4

d3k′

(2π)32E′
Lµν× 2πx

Q2

e2
q

2
Tr[/p′γµ/pγν ]δ(ξ − x) .

Using Eq. (15) and noting that ŝ = ξs,

dσ =
∑

q

∫
dξ

[
1

2ŝ

e4

q4

d3k′

(2π)32E′
Lµν(4πM)Ŵ q

µν

]
fq(ξ) (20)

=
1

2s

e4

q4

d3k′

(2π)32E′
Lµν ×

∑

q

∫
dξ

ξ
(4πM)Ŵ q

µνfq(ξ) (21)

Comparing now with Eq. (7), we see that the hadronic tensor Wµν in parton model becomes

Wµν =
∑

q

∫ 1

0

dξ

ξ
Ŵ q
µνfq(ξ), (22)

where the quark tensor Ŵ q
µν is

4πMŴ q
µν =

e2
q

2

2πx

Q2
Tr[/p′γµ/pγν ]δ(ξ − x). (23)

From Eq. (13) we see that in order to get F1,2, we need the contractions with gµν and PµPν :

gµν Tr[/p′γµ/pγν ] = −4Q2 PµPν Tr[/p′γµ/pγν ] = 0, (24)

so that
−gµν(MŴ q

µν) = e2
qxδ(ξ − x) PµP ν(MŴ q

µν) = 0. (25)
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Consequently, using Eq. (13), the parton model predictions for the structure functions reduce to
an electric-charge-weighted sum of the quark distributions,

F2

x
= −gµν(MWµν) =

∑

q

∫ 1

0

dξ

ξ
(−gµνMŴ q

µν)fq(ξ) =
∑

q

e2
qfq(x), (26)

2xF1(x) = F2(x) =
∑

q

e2
qxfq(x), (27)

and the cross-section in Eq. (14) can be written as

d2σ

dxdQ2
=

d2σ̂0

dxdQ2

∑

q

e2
qfq(x), (28)

where σ̂0 denotes the partonic Born cross-section

d2σ̂0

dxdQ2
≡ 4πα2

em

Q4

[
y2

2
+

(
1− y − xyM2

s−M2

)]
. (29)

It is a prediction of the parton model that the structure functions F1,2 are only functions of x, and
should not depend on Q2 in the Q2 �M2 limit. This phenomenon, termed as Bjorken-scaling,
was indeed observed in the early SLAC experiments providing direct evidence about the inner
constituents of the nucleon. Later experiments which have covered a larger domain in the
(x,Q2)-plane have revealed, however, that the Q2-independence of the structure functions F1,2,
although a good first approximation, is not exact. Such deviations are clear e.g. in Fig. 3 and
Fig. 4, which show some experimental data for the proton structure function F2. These scaling
violations, as they are nowadays called, can however be fully explained by QCD dynamics —
by the so-called DGLAP equations.

2 DGLAP evolution equations: resummation of leading loga-
rithms

2.1 Origin of the scaling violations

Due to the inclusive nature of the deeply inelastic scattering nothing forbids having additional
QCD particles in the final state. First such corrections to the Born-level matrix element originate
from a radiation of a real gluon as shown in Fig. 5. Both of these diagrams are divergent as the
intermediate quark propagators are close to being on-shell:

(p− k)2 = −2p0k0 (1− cos θ) → 0,
(
p′ + k

)2
= −2p′0k0

(
1− cos θ′

)
→ 0 ,

for massless quarks. This can happen either if the momentum of the emitted particle goes to
zero, k0, p′0 → 0, or if the emission is collinear with the incoming or the outgoing quark θ, θ′ → 0.
These are archetypes of infrared and collinear singularities, respectively. There are also same
kind of divergences stemming from the virtual corrections, and it turns out that all but the
collinear divergence related to the gluon radiation from the incoming quark will eventually cancel.
In what follows, we will see how to extract these divergences and how their resummation gives
rise to the partonic DGLAP evolution — the Q2-dependence of the parton distributions observed
in the experiments (e.g. in Figure 3).
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Figure 3: Experimental data for proton structure function F2. Figure from Ref. [3].

2.2 One gluon emission

The partonic DIS cross section with one extra gluon emission can be written as

dσ̂`q→`qg =
1

2ŝ

d3k′

(2π)32E′

∫
d3p′

(2π)32p′0
d3k

(2π)32k0
(2π)4δ(4)(p+ q − p′ − k)|M|2 (30)
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Figure 4: Experimental data for proton structure function F2. Figure from Ref. [3].

where the matrix element is

iM =
[
u(k′, s′`)(ieγ

µ)u(k, s`)
](
− igµν

q2

)[
u(p′, sp′)(ieeqγ

µ)
i(/p− /k)

(p− k)2
(igst

a
ij/ελ)u(p, sp) (31)

+ u(p′, sp′)(igst
a
ij/ελ)

i(/p′ + /k)

(p′ + k)2
(ieeqγ

µ)u(p, sp)

]
.

We write squared and spin/colour summed matrix element as

|M|2 =
e4

q4
LµνMµν

γ∗q→qg (32)

with

Mµν
γ∗q→qg = g2

se
2
q

1

2

∑

spins

1

3

∑

colours

taij(t
a
ij)
∗
{

1

(p− k)4
Tr
[
/p′γµ(/p− /k)/ελ/p/ε

∗
λ(/p− /k)γν

]
(33)

+
1

(p′ + k)4
Tr
[
/p′/ελ(/p′ + /k)γµ/pγ

ν(/p′ + /k)/ε∗λ
]

+
2

(p− k)2(p′ + k)2
Tr
[
/p′γµ(/p− /k)/ελ/pγ

ν(/p′ + /k)/ε∗λ
]}

.
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p′, i

q

t, i

p, j

k,a

p

s

p′

k

Figure 5: Real gluon radiation. The letter i, j, a are the color indices.

Rather than drawing graphs for matrix elements, for the rest of this Chapter, we will draw the
graphs in the cut diagram notation (see e.g. [4]) directly for the cross-sections. The square of
the diagrams in Fig. 5 can be represented as four cut diagrams shown in Fig. 6. Although the

p

kt

p′
q

Figure 6: Diagrams representing the γ∗q → qg process. It should be understood that the parton
lines in the middle are real, on-shell particles.

full squared matrix element is certainly gauge invariant, the contribution of an individual graph
depends on the choice of gauge. Here, we’ll be mostly interested in the collinear singularities
and, as it turns out, it is advantageous to perform the calculations in an axial gauge, as it is
the first diagram alone in Fig. 6 that is responsible for collinearly divergent behaviour. We’ll call
this type of graph as a ladder diagram.

2.2.1 Axial gauge

The class of axial gauges is specified by a gauge-fixing term− (n ·G)2 /(2ξ) in the QCD Lagrangian
where G denotes the gluon field, n is an arbitrary four-vector and ξ is a gauge parameter. The
gluon propagator in this gauge is

Dµν(k) =
−i

k2 + iε

[
gµν −

kµnν + kνnµ
k · n +

ξk2 + n2

(k · n)2
kµkν

]
. (34)

The sum over the two physical polarization states ελ1,2(k) (k2 = 0), obeying k · ελi(k) = 0 and
n · ελi(k) = 0, normalized by ελi(k) · ελi(k) = −1, reads

∑

λ

ελµ(k)ε∗λν (k) = −gµν +
kµnν + kνnµ

(k · n)
− n2kµkν

(k · n)2
. (35)
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Usually, it is convenient to choose ξ = 0 and n2 = 0 which specifies a light-cone gauge. The
axial gauges are sometimes called physical gauges: the reason for this is most distinct in the
light-cone gauge as any propagator in a Feynman diagram can be replaced by the polarization
sum over the physical states:

Dµν(k) =
i

k2

∑

λ

ελµ(k)ε∗λν (k). (36)

A convenient choice for the light-like axial vector n (n = 0) in the present problem is

n ≡ q + ηp, η ≡ −q
2

2p · q . (37)

2.2.2 Sudakov decomposition

In extracting the dominant part of the squared matrix elements, it is convenient to parametrize
the momenta of the outgoing partons by a Sudakov decomposition [5],

k = (1− z)p+ βn+ k⊥, β =
−k2
⊥

2(1− z)p · q , (38)

where k⊥ is a space-like 4-vector orthogonal to n and p: k2
T < 0, n · kT = p · kT = 0. For example,

the momenta can be parametrized as,

p = (
ξ

2x
Q, 0, 0,

ξ

2x
Q)

n = (Q/2, 0, 0,−Q/2)

q = (0, 0, 0,−Q) (39)

k⊥ = (0,k⊥, 0)

k =

(
Q

2

[
(1− z) ξ

x
+
−k2
⊥

Q2

x

ξ(1− z)

]
,k⊥,

Q

2

[
(1− z) ξ

x
− −k

2
⊥

Q2

x

ξ(1− z)

])

where Q =
√
Q2. In such a frame the interpretation of k2

⊥ = −k2
⊥ as the transverse momentum

is evident. In these coordinates,

t2 = (p− k)2 = k2
⊥/(1− z),

which suggests that the collinear divergences should be found by looking for the k2
⊥ → 0 limit.

2.2.3 Evaluation of the ladder diagram

The part of (Mγ∗q→qg)µν corresponding to the first diagram in Fig. 6 reads

(MLadder
γ∗q→qg)µν = CF g

2
s

e2
q

2

∑

pol

1

t4
Tr
[
/p′γµ/t/ε/p /ε∗/tγν

]
, t = p− k (40)

where the color factor CF = 4/3 arises from (see Fig. 5)

1

3

∑

i,j,a

taij(t
a
ij)
∗ =

1

3

∑

a

Tr(tata) =
4

3
= CF .
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Using the polarization sum Eq. (35) we find

∑

pol

/ε/p /ε
∗ =

2

1− z (/k + β/n) , (41)

and after a short calculation

/t (/k + β/n) /t =

(
1 + z2

1− z

)
(−k2

⊥) /p+O(/k⊥k
2
⊥), (42)

where the remaining terms are higher order in k⊥ and will not contribute to the collinear
divergence. In total,

(MLadder
γ∗q→qg)

2
µν = g2

sCF
2(1− z)
−k2
⊥

(
1 + z2

1− z

)
×
e2
q

2
Tr
[
/p′γµ/pγν

]
+ · · · . (43)

It is essential that the last combination of terms is nothing but the squared matrix element in the
Born approximation, see Eq. (19). Supplying the phase-space element in the Sudakov variables

d3k

(2π)32k0
=

1

16π2

dz

1− z dk
2
⊥, (44)

one obtains

d3k

(2π)32k0
(MLadder

γ∗q→qg)
2
µν =

dk2
⊥

k2
⊥
dz
(αs

2π

)
Pqq(z)×

e2
q

2
Tr
[
/p′γµ/pγν

]
+ · · · , (45)

where

Pqq(z) ≡ CF
(

1 + z2

1− z

)
(46)

is the so-called Altarelli-Parisi splitting function associated with the unpolarized quark → quark
transition. In the collinear limit, the variable z is readily interpreted as the momentum fraction
of the incoming quark left after emitting a gluon. The contribution to the quark tensor Ŵ q

µν is

4πMŴ q
µν =

∫
d3p′

(2π)32p′0

∫
d3k

(2π)32k0
(MLadder

γ∗q→qg)
2
µν(2π)4δ(4)(p+ q − k − p′)

= 2π

∫
d3k

(2π)32k0
(MLadder

γ∗q→qg)
2
µν δ(p

′2)θ(p′0).

The on-shell condition p′2 = 0 appearing in the δ function above is now

0 = p′2 = (p+ q − k)2 = −Q2

(
1− zξ

x

)
− k2

⊥
1− z

(
1− x

ξ

)
. (47)

Solving this for ξ yields two solutions, which in k2
⊥ → 0 limit behave as

ξ+ =
x

z

(
1 +

k2
⊥
Q2

)
+O(k4

⊥), ξ− =
k2
⊥
Q2

x

1− z +O(k4
⊥) . (48)

The latter one does not give rise to a collinear pole as the quark propagator behaves as 1/t2 =
(1 − z)/k2

⊥ → x/(ξQ2), x < ξ < 1. Thus, we identify ξ = ξ+, and neglecting all O(k2
⊥) terms

which would cancel the collinear singularity in Eq. (45),

p′2 ≈ Q2

(
ξz

x
− 1

)
(49)
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and

gµν Tr[/p′γµ/pγν ] ≈ −4Q2 ξ

x
PµPν Tr[/p′γµ/pγν ] = 0. (50)

Thus, the dominant O(αs) piece in the quark tensor is

−gµνMŴ q
µν = e2

q

[(αs
2π

)∫ dz

z
Pqq(z)

∫
dk2
⊥

k2
⊥

]
ξδ
(
ξ − x

z
+O(k2

⊥)
)

+ · · · , (51)

which contributes to the hadronic tensor by

−gµνMWµν =
∑

q

∫
dξ

ξ
(−gµνMŴ q

µν)fq (ξ) =
∑

q

e2
q

[(αs
2π

)∫ 1

x

dz

z
Pqq(z)

∫ k2
⊥max

0

dk2
⊥

k2
⊥

]
fq

(x
z

)
+· · · .

(52)
The upper integration limits for k2

⊥ and z can be found by requirement p′0 > 0,

p′0 = p0 + q0 − k0 =

√
Q2

2

[
zξ

x
− k2

⊥
Q2

x

ξ(1− z)

]
≥ 0 , (53)

which, in the limit ξ = x/z gives

k2
⊥ ≤

1− z
z

Q2 = k2
⊥max, z ≤ Q2

Q2 + k2
⊥

= 1− k2
⊥
Q2

+O(k4
⊥) (54)

The minimum k2
⊥ is zero, so z < 1. As anticipated, the expression in Eq. (52) is divergent in

k2
⊥ → 0, and z → 1 limits. We may regulate the integrals by introducing a small cut-off mass m

for k2
⊥,

∫ 1−m2

Q2

x

dz

z
Pqq(z)

∫ k2
⊥max

m2

dk2
⊥

k2
⊥
fq

(x
z

)
=

∫ 1−m2

Q2

x

dz

z
Pqq(z) log

(
Q2

m2

1− z
z

)
fq

(x
z

)
. (55)

The singularity at z = 1 can be written in terms of distributions:

log

(
Q2

m2

)∫ 1−m2

Q2

0

[
1 + z2

1− z

] [
1

z
fq

(x
z

)
− fq (x) + fq (x)

]

= log

(
Q2

m2

)∫ 1

0

[
1 + z2

1− z

] [
1

z
fq

(x
z

)
− fq (x)

]
+

[
2 log2

(
Q2

m2

)
− 3

2
log

(
Q2

m2

)]
f(x)

= log

(
Q2

m2

)∫ 1

0

dz

z

(
1 + z2

1− z

)

+

fq

(x
z

)
+

[
2 log2

(
Q2

m2

)
− 3

2
log

(
Q2

m2

)]
f(x) , (56)

where we have used plus distributions,

∫ 1

0
dzh(z)

(
1 + z2

1− z

)

+

=

∫ 1

0
dz

(
1 + z2

1− z

)
[h(z)− h(1)] , (57)

∫ x<1

0
dzh(z)

(
1 + z2

1− z

)

+

=

∫ x

0
dz

(
1 + z2

1− z

)
h(z).

All but the first term in Eq. (56) including the rest of Eq. (55), are either finite or correspond
to z → 1 singularity (when the emitted gluon is arbitrarily soft). It so happens that the z → 1
divergences will cancel against virtual corrections. However, the division in Eq. (56) to plus

12



distribution and log(Q2/m2) terms is not unique, and from the current calculation it is impossible
to say what the ”correct“ splitting function Pqq would be. We shall return to this in Section 2.6,
and for the moment we simply write the dominant correction to the hadronic tensor in the
collinear limit as

−gµνMWµν =
∑

q

∫
dξ

ξ
(−gµνMŴ q

µν) =
(αs

2π

)
log

(
Q2

m2

)∑

q

e2
q

∫ 1

x

dz

z
Pqq(z)fq

(x
z

)
+ · · · .

(58)
Comparing with the parton-model expression Eq. (26), we immediately see that the contribution
to the DIS cross-section is proportional to the partonic cross section d2σ̂0, and adding this and
the LO result, we have

d2σ

dxdQ2

LL
=

d2σ̂0

dxdQ2

∑

q

e2
q

[
1 +

(αs
2π

)
log

(
Q2

m2

)
Pqq

]
⊗ fq, (59)

where the designation LL means that we kept only the leading logarithmic contribution, and the
shorthand notation ⊗ stands for the convolution

Pqq ⊗ fq ≡
∫ 1

x

dz

z
Pqq(z)fq

(x
z

)
= fq ⊗ Pqq, (60)

1⊗ fq ≡
∫ 1

x

dz

z
δ(1− z)fq

(x
z

)
= fq(x).

Since the left-hand side of Eq. (59) is a measurable, finite, quantity the non-perturbative parton
density fq is inevitably intertwined with the arbitrary cut-off scale m2 such that the cross-section
is finite.

2.3 Multiple gluon emissions

Based on the previous section, it is natural to expect to find two similar collinear divergences
as in Eq. (59) if double gluon emission, shown in Fig. 7, is considered. This is indeed the case
and employing the method introduced earlier one can extract an α2

s log2(Q2/m2) contribution to
cross-section Eq. (59). This is how it goes.

k1,a1,ǫ1

k2,a2,ǫ2

q p′, i

t1,h

t2, i

p, j

Figure 7: Ladder graph for two-gluon emission. Momenta of the produced gluons with po-
larizations ε1, ε2 are denoted by k1, k2, and the intermediate quark momenta are t1 ≡ p − k1,
t2 ≡ p− k1 − k2. The color indices are denoted by i, j, h, a1, a2.
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The squared and spin-summed matrix element for the ladder diagram in Fig. 7 reads

|MLadder
γ∗q→q,2g|2µν = g4

s

e2
q

2
C2
F

∑

pol

1

t41t
4
2

Tr
[
/p′γµ /t2 /ε2 /t1 /ε1/p /ε∗1 /t1 /ε

∗
2 /t2γν

]
(61)

where the color factor C2
F = (4/3)2 arises in the following way (summation over all indices is

implicit):

1

3
(ta2ih t

a1
hj)(t

a2
is t

a1
sj )∗ =

1

3
(ta2ih t

a1
hj)(t

a2
si t

a1
js )

=
1

3
(ta1ta1)hs(t

a2ta2)sh (62)

=
1

3
Tr(ta1ta1)

1

3
Tr(ta2ta2) =

(
4

3

)(
4

3

)
= C2

F ,

where I used (tata)hs = (1/3) δhs. Introducing the Sudakov decomposition for the lower gluon
momentum

k1 = (1− z1)p+ β1n+ k1⊥, β1 =
−k2

1⊥
2(1− z1)p · q , (63)

one immediately obtains, reading from the preceding calculation, that

∑

pol1

/t1 /ε1/p /ε
∗
1 /t1 =

2

1− z1

(
1 + z2

1

1− z1

)
(−k2

1⊥)/p+ . . . , (64)

where I have again omitted the terms higher order in k1⊥. In the same way, writing the Sudakov
decomposition for the upper gluon momentum as

k2 = z1(1− z2)p+ β2n+ k2⊥, β2 =
−k2

2⊥
2z1(1− z2)p · q , (65)

and dropping terms higher order in k1⊥ and k2⊥, one finds the leading contribution

∑

pol2

/t2 /ε2/p /ε
∗
2 /t2 =

2

1− z2

(
1 + z2

2

1− z2

)
(−k2

2⊥)/p+ . . . . (66)

Thus, the squared matrix element (61) acquires a form

|MLadder
γ∗q→q,2g|2µν = g4

s

−k2
1⊥
t41

[
2Pqq(z1)

1− z1

] −k2
2⊥
t42

[
2Pqq(z2)

1− z2

]

e2
q

2
Tr
[
/p′γµ/pγν

]
+ · · · , (67)

where the last factor is again the Born matrix-element that has penetrated through the calculation.
If there were not the factors t41,2 in the denominator, the leading factors for both emitted gluons
would be identical. However,

t21 =
k2

1⊥
1− z1

t22 =
k2

2⊥
1− z2

+
1− z1(1− z2)

1− z1
k2

1⊥ + k1⊥ · k2⊥, (68)
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where the latter one looks bad. In the region of phase space where −k2
1⊥ < −k2

2⊥ one can power
expand Eq. (67) in k2

1⊥/k
2
2⊥, schematically

|MLadder
γ∗q→q,2g|2µν ∝

1

k2
1⊥

1

k2
2⊥

[
1 +A

(
k2

1⊥
k2

2⊥

)
+B

(
k2

1⊥
k2

2⊥

)2

+ . . .

]
(69)

where the odd powers of k1⊥ are absent as they would vanish upon integration. Whereas the
integration over the first term gives the leading double logarithm,

∫ Q2

m2

dk2
2⊥

k2
2⊥

∫ k2
2⊥

m2

dk2
1⊥

k2
1⊥

=
1

2!
log2

(
Q2

m2

)
, (70)

the rest can give only a single logarithm. In the opposite transverse momentum ordering
−k2

1⊥ > −k2
2⊥, one again obtains only single logarithms. Thus, the leading contribution stems

Figure 8: Diagrams for two-gluon emission that do not contain double-logarithms.

from the transverse momentum ordering −k2
1⊥ < −k2

2⊥. In fact, from Eq. (70) we see that the
dominant region is −k2

1⊥ � −k2
2⊥ for the emitted gluons. In total,

|MLadder
γ∗q→q,2g|2µν

LL
=

1− z1

−k2
1⊥

[
2g2
sPqq(z1)

] 1− z2

−k2
2⊥

[
2g2
sPqq(z2)

]
(71)

e2
q

2
Tr
[
/p′γµ/pγν

]
,

Following the same steps as earlier, we find

−gµνMŴ q→q,2g
µν = e2

q

1

2

[
αs
2π

log

(
Q2

m2

)]2 ∫
dz2

z2
Pqq(z2)

∫
dz1

z1
Pqq(z1)

ξδ

(
ξ − x

z1z2

)
, (72)

which contributes to the hadronic tensor by

−gµνMŴµν =
∑

q

e2
q

1

2

[
αs
2π

log

(
Q2

m2

)]2

Pqq ⊗ Pqq ⊗ fq. (73)

The convolution between three objects above is defined by

Pqq ⊗ Pqq ⊗ fq =

∫ 1

x

dz2

z2
Pqq(z2)

∫ 1

x/z2

dz1

z1
Pqq(z1)fq

(
x

z1z2

)
, (74)
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with obvious extension to convolutions between an arbitrary number of functions. Thus, to
O(α2

s), the leading logarithms organize themselves as

d2σ

dxdQ2

LL
=

d2σ̂0

dxdQ2

∑

q

e2
q

[
1 +

(αs
2π

)
log

(
Q2

m2

)
Pqq (75)

+
1

2

(αs
2π

)2
log2

(
Q2

m2

)
Pqq ⊗ Pqq

]
⊗ fq.

Based on a similar reasoning as in the end of the previous subsection, the diagrams like those in
Fig. 8 cannot contain O(α2

s log2(Q2/m2)) terms in the axial gauge — it is the ladder diagram in
Fig. 7 alone that gives the leading logarithmic singularity.

The generalization to an arbitrary number of collinear gluon emissions from the initial quark
is now quite straightforward: For n emitted gluons the leading logarithms originate from the
region of the phase space where the transverse momenta are strongly ordered

−k2
1⊥ � −k2

2⊥ � · · · � −k2
n−1⊥ � −k2

n⊥ � Q2,

and the longitudinal momenta ordered as (the quark loses momentum as gluons are emitted)

1 ≥ z1 ≥ z2 ≥ · · · ≥ zn ≥ x .

The contribution to the DIS cross-section is

kn

k1

kn−1

q

p

p′

Figure 9: Ladder graph for n-gluon emission.

d2σ̂0

dxdQ2

∑

q

e2
q

1

n!

(αs
2π

)n
logn

(
Q2

m2

)
Pqq ⊗ Pqq ⊗ · · · ⊗ Pqq︸ ︷︷ ︸

n times

⊗fq. (76)

Thus, the leading logarithm contributions to the DIS cross-section constitute a series which is
formally an exponential

d2σ

dxdQ2

LL
=

d2σ̂0

dxdQ2

∑

q

e2
q exp

[
αs
2π

log

(
Q2

m2

)
Pqq

]
⊗ fq. (77)
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Comparing this expression to the corresponding parton model prediction, given in Eq. (28),
one can see that the resummation of the leading logarithms is equivalent to replacing the
Q2-independent parton distribution function a scale-dependent one,

fq(x)→ fq(x,Q
2) ≡ exp

[
αs
2π

log

(
Q2

m2

)
Pqq

]
⊗ fq. (78)

To distinguish between the scale-dependent (measurable) and scale-independent (unmeasurable)
PDFs, the latter are often called bare distributions. During the rest of these lectures, we
shall adopt this convention and write fq = fbare

q . Taking the Q2-derivative we see that fq(x,Q
2)

satisfies the following integro-differential equation

Q2 ∂

∂Q2
fq(x,Q

2) =
αs
2π
Pqq ⊗ fq(x,Q2), (79)

which is an archetype of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equa-
tions [6, 7, 8, 9], or just DGLAP equations in brief.

2.4 More splitting functions

The gluon emission discussed above is, of course, only one possibility among other QCD-
interactions. For example, from O(αs) onwards, also gluon-initiated subprocesses contribute to
the deeply inelastic cross-section. The simplest such diagram is shown in Fig. 10. As in the

k, j

q p′, i

p,ǫ,a

p−k, i

Figure 10: A gluon-initiated ladder diagram.

case of gluon radiation graphs discussed in the preceding sections, also this diagram — and in
the axial gauge this ladder-type diagram only — gives a collinear divergence. Extracting this
divergence goes as in the previous section. The result is,

d2σ̂0

dxdQ2

∑

q

e2
q

(αs
2π

)
log

(
Q2

m2

)
Pqg ⊗ fbare

g , (80)

where
Pqg(z) ≡ TR

[
z2 + (1− z)2

]
(81)

is the splitting function for a gluon→quark transition and fg is the parton distribution function
for the gluons. This is obviously of the same form as what we had for the gluon radiation.

Having now considered two different ladder vertices, we can also pile them on top of each other
to form a parton ladder like the one in Fig. 11 below. The leading contribution to the DIS cross
section from this diagram is

d2σ̂0

dxdQ2

∑

q

e2
q

1

2

(αs
2π

)2
log2

(
Q2

m2

)
Pqq ⊗ Pqg ⊗ fbare

g .
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k2,ǫ2,b

q p′, j

p,ǫ1,a

t2 =p−k1−k2, j

k1,ℓ

t1 =p−k1, i

Figure 11: Another gluon-initiated ladder diagram.

The story continues with vertical gluon lines as in the diagram of Fig. 12. This leads to a

k2, i

q p′, j

t2 =p−k1−k2, j

k1,ℓ

t1 =p−k1,a

p,n

Figure 12: Ladder diagram with gluon as a vertical line.

contribution

d2σ̂0

dxdQ2

∑

q,q′

e2
q

1

2

(αs
2π

)2
log2

(
Q2

m2

)
Pqg ⊗ Pgq′ ⊗ fbare

q′ ,

where

Pgq(z) ≡ CF
[

1 + (1− z)2

z

]
(82)

is the splitting function for the quark→gluon transition. Not that here, the flavour of the
incoming quark may change, and thus the summation runs over q (the quark on which the photon
collides) and q′ (the incoming quark).

There is still one more splitting function — namely that related to the 3-gluon vertex. This is
involved e.g. in the ladder diagram depicted in Fig. 13. The leading contribution of this diagram
in the DIS cross section is

d2σ̂0

dxdQ2

∑

q

e2
q

1

2

(αs
2π

)2
log2

(
Q2

m2

)
Pqg ⊗ Pgg ⊗ fbare

g ,

with

Pgg(z) ≡ 2CG

[
1− z
z

+
z

1− z + z(1− z)
]
, CG = 3. (83)
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k2, i

q p′, j

t2 =p−k1−k2, j

k1,ℓ,ǫ2

t1 =p−k1,a

p,n,ǫ1

Figure 13: A ladder diagram from which one can compute sthe plitting function for gluon→gluon
transition.

From now on, one can pretty much see how this goes on: each additional ladder-compartment in
which parton of flavor i transforms to j, effectively just increments the power of αs logQ2/m2

by one unit and adds the corresponding splitting function Pij to the convolution integral. The
possible building blocks for constructing the ladders are displayed in Fig. 14 together with the
characteristic splitting functions. In Eq. (78) we defined the scale-dependent quark PDFs solely
in terms of quark-to-quark splittings Pqq. However, clearly we should account not only for those,
but rather for all possible parton ladders — also the gluon-triggered ones — when defining the
scale-dependent quark densities. Therefore, we define the scale-dependent parton distributions
as a sum of all possible ladders that end up with the specific parton i:

fi(x,Q
2) = fbare

i +
1

1!

(αs
2π

)
log

(
Q2

m2

)∑

j

Pij ⊗ fbare
j (84)

+
1

2!

(αs
2π

)2
log2

(
Q2

m2

)∑

jk

Pij ⊗ Pjk ⊗ fbare
k

+
1

3!

(αs
2π

)3
log3

(
Q2

m2

)∑

jkn

Pij ⊗ Pjk ⊗ Pkn ⊗ fbare
n +

+
1

4!

(αs
2π

)4
log4

(
Q2

m2

) ∑

jknm

Pij ⊗ Pjk ⊗ Pkn ⊗ Pnm ⊗ fbare
m + · · ·
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Figure 14: Unpolarized splitting functions.

Taking a Q2 derivative gives

Q2 fi(x,Q
2)

dQ2
=
(αs

2π

)∑

j

Pij ⊗ fbare
j (85)

+
1

1!

(αs
2π

)2
log

(
Q2

m2

)∑

jk

Pij ⊗ Pjk ⊗ fbare
k

+
1

2!

(αs
2π

)3
log2

(
Q2

m2

)∑

jkn

Pij ⊗ Pjk ⊗ Pkn ⊗ fbare
n +

+
1

3!

(αs
2π

)4
log3

(
Q2

m2

) ∑

jknm

Pij ⊗ Pjk ⊗ Pkn ⊗ Pnm ⊗ fbare
m + · · ·

=
(αs

2π

)∑

j

Pij ⊗
[
fbare
j +

1

1!

(αs
2π

)
log

(
Q2

m2

)∑

k

Pjk ⊗ fbare
k

+
1

2!

(αs
2π

)2
log2

(
Q2

m2

)∑

kn

Pjk ⊗ Pkn ⊗ fbare
n +

+
1

3!

(αs
2π

)3
log3

(
Q2

m2

)∑

knm

Pjk ⊗ Pkn ⊗ Pnm ⊗ fbare
m + · · ·

]
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The term in square brackets is just fj(x,Q
2) and thus the full DGLAP equations read

Q2 fi(x,Q
2)

dQ2
=
αs
2π

∑

j

∫ 1

x

dz

z
Pij(z)fj

(x
z
,Q2

)
. (86)

2.5 Incorporating the running coupling

In the derivation of Eq. (86) the strong coupling αs has been taken as a fixed constant. In
order to incorporate the effects of running coupling we should consider the renormalization of
the ladder vertices. As the vertical lines in the parton ladder are somewhat virtual, the loop
corrections will lead to logarithmic terms log(Λ2/k2

⊥), where Λ2 is some UV cut off, which are
absorbed into the definition of running coupling,

αs(µ
2) =

α0
s

1− α0
s

4πβ0 log
(

Λ2

µ2

) = α0
s

[
1 +

α0
s

4π
β0 log

(
Λ2

µ2

)
+ · · ·

]
,

=
4π

β0 log
(
µ2/Λ2

QCD

) (87)

where β0 =
11

3
CG −

4

3
TRnf , and ΛQCD ≈ 200 MeV is the QCD scale parameter. In what follows,

for each ladder vertex, we will take k2
⊥ of the emitted parton as the argument of αs. Doing

otherwise would leave explicit k2
⊥-dependent logarithms in the cross-sections. However, when

the scale µ is identified as k2
⊥, also these logarithms can be resummed: In each ladder vertex we

change αs → αs(k
2
⊥), and do the nested transverse momentum integrals like (70) by a change of

variables

κ(k2
⊥) ≡ 2

β0
log

[
αs(m

2)

αs(k2
⊥)

]
=

2

β0
log

[
log(k2

⊥/Λ
2
QCD)

log(m2/Λ2
QCD)

]
, (88)

such that

∫ Q2

m2

dk2
2⊥

k2
2⊥

αs(k
2
2⊥)

2π

∫ k2
2⊥

m2

dk2
1⊥

k2
1⊥

αs(k
2
1⊥)

2π

=

∫ κ(Q2)

0
dκ(k2

2⊥)

∫ κ(k2
2⊥)

0
dκ(k2

1⊥) (89)

=
1

2
κ2(Q2).

Our definition of the scale-dependent PDFs would then become

fi(x,Q
2) = fbare

i +
1

1!
κ(Q2)

∑

j

Pij ⊗ fbare
j (90)

+
1

2!
κ2(Q2)

∑

jk

Pij ⊗ Pjk ⊗ fbare
k

+
1

3!
κ3(Q2)

∑

jkn

Pij ⊗ Pjk ⊗ Pkn ⊗ fbare
n +

+
1

4!
κ4(Q2)

∑

jknm

Pij ⊗ Pjk ⊗ Pkn ⊗ Pnm ⊗ fbare
m + · · ·
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Taking a Q2 derivative gives

Q2 fi(x,Q
2)

dQ2
=
αs(Q

2)

2π

∑

j

Pij ⊗
[
fbare
j +

1

1!
κ(Q2) log

(
Q2

m2

)∑

k

Pjk ⊗ fbare
k

+
1

2!
κ2(Q2)

∑

kn

Pjk ⊗ Pkn ⊗ fbare
n +

+
1

3!
κ3(Q2)

∑

knm

Pjk ⊗ Pkn ⊗ Pnm ⊗ fbare
m + · · ·

]

The term in square brackets is just fj(x,Q
2) and thus the DGLAP equations with running

coupling read

Q2 fi(x,Q
2)

dQ2
=
αs(Q

2)

2π

∑

j

∫ 1

x

dz

z
Pij(z)fj

(x
z
,Q2

)
. (91)

In summary, the leading collinear singularities in the perturbative Feynman-diagram expansion
can be factored to the scale-dependent parton distributions fi(x,Q

2) such that the parton model
prediction for the DIS cross-section stays formally intact, but the parton densities no longer
respect the Bjorken-scaling but are Q2-dependent. In principle, by experimentally measuring
cross sections at given Q2 one can unfold the PDFs at this scale. The Q2 dependence of PDFs —
and thereby also the Q2 dependence of cross sections — is then predicted by QCD via Eq. (91).
Also the interpretation of the parton distributions as simple number densities upgrades to being
number densities with transverse momentum up to Q2. This and further extensions to the simple
parton model are often referred to as pQCD-improved parton model.

2.6 Virtual corrections to Pqq and Pgg

The splitting functions Pqq(z) and Pgg(z) obtained from real emisson only, contain 1/(1−z)-poles
making the convolution integrals divergent. However, the contributions from the emitted gluons
being ”reabsorbed“ by the quark or gluon that emitted it in the first place, diverges similarly.
While it is possible to calculate these virtual corrections directly by a similar Sudakov technique
that we have used to evaluate the real diagrams, it’s a bit awkward (and regulating the loop
integrals with a cut-off mass is not Lorentz invariant). However, the effect of these loop corrections
to the splitting functions can be deduced from sum rules.

At this point, it is convenient to introduce the concepts of valence (sometimes also called
non-singlet) Vi(x,Q

2) and singlet Σ(x,Q2) distributions,

Vi(x,Q
2) = fi(x,Q

2)− fi(x,Q2), i 6= g . (92)

Σ(x,Q2) =
∑

i=q

[
fi(x,Q

2) + fi(x,Q
2)
]
. (93)

The DGLAP equations for these combinations become

Q2Vi(x,Q
2)

dQ2
=
αs(Q

2)

2π

∫ 1

x

dz

z
Pqq(z)Vi

(x
z
,Q2

)
. (94)

Q2 Σ(x,Q2)

dQ2
=
αs(Q

2)

2π

∫ 1

x

dz

z

[
Pqq(z)Σ

(x
z
,Q2

)
+ 2nfPqg(z)fg

(x
z
,Q2

)]
, (95)

where nf refers to the number of active flavours.
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Let us now consider the integral ∫ 1

0
dxVi(x,Q

2) . (96)

This counts the number of valence quarks, and it should be independent of Q2 since the flavour
of the quark does not alter by gluon emission, and every gluons splitting generates both a quark
and an antiquark. Indeed, for a proton,

∫ 1

0
dxVu(x,Q2) = 2,

∫ 1

0
dxVd(x,Q

2) = 1 . (97)

Thus, we must have
d

dQ2

∫ 1

0
dxVi(x,Q

2) = 0 . (98)

By using Eq. (94), we find ∫ 1

0
dzPqq(z)

∫ 1

0
dxVi(x,Q

2) = 0 . (99)

Since the latter integral is in general non-zero, we see that
∫ 1

0
dzPqq(z) = 0 . (100)

The contribution of virtual corrections in Pqq(z) must be proportional to δ(1 − z) (virtual
corrections do not affect the kinematics of the process) such that the complete Pqq(z) should be
of the from

Pqq(z) = CF
1 + z2

1− z +Aδ(1− z) . (101)

The requirement that the integral over Pqq(z) gives zero then indicates

Pqq(z) = CF

[
1 + z2

1− z

]

+

= CF
1 + z2

1− z − δ(1− z)
∫ 1

0
dyCF

1 + y2

1− y . (102)

That is, Pqq is not a function, but rather a distribution (pure plus distribution).

Another important sum rule is that of the total momentum. As the total momentum of the
hadron is carried by its constituent partons, we must have

∫ 1

0
dxx


 ∑

i=q,q,g

fi(x,Q
2)


 = 1 . (103)

Also this must be independent of the scale Q2. Proceeding as above, we obtain two equations,
∫ 1

0
dzz [Pqq(z) + Pgq(z)] = 0 (104)

∫ 1

0
dzz [Pgg(z) + 2nfPqg(z)] = 0 . (105)

With the Pqq of Eq. (102) the first of these equations is satisfied automatically. From the second
one we can obtain, as above, the contribution of virtual corrections to Pgg. It’s a simple exercise
in integration to show that the full Pgg must be

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ δ(1− z)
[

11CA − 2nf
6

]
. (106)
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3 Higher orders, factorization, universality, schemes & scales

3.1 Higher orders

When building the parton ladder, we systematically retained only terms of the form αns logn(Q2/m2),
discarding all contributions which are suppressed by additional powers of αs. This the leading
logarithmic approximation. However, if one keeps track also of the non-leading contributions

αn+1
s logn(Q2/m2), αn+2

s logn(Q2/m2), . . .

one finds that the splitting functions Pij actually constitute a power series in αs,

Pij(z) =
(αs

2π

)
P

(1)
ij (z) +

(αs
2π

)2
P

(2)
ij (z) +

(αs
2π

)2
P

(3)
ij (z) + . . . . (107)

Of these, P (2) have been known since 1980’s [14, 15] and also P (3) have been computed already

15 years ago [16, 17]. Also parts of P (4) are known [18] (incredible!). While the kernels P
(1)
ij

are unique, the higher order splitting functions P
(n)
ij , n > 1 are not unique but they are scheme

dependent. We will soon return to this point.

One might expect that towards higher orders in αs the corrections would become smaller.
However, a difficulty appears. At small-x limit, the 1- and 2-loop quark-to-gluon and gluon-to-
gluon splitting functions go as

P (1)
gq (x)

x→0−−−→ 2CF
x

, P (2)
gq (x)

x→0−−−→ 9CFCA − 40CFTf
9x

(108)

P (1)
gg (x)

x→0−−−→ 2CA
x

, P (2)
gg (x)

x→0−−−→ 12CFTf − 46CATf
9x

(109)

That is, both behave as ∼ 1/x and the perturbative stability appears reasonable. However, at
3-loop level, the leading behaviour gets logarithmically enhanced,

P
(3)
ij (x)

x→0−−−→∼ 1

x
log(x) , (110)

which appears to destroy the perturbative convergence of the expansion at low Q2. Figure 15
illustrates the situation. Since αs(Q

2)→ 0 as Q2 →∞, at high Q2 the prefactor α3
s(Q

2) becomes
suppressed, so this is a small-x and small-Q2 issue. The effect of log x enhancement in the
splitting functions is to make the Q2 evolution faster and faster towards small x. For fixed Q2

(above the parametrization scale) the quark and gluon distributions thus become increasingly
steeper functions of x. Importantly, there are now some evidence that such a steep growth is not
compatible with the experimental data [20], indicating that also the log x terms in the splitting
functions should be resummed (achieved by the duality between the DGLAP and the BFKL
equations). In particular, the difficulty of the fixed-order predictions is to describe properly the
turnover towards small x at fixed Q2. Figure 16 shows some examples and how the situation
improves upon performing the small-x resummations.

3.2 Factorization & universality

We have seen that, when extracting the divergent logarithms from the parton ladders, a mul-
tiplicative front factor that coincides with the leading order cross-section for photon-quark
scattering, was always found. This continues to be true in higher-order calculations, and order
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Figure 15: Perturbative behaviour of splitting functions. Figure from Ref. [19].

by order in perturbative calculations, the divergent logarithms can be systematically factored
apart from the finite perturbative parton-level pieces:

dσ =
∑

i

[
dσ̂

(0)
i +

(αs
2π

)
dσ̂

(1)
i +

(αs
2π

)2
dσ̂

(2)
i + . . .

]
⊗



fi +

1

1!

(αs
2π

)
log

(
Q2

m2

)∑

j

P
(1)
ij ⊗ fj +

1

2!

(αs
2π

)2
log2

(
Q2

m2

)∑

jk

P
(1)
ij ⊗ P

(1)
jk ⊗ fk + . . .

+
1

1!

(αs
2π

)2
log

(
Q2

m2

)∑

j

P
(2)
ij ⊗ fj +

1

2!

(αs
2π

)4
log2

(
Q2

m2

)∑

jk

P
(2)
ij ⊗ P

(2)
jk ⊗ fk + . . .

+
1

1!

(αs
2π

)3
log2

(
Q2

m2

)∑

jk

P
(1)
ij ⊗ P

(2)
jk ⊗ fk + . . .



 ,

=
∑

i

dσ̂i ⊗ fi(Q2) . (111)

In other words, to all orders in perturbation theory, the DIS cross section retains its simple form
in which the partonic “cross section” dσ̂i are convoluted with the scale-dependent PDFs. This
remarkable property is known as collinear factorization [22, 23]. However, this is not the
final truth, but a more complete treatment indicates that the factorization is subject to power
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Figure 16: HERA data vs. NNLO fit. Figure from Ref. [21].

corrections O
(
Λ2

QCD/Q
2
)n

which should become important at small Q2. Such terms appear, for
example, if one accounts for the fact that the partons are not exactly collinear with the parent
nucleon, but are allowed to carry some “primordial” transverse momentum k⊥. More generally,
such terms arise form multi-parton interactions.

Although we have here considered only the deeply inelastic scattering, the underlying physics
is shared in variety of other processes involving hadrons in the initial state — the structure
of the collinear singularities is the same. For example, for a generic inclusive observable O in
proton-proton collisions (say, at the LHC), we have

dσp+p→O+X =
∑

ij

fi(Q
2)⊗ dσ̂p+p→O+X

ij ⊗ fj(Q2) , (112)

where the PDFs fj(Q
2) are defined as exactly the same infinite series as in DIS. In other words,

the parton densities are independent of the actual hard process, universal. For example in the
Drell-Yan production of dileptons in nucleon-nucleon collisions, the leading logarithms originate
from diagrams like that in Fig. 17. The formal proofs for factorization are highly technical and
mathematically demanding. Therefore, there are only few processes for which such all-order
proofs actually exists [23], but it is typically assumed that for hadronic interactions that are
“hard enough” (involve a large invariant scale), the factorization holds. An integral part of the
LHC physics is based on this assumption.

3.3 Scheme dependence of PDFs

In preceding sections we defined the PDFs including only log(Q2/m2) type of terms. However,
this definition of PDFs is not unique. Starting from parton densities fi(x,Q

2) we may define
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µ+

µ−

Figure 17: Ladder-type diagram that gives rise to a leading logarithmic terms (in axial gauge)
for Drell-Yan dilepton production.

another version f ′i(x,Q
2) by

f ′i(x,Q
2) ≡

∑

j

Cij ⊗ fj(Q2), (113)

where

Cij(z) = δijδ(1− z) +
αs
2π
C

(1)
ij (z) +

(αs
2π

)2
C

(2)
ij (z) + . . . .. (114)

In terms of the primed PDFs, the cross-section can be written as

σ = σ̂i ⊗ fi = σ̂i ⊗ C−1
ij ⊗ f ′j = σ̂′i ⊗ f ′i ,

where, in the last step, we defined σ̂′j ≡ σ̂i ⊗ C−1
ij . Here, C−1

ij should be understood as a
“perturbative inverse”

C−1
ij (z) = δijδ(1− z)−

αs
2π
C

(1)
ij (z) + · · · , (115)

such that the primed coefficient function becomes

σ̂′i ≡ σ̂j ⊗ C−1
ji = σ̂

(0)
i +

αs
2π


σ̂(1)

i −
∑

j

σ̂
(0)
j ⊗ C

(1)
ji


+ · · · . (116)

We see that, by a choosing Cij suitably, we could e.g. eliminate the O(αs) contributions in DIS

altogether. Using the definition Eq. (84) in Eq. (113), and keeping only the C
(1)
ij and P

(1)
ij term

for simplicity, we see that the definition of PDFs (in terms of the bare) PDFs will, in general,
include also other than logarithmic terms:

f ′i(x,Q
2) = fbare

i +
(αs

2π

)[ 1

1!
log

(
Q2

m2

)
P

(1)
ij + C

(1)
ij

]
⊗ fbare

j + · · · . (117)

A similar reshuffling implies that f ′i obey the DGLAP equations with splitting functions

P ′ij = Cik ⊗ Pk` ⊗ C−1
`j +

dCik
d logQ2

C−1
kj . (118)
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In other words the definition of PDFs can involve also other than log(Q2/m2) type of terms and,
beyond leading order, the perturbative coefficients functions σ̂i, and the splitting functions Pij
depend also on exact definition of the PDFs. This is known as factorization scheme depen-
dence. In essence, defining a scheme is a statement of how certain finite part of the calculations
are distributed among PDFs, partonic cross sections, and splitting functions. Formally, the
predictions for physical, measurable cross-sections are independent of the chosen scheme, up to
corrections which are suppressed by one more power in αs than to what the computation was
performed. Indeed, to O(αs),

σ̂′i ⊗ f ′i =
{
σ̂

(0)
i +

αs
2π

[
σ̂

(1)
i − σ̂

(0)
j ⊗ C

(1)
ji

]}
⊗
[
δik +

αs
2π
C

(1)
ik

]
⊗ fk (119)

= σ
(0)
i ⊗ fi +

αs
2π
σ̂

(1)
i ⊗ fi −

αs
2π
σ̂

(0)
j ⊗ C

(1)
jk ⊗ fk +

αs
2π
σ

(0)
i ⊗ C

(1)
ik ⊗ fk +O(α2

s)

= σ
(0)
i ⊗ fi +

αs
2π
σ̂

(1)
i ⊗ fi +O(α2

s) = σ̂i ⊗ fi +O(α2
s) .

3.4 Factorization scale

There is a similar ambiguity in choosing the scale argument of fq(Q
2) in Eq. (111). This is

because, based on DGLAP equation, different scale choices are perturbatively related. Indeed,
we can express the PDFs at scale Q2 with the aid of PDFs at another scale Q2

f as

fi(x,Q
2) = fi(x,Q

2
f ) +

αs
2π

log
(
Q2/Q2

f

)
Pij ⊗ fj(Q2

f ) (120)

+
1

2

(αs
2π

)2
log2

(
Q2/Q2

f

)
Pij ⊗ Pjk ⊗ fk(Q2

f )

+ . . .

=
∑

j

Dij(Q
2/Q2

f )⊗ fj(Q2
f ) .

Defining now

σ̂j(Q
2, Q2

f ) ≡ σ̂i(Q2)⊗Dij(Q
2/Q2

f ) = σ̂
(0)
j +

αs
2π

[
σ̂

(1)
j + log

(
Q2/Q2

f

)
σ̂

(0)
i ⊗ Pij

]
+ · · · (121)

the factorization formula (111) becomes

σ = σ̂i ⊗ fi(Q2) = σ̂i ⊗Dij(Q
2/Q2

f )⊗ fj(Q2
f ) = σ̂j(Q

2/Q2
f )⊗ fj(Q2

f )

The arbitrary scale Q2
f is called the factorization scale, which we are free to choose. Choosing

a certain factorization scale is a statement of how the logarithmic transverse-momentum integrals
are distributed: Earlier we absorbed the contribution

∫ Q2

m2

dk2
⊥

k2
⊥

= log
(
Q2/m2

)
,

into the definition of PDFs fi(Q
2). However, we can equally write

∫ Q2

m2

dk2
⊥

k2
⊥

=

∫ Q2
f

m2

dk2
⊥

k2
⊥

+

∫ Q2

Q2
f

dk2
⊥

k2
⊥

= log
(
Q2
f/m

2
)

+ log
(
Q2/Q2

f

)
,

and absorb only the first log
(
Q2
f/m

2
)

term into the defition of PDFs fi(Q
2
f ). The latter term will

then appear in the partonic cross sections as in Eq. (121). Formally the physical cross sections
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do not depend on this choice, the differences between two choices being suppressed by one more
power in αs than to what σ̂j was computed to. If Q2

f is very different from Q2, the log
(
Q2/Q2

f

)

term can become large. Thus, the only possibility that really makes sense is to choose Q2
f ∼ Q2.

The sensitivity of the cross section to the variation of the factorization scale is often taken as a
guideline of the missing higher-order corrections.

3.5 Definition of PDFs in dimensional regularization

In previous section we have argued that before introducing the scale-dependent PDFs, the
structure function F2 to O(αs) is of the form

F2(x,Q2)

x
=
∑

q,q

e2
q

{[
1 +

(αs
2π

)
log

(
Q2

m2

)
Pqq + h′q

]
⊗ fq (122)

+

[(αs
2π

)
log

(
Q2

m2

)
Pqg + h′g

]
⊗ fg

}
,

where the functions hi (often called coefficient functions or Wilson coefficients) contain all
the finite pieces of the calculation. Rather than introducing a mass scale to regulate the collinear
and infrared divergences, the standard procedure to regulate the divergent integrals is to work at
4 + ε dimensions, in which the strong coupling constant is replaced by

gs → gsµ
ε/2
s ,

where the scale µs is arbitrary. In this case, before introducing the scale-dependent PDFs, the
structure function F2 to O(αs) is of the form

F2(x,Q2)

x
=
∑

q,q

e2
q

{[
1−

(αs
2π

)[1

ε̂
+ log

(
µ2
s

Q2

)]
Pqq + hq

]
⊗ fq (123)

−
[(αs

2π

)[1

ε̂
+ log

(
µ2
s

Q2

)]
Pqg + hg

]
⊗ fg

}
,

where 1/ε̂ = 1/ε + log(4π) − γE . We see that the log(Q2/m2) type of divergences are now
represented by poles at ε = 0,

log

(
Q2

m2

)
⇔ −

[
1

ε̂
+ log

(
µ2
s

Q2

)]
. (124)

The finite pieces hi and h′i are in general different due to a different regularization procedure.
Based on what was just said on the scheme and factorization-scale dependence, we now understand
that the general O(αs) definition of scale-dependent PDFs at factorization scale µ2 can be written
as

fq(x, µ
2) =

[
1 +

(αs
2π

)
[L]Pqq + f qqscheme

]
⊗ fq +

[(αs
2π

)
[L]Pqg + f qgscheme

]
⊗ fg (125)

fg(x, µ
2) =

[
1 +

(αs
2π

)
[L]Pgg + fggscheme

]
⊗ fg +

[(αs
2π

)
[L]Pgq + fgqscheme

]
⊗ fq (126)

where

[L] = log

(
µ2

m2

)
, or [L] = −

[
1

ε̂
+ log

(
µ2
s

µ2

)]
. (127)
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or, equivalently,

fq =
[
1−

(αs
2π

)
[L]Pqq − f qqscheme

]
⊗ fq(x, µ2)−

[(αs
2π

)
[L]Pqg + f qgscheme

]
⊗ fg(x, µ2)

fg =
[
1−

(αs
2π

)
[L]Pgg − fggscheme

]
⊗ fg(x, µ2)−

[(αs
2π

)
[L]Pgq + fgqscheme

]
⊗ fq(x, µ2)

Here, the arbitrary functions f ijscheme define the factorization scheme and the arbitrary scale
µ2 is called the factorization scale. In terms of these scale-dependent PDFs, the structure
function F2 can be written as

F2(x,Q2)

x
=
∑

q,q

e2
q

{[
1 +

(αs
2π

)
log

(
Q2

µ2

)
Pqq +

(
hq − f qqscheme

)]
⊗ fq(µ2) (128)

+

[(αs
2π

)
log

(
Q2

µ2

)
Pqg +

(
hg − f qgscheme

)]
⊗ fg(µ2)

}
,

from which we see that the scheme dependence also affects the coefficient functions, as was
already discussed. Today, it is almost exclusively the case, that the calculations are performed
using the dimensional regularization. Similarly, the default factorization scheme is the so-called
MS scheme in which f ijscheme = 0. In this scheme the O(αs) expressions for the DIS structure
function F2 are:

1

x
F2(x,Q2) = (129)

∑

q,q

e2
qfq(Q

2
f )⊗

{
1− αs

2π
log

(
Q2
f

Q2

)
Pqq +

αs
2π
Cq

}

+2
∑

q

e2
qfg(Q

2
f )⊗

{
−αs

2π
log

(
Q2
f

Q2

)
Pqg +

αs
2π
Cg

}
,

where

Cq(z) ≡ CF

{
(1 + z2)

[
log(1− z)

1− z

]

+

− 3

2

1

(1− z)+
−1 + z2

1− z log z + 3 + 2z −
(

9

2
+
π2

3

)
δ(1− z)

}
(130)

Cg(z) ≡ Pqg(z) log

(
1− z
z

)
+ TR6z(1− z)− Pqg(z). (131)
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Figure 18: The (archaeological) CTEQ6M partons [24].
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Figure 19: Experimental data for proton structure function F2 from H1 experiment [25, 26]
compared with the CTEQ6M PDFs [24].

4 Solving DGLAP at small x: The Double Asymptotic Scaling

In general, the DGLAP equations have to be solved numerically. However, it is still possible
to find some enlightening properties in a closed form. One of the most striking features that
can be found ”by hand“ is the so-called Double Asymptotic Scaling [27, 28], related to the
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behaviour of the DIS structure functions at small-x and high Q2.

Let us first introduce the concept of Mellin transform. We define the Mellin transform of a
PDF as

fi(N,Q
2) ≡

∫ 1

0
dxxN−1fi(x,Q

2) . (132)

The inverse transform from the ”Mellin N space“ back to the x space can be obtained as

fi(x,Q
2) =

1

2πi

∫ a+i∞

a−i∞
dNx−Nf(N,Q2) , (133)

where the contour of integration has to lie to the right of all the poles the integrand may contain.
The Mellin moments of the splitting functions are often called anomalous dimensions,

γ(N)
(n)
ij ≡

∫ 1

0
dxxN−1P

(n)
ij (x) . (134)

The power/usefulness of the Mellin transform is, that in the Mellin space the DGLAP equations
become just ordinary differential equations. For example, the evolution of the singlet-quark and
gluon distributions,

Q2 Σ(x, ζ)

dQ2
=
αs(Q

2)

2π

∫ 1

x

dz

z

[
Pqq(z)Σ

(x
z
,Q2

)
+ 2nfPqg(z)fg

(x
z
,Q2

)]
, (135)

Q2 fg(x,Q
2)

dQ2
=
αs(Q

2)

2π

∫ 1

x

dz

z

[
Pgg(z)fg

(x
z
,Q2

)
+ Pgq(z)Σ

(x
z
,Q2

)]
.

turns into

Q2 d

dQ2

[
Σ(N,Q2)

fg(N,Q
2)

]
=
αs(Q

2)

2π

(
γqq 2nfγqg
γgq γgg

)[
Σ(N,Q2)

fg(N,Q
2)

]
, (136)

by taking the Mellin transform on both sides of Eq. (135). To leading order, the (integer N)
anomalous dimensions are

γ(0)
qq (N) = CF

[
−1

2
+

1

N(N + 1)
− 2

N∑

k=2

1

k

]
, (137)

γ(0)
qg (N) = Tf

[
2 +N +N2

N(N + 1)(N + 2)

]
, (138)

γ(0)
gq (N) = CF

[
2 +N +N2

N(N2 − 1)

]
, (139)

γ(0)
gg (N) = 2CA

[
− 1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N∑

k=2

1

k

]
− nf

3
. (140)

Towards small x, the most relevant part of the leading-order splitting functions behave as 1/x.
Now, since ∫ 1

0
dxxN−1 1

x
=

1

N − 1
, (141)
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we see that towards small x, the N ≈ 1 region is the interesting one in the Mellin space. Thus,
taking the N → 1 limit, we find

γ(0)
qq (N)

N→1−−−→ 0 , (142)

γ(0)
qg (N)

N→1−−−→ Tf
2

3
, (143)

γ(0)
gq (N)

N→1−−−→ CF

[
2

N − 1
− 3

2

]
, (144)

γ(0)
gg (N)

N→1−−−→ 2CA

[
1

N − 1
− 11

12

]
− nf

3
. (145)

The inverse transform back to the x space gives,

P (0)
qq (z)

z→0−−−→ 0 , (146)

P (0)
qg (z)

z→0−−−→ Tf
2

3
δ(1− z) , (147)

P (0)
gq (z)

z→0−−−→ 2CF
z
− 3CF

2
δ(1− z) , (148)

P (0)
gg (z)

z→0−−−→ 2CA
z
−
[

11CA
6

+
nf
3

]
δ(1− z) . (149)

Let us now define a new variable

ζ =
2

β0
log

(
t

t0

)
, t ≡ log(Q2/Λ2

QCD), t0 ≡ log(Q2
0/Λ

2
QCD) , (150)

where Q2
0 is the initial scale for evolution. Trading the Q2 derivative in the DGLAP equations

with ζ, using
dζ

dQ2
=
αs(Q

2)

2π

1

Q2
(151)

we have

Σ(x, ζ)

dζ
=

∫ 1

x

dz

z

[
Pqq(z)Σ

(x
z
, ζ
)

+ 2nfPqg(z)fg

(x
z
, ζ
)]

, (152)

fg(x, ζ)

dζ
=

∫ 1

x

dz

z

[
Pgg(z)fg

(x
z
, ζ
)

+ Pgq(z)Σ
(x
z
, ζ
)]

. (153)

Neglecting the quark part in the gluon evolution, the evolution equation for the gluon becomes
homogeneous,

fg(x, ζ)

dζ
=

∫ 1

x

dz

z

[
Pgg(z)fg

(x
z
, ζ
)]

. (154)

Multiplying by x, and defining G(x, ζ) ≡ xfg(x, ζ), we have

G(x, ζ)

dζ
=

∫ 1

x

dz

z
[zPgg(z)]G

(x
z
, ζ
)
. (155)

Taking now the Mellin transform,

G(N, ζ)

dζ
= G(N, ζ)×

∫ 1

0
dzzN−1 [zPgg(z)] , (156)
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and using the x→ 0 limit for the splitting function in Eq. (149), we get

G(N, ζ)

dζ
= G(N, ζ)×

[
2CA
N
−
(

11CA
6

+
nf
3

)]
. (157)

The solution is easily seen to be,

G(N, ζ) = G(N, 0) exp

[
ζ

(
2CA
N
− 11CA

6
− nf

3

)]
. (158)

We will consider an initial condition G(x, 0) = N , where N is just a normalization constant. The
Mellin moments are now G(N, 0) = N/N , such that

G(N, ζ) =
N
N

exp

[
ζ

(
2CA
N
− 11CA

6
− nf

3

)]
. (159)

To revert the obtained gluon distribution back to the x space, we must take the inverse Mellin
transformation Eq. (133),

G(x, ζ) =
1

2πi

∫ a+i∞

a−i∞
dNx−NG(N, ζ) =

1

2πi

∫ a+i∞

a−i∞
dNx−N

N
N

exp

[
ζ

(
2CA
N
− 11CA

6
− nf

3

)]

= N exp

[
−ζ
(

11CA
6

+
nf
3

)]
× 1

2πi

∫ c+i∞

c−i∞

dN

N
exp

[
2ζCA
N

+N log(1/x)

]
, (160)

where now c > 0. The above integral can be evaluated in terms of modified Bessel functions In,
using an integral representation,

In(z) ≡ 1

2πi

∮
exp

[
z

2

(
t+

1

t

)]
t−n−1dt , (161)

where the integration contour encloses the origin. The result is

G(x, ζ) = exp

[
−ζ
(

11CA
6

+
nf
3

)]
× I0

(
2
√

2CAζ log(1/x)
)
. (162)

Using the asymptotic expansion of the Bessel function

In(z)
z→∞−−−→ ez√

2πz
, (163)

the gluon distribution G(x, ζ) can be written, in the limit ζ � 1 and x� 1 (large Q2, small x),

G(x, ζ) −→ N exp

[
−ζ
(

11CA
6

+
nf
3

)]
× e2

√
2CAζ log(1/x)

√
4π
√

2CAζ log(1/x)
. (164)

Defining now two new variables,

σ ≡
[
log

(
1

x

)
log

(
t

t0

)]1/2

, ρ ≡
[

log(1/x)

log(t/t0)

]1/2

, (165)

we find

G(σ, ρ) −→ N√
4πγσ

exp

(
2γσ − δσ

ρ

)
×
[
1 +O

(
1

σ

)]
, (166)
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where γ ≡
√

4CA/β0 and δ ≡ 2(11CA/6 + nf/3)/β0. Although we have derived this result
with a specific boundary condition G(x, t0) = constant, the found asymptotic behaviour is not
particulary sensitive to this choice as far as the boundary conditions are reasonably soft.

Having a result for the gluon distribution is of course nice, but in order to directly compare with
the DIS data, we must still relate it to the quark distributions. In the x→ 0 limit, the evolution
for the singlet quark momentum distribution Q(x,Q2) = xΣ(x,Q2) reads

dQ(x, ζ)

dζ
= x

∫ 1

x

dz

z

[
2nfPqg(z)fg

(x
z
, ζ
)]

= x

∫ 1

x

dz

z
2nf

[
Tf

2

3
δ(1− z)

]
fg

(x
z
, ζ
)

(167)

= x
4Tfnf

3
fg (x, ζ) =

4Tfnf
3

G (x, ζ) . (168)

By the chain rule,

dQ(σ, ρ)

dζ
=
dσ

dζ

dQ(σ, ρ)

dσ
+
dρ

dζ

dQ(σ, ρ)

dρ
=

(
3ρ

γ2

)
dQ(σ, ρ)

dσ
−
(
γ2ρ2

12σ

)
dQ(σ, ρ)

dρ
, (169)

In the σ →∞ limit, the second term can be dropped, so that

Q(σ, ρ)

dσ
=
γ2

3ρ

4Tfnf
3

G(σ, ρ) , (170)

and the singlet quark momentum distribution can be obtained simply as an integral,

Q(σ, ρ) = Q(0, ρ) +
γ2

3ρ

4Tfnf
3

∫ σ

0
dσ′G

(
σ′, ρ

)
. (171)

It is easy to show that

∫ σ

0
dσ′G

(
σ′, ρ

)
=
N
2γ

1√
4πγσ

exp

(
2γσ − δσ

ρ

)
×
[
1 +O

(
1

ρ

)
+O

(
1

σ

)]
, (172)

such that

Q(σ, ρ) ≈ 1

6

(
γ

ρ

)
4Tfnf

3
G (σ, ρ) . (173)

To leading order, the structure function F2 now becomes

F2(σ, ρ) =
∑

i

e2
ix (fi + fi) ≈

(
1

nf

nf∑

i

e2
i

)
Q(σ, ρ) = 〈e2〉Q(σ, ρ) , (174)

where the average squared fractional quark charge is

〈e2〉 ≡
(

1

nf

nf∑

i

e2
i

)
=

{
5/18 for 4 flavours
11/45 for 5 flavours

. (175)
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Thus, and to summarize, we find the following:

F2(σ, ρ)
σ,ρ→∞−−−−→ 〈e2〉2Tfnf

9

(
γ

ρ

)
G (σ, ρ) , (176)

G(σ, ρ) = N 1√
4πγσ

exp

(
2γσ − δσ

ρ

)
, (177)

where γ ≡
√

4CA/β0 and δ ≡ 2(11CA/6 + nf/3)/β0.

In Refs. [27, 28] the value of δ is slightly different than what we have here. This comes from
accounting also for the quarks in the evolution. However, this affects only the subasymptotic
behaviour.

We can now see that the asymptotic results for F2 and G exhibit a particularly simple scaling
both in σ and ρ:

For fixed ρ: logF2(σ, ρ) ∼ linear in σ

For fixed σ: logF2(σ, ρ) ∼ independent of ρ

For σ, ρ→∞: σ−1 logF2(σ, ρ) ∼ independent of both σ and ρ

The latter property is called the double asymptotic scaling. The following figures compare
the expected behaviour with the data from HERA experiment. In Figure 20, the F2 data has
been rescaled by a factor of

R′F (σ, ρ) = R× exp

[
δσ

ρ
+

log σ

2
+ log

(
ρ

γ

)]
, (178)

such that the prediction is
R′F (σ, ρ)F2(σ, ρ) ∝ exp (2γσ) . (179)

Plotted with a logaritmic y axis, we thus expect a straight line as a function of σ with a slope of
2γ. The data clearly agrees with this expectation.

Figure 20: Tests of the double asymptotic scaling with early HERA data. Figure from Ref. [28].
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Scaling the F2 data with another factor

RF (σ, ρ) = R× exp

[
−2γσ

δσ

ρ
+

log σ

2
+ log

(
ρ

γ

)]
, (180)

we would expect

RF (σ, ρ)F2(σ, ρ) = constant +O
(

1

σ

)
+O

(
1

ρ

)
. (181)

Examples are shown in Figure 21. The data indicate that the double asymptotic scaling is an
excellent approximation.

Figure 21: Tests of the double asymptotic scaling with early HERA data. Figures from Ref. [28].

In the present approximation we ignored the Pqq and Pgq splitting functions. That is, in terms
of parton ladders, we omit the q → qg splittings. Thus, the diagrams that get resummed in the
double asymptotic approximation to F2, are pure gluon ladders, which end up with a g → qq
splitting, see Figure 22.

Figure 22: Ladder diagrams that yield the asymptotic behaviour of F2 at the doubly asymptotic
limit σ, ρ→∞.
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5 Principles of General-Mass Variable Flavour Number scheme

Up to now, we have implicitly considered PDFs of only gluons and massless quarks. In the younger
days of PDF analysis, a pragmatic way of dealing with massive (charm and bottom) quarks
was the so-called zero-mass variable flavour number scheme (ZM-VFNS). In its simplicity,
below the mass threshold Q2 < m2

H (H=charm, bottom), the heavy quark was considered as
non-existing, but above the mass threshold Q2 > m2

H, the heavy quark was included in the
calculations (matrix elements, PDF evolution, running of αs), treating it as a massless quark. At
high scales Q2 � m2

H this is perfectly OK, as the m2
H/Q

2 terms in the coefficient functions die
away. Near the threshold Q2 ∼ m2

H, however, the zero-mass approximation is somewhat vague.
To overcome this, a consistent framework to deal with heavy quarks, the so-called general-mass
variable flavour number scheme (GM-VFNS) has been developed.

Figure 23: The two diagrams for DIS heavy-quark production in FFNS.

To get started, let us look at the process of heavy-quark production in DIS in an approximation
that the proton does not contain a significant quantity of heavy quarks. Indeed, because of
the heavy-quark mass m2

H, the radiation of heavy quarks in the parton ladder is suppressed in
comparison to the massless partons as there is no strict collinear divergence. In this case, the
heavy quarks are produced only dynamically by partonic processes. Such a framework in which
the heavy quarks are not considered as active partons is often called a fixed flavour number
scheme (FFNS). Figure 23 shows the two Feynman diagrams for heavy-quark production in
DIS to first order in αs. The resulting expression for the structure function FH

2 is [29],

1

x
FH

2 (x,Q2) = 2e2
H

∫ 1

χ

dz

z
CH

2

(
χ

z
,
mH

Q2

)
fg(z,Q

2) , (182)

where the coefficient function CH
2 reads

CH
2

(
z,
mH

Q2

)
=
αs
2π

{
v

[
4z(1− z)− 1

2
− 2

(
m2

H

Q2

)
z(1− z)

]
(183)

+

[[
1

2

[
z2 + (1− z)2

]
+ 2

(
m2

H

Q2

)
z(1− 3z)− 4

(
m4

H

Q4

)
z2

]]
log

1 + v

1− v

}
, (184)

and

v =

√
1− 4m2

H

Q2

z

1− z , χ = x

(
1 +

4m2
H

Q2

)
. (185)

In comparison to the zero-mass case, an important aspect here is that lower limit for the
convolution integral is not x but χ. This accounts for the extra energy required to produce
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the heavy quark-antiquark pair. Towards high Q2, χ → x, so that the massless kinematics is
recovered, but at low Q2 the effect is significant. Recalling that the PDFs are typically rather
steep functions of x, even small shifts in the probed momentum fraction may result as significant
differences in the cross section. Figure 24 illustrates the situation.

Figure 24: Zero-mass vs. heavy-flavour kinematics in DIS. Figure from Ref. [30]

In the mH → 0 limit, the coefficient function above behaves as

CH
2

(
x

z
,
mH

Q2

)
=

mH→0−−−−→ αs
2π

1

2

[
z2 + (1− z)2

]
log

(
Q2

mH

)
=
αs
2π
Pqg(z) log

(
Q2

m2
H

)
, (186)

which should look familiar to you — it’s the same (collinear logarithm)×(splitting function)
structure we derived earlier using the Sudakov decomposition. Let us now write

1

x
FH

2 (x,Q2) = 2e2
H

[∫ 1

χ

dz

z
CH

2

(
χ

z
,
m2

H

Q2

)
fg(z,Q

2) − αs
2π

log

(
µ2

m2
H

)∫ 1

χ

dz

z
Pqg

(χ
z

)
fg(z,Q

2)

+
αs
2π

log

(
µ2

m2
H

)∫ 1

χ

dz

z
Pqg

(χ
z

)
fg(z,Q

2)

]
. (187)

Based on the discussion in the previous sections we understand that, to O(αs), we can define the
heavy-quark PDF as,

fH,H

(
χ, µ2

)
=
αs
2π

log

(
µ2

m2
H

)∫ 1

χ

dz

z
Pqg(z)fg

(χ
z
,Q2

)
+O(α2

s) , (188)

where µ is the factorization scale. Thus, we have

1

x
FH

2 (x,Q2) = 2e2
H

[∫ 1

χ

dz

z
C̃H

2

(
χ

z
,
mH

Q2

)
fg(z,Q

2)

]
+ e2

H

[
fH

(
χ,Q2

)
+ fH

(
χ,Q2

)]
+O(α2

s) ,

(189)
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with

C̃H
2

(
z,
mH

Q2

)
= CH

2

(
z,
mH

Q2

)
− αs

2π
log

(
Q2

m2
H

)
Pqg (z) . (190)

Note now that the coefficient function C̃H
2 is no longer divergent in the mH → 0 limit — the

logarithmic divergence has been resummed to the heavy-quark PDFs fH,H and the subtracted

from the original coefficient function CH
2 to avoid double counting. The last two terms in Eq. (189)

are just the leading-order contributions to the F2 and they are exactly of the same form as
for massless quarks. Formally, Eq. (182) and Eq. (189) are the same up to corrections of the
order of O(α2

s). However, only Eq. (189) is well-behaved at high Q2. The question of when to
change from Eq. (182) (accurate at low Q2) to Eq. (189) (well-behaved at high Q2) is ambiguous.
The scale at which this change is made is called transition scale Qt. At this stage, it appears
advantageous to take Qt = m2

H since with choice the coefficient function is continuous across the
transition scale, and the heavy-quark PDFs starts its DGLAP evolution from zero,

C̃H
2 (z,m2

H/Q
2) = CH

2 (z,m2
H/Q

2), fH(z,Q2) = 0, at Q2 = m2
H .

At one power higher in αs the “best choice” is no longer this obvious [31].

Based on discussions in the earlier sections, it should not be surprising that the definition of
heavy-quark PDF in Eq. (188) is not unique, but scale-independent terms defining the scheme
are still allowed. These constant terms can be fixed by requiring that the resulting F2 approaches
asymptotically the MS results. In the present case, it is easy to check that

C̃H
2

(
z,
mH

Q2

)
mH→0−−−−→ αs

2π

[
Pqg(z) log

(
1− z
z

)
+ 4z(1− z)− 1

2

]
= CMS

2 (z) , (191)

where CMS
2 (z) is the same as in Eq. (131). That is, the mH → 0 limit is exactly that of MS scheme

with massless quarks, and no scheme-dependent terms are required. At higher orders this is no
longer true, and in order to recover the MS results at high Q2, the added and subtracted piece in
Eq. (187) must also contain additional terms. These terms become then the scheme-dependent
part in the definition of PDFs. Making sure that the MS results for the coefficient functions are
asymptotically recovered then also ensures that the PDFs evolve according to the MS splitting
functions above the transition scale.

5.1 Additional scheme dependence in GM-VFNS

There’s yet another scheme dependence in GM-VFNS. This scheme dependence does not affect
the definition or evolution of the PDFs, but it’s of different nature. In Eq. (187) we “added zero”
to the original C̃H

2 by adding and subtracting a certain logarithmic term. However, we can also
include arbitrary m2

H-dependent terms as well,

αs
2π

log

(
µ2

m2
H

)∫ 1

χ

dz

z
Pqg

(χ
z

)
fg(z,Q

2)

=⇒
αs
2π

log

(
µ2

m2
H

)[
1 + f(χ,m2

H)
] ∫ 1

χ

dz

z
Pqg

(χ
z

)
fg(z,Q

2) , (192)
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where f(χ,mH) is an arbitrary m2
H-dependent function such that f(χ,m2

H)→ 0 as mH → 0. The
function f(χ,mH) then appears in the final expression of F2 as

1

x
FH

2 (x,Q2) = 2e2
H

[∫ 1

χ

dz

z
C̃H

2

(
χ

z
,
m2

H

Q2

)
fg(z,Q

2)

]
(193)

+ e2
H

[
1 + f(χ,m2

H)
] [
fH

(
χ,Q2

)
+ fH

(
χ,Q2

)]
,

where now

C̃H
2

(
χ

z
,
mH

Q2

)
= CH

2

(
χ

z
,
m2

H

Q2

)
− αs

2π
log

(
Q2

m2
H

)[
1 + f(χ,m2

H)
]
Pqg

(χ
z

)
. (194)

In other words, we can essentially decide what is the m2
H dependence of the coefficient functions

for contributions with heavy-quarks in the initial state. In addition, we could also replace χ
by x. This is the scheme dependence of GM-VFNS. The difference between different schemes
(=different definitions of f(χ,mH)) are again formally higher order in αs. However, using the χ
variable in the convolution integral instead of x has a special role in the sense that its origin is in
the momentum conservation (the extra energy needed to create a pair quark-antiquark pair).

It is possible to use the scheme dependence of GM-VFNS to make calculations as easy as
possible. Indeed, we can define a scheme in which all the heavy-quark initiated processes are
computed with zero-mass MS coefficient functions. This scheme is known as simplified Aivazis-
Collins-Olness-Tung scheme or just SACOT scheme. Above, this is achieved by simply setting
f(χ,mH) = 0. Correspondingly, the αs coefficient function would be that of Eq. (130), derived
with zero-mass quarks. This scheme is clearly the most simplest one, and as accurate as any
other. It’s the default one in CTEQ (or CT-TEA) collaboration’s PDFs. Before writing down
the final expression, there’s still one more thing to discuss...

5.2 Matching of strong coupling αs

In the standard MS scheme with massless quarks, the renormalization of the strong coupling αs
is, in practice, achieved by replacing the “bare” coupling α0

s in the calculations by the physical
coupling αs(µ

2
ren)

αMS
s (µ2

ren) = α0
s

(
1 + α0

sB
MS
)

(195)

BMS =
1

4π

[
4

3
Tfnf −

11

3
CA

] [
1

ε̂
+ log

(
µ2

ren

µ2

)]
,

where 1/ε̂ = 1/ε+ log(4π)− γE , nf refers to the number of light quarks. Taking the derivative
gives the usual beta function,

µ2
ren

dαMS
s (µ2

ren)

dµ2
ren

=
dαMS

s (µ2
ren)

d log(µ2
ren)

= −b0
[
αMS
s (µ2

ren)
]2
, b0 =

11CA − 4Tfnf
12π

. (196)

The calculations in FFNS are usually performed in a different scheme, the so-called decoupling
scheme. In this scheme, the light-quark and gluon loops are treated as in the MS scheme, but
the divergences from the heavy-quarks loops are subtracted at zero momentum. In practice, this
amounts to a slightly different definition of the strong coupling,

αDC
s (µ2

ren) = α0
s

(
1 + α0

sB
DC
)

(197)

BDC =
1

4π

[
4

3
Tfn`f −

11

3
CA

] [
1

ε̂
+ log

(
µ2

ren

µ2

)]
+

4

3
Tf

[
1

ε̂
+ log

(
µ2

ren

µ2

)
− log

(
µ2

ren

m2

)]
,
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where n`f refers to the number of light quarks. In other words, an additional term (4Tf/3) log
(
µ2

ren/m
2
)

is included in the definition (which then appears in the coefficient functions). The point is that
the αs now runs as,

dαDC
s (µ2

ren)

d log(µ2
ren)

= −b′0
[
αDC
s (µ2

ren)
]2
, b′0 =

11CA − 4Tfn`f
12π

, (198)

which agrees with the usual MS beta function, but only the number of light quarks n`f appears.
That is, the heavy quarks decouple from the evolution of αs. The calculations in this renormal-
ization scheme and αs can thus be consistently used with PDFs that involve n`f light flavours in
the evolution. Above the transition scale Q2

t , where the heavy-quark is also considered as an
active parton in the evolution, one simply increments n`f by one in the beta function. As for
PDFs, also αs may be discontinuous across the transition scale Q2

t . Indeed, from Eq. (195) and
Eq. (197) it follows that

αMS
s

(
µ2

ren

)
= αDC

s

(
µ2

ren

)
[

1 +
αDC
s

(
µ2

ren

)

3π
Tf log

(
µ2

ren

m2

)]
+O(α3

s) , (199)

such that depending on Q2
t , there may be a discontinuity (for Q2

t = m2 there is none). If the
O(α3

s) terms are included, there will be a discontinuity regardless of Q2
t .

5.3 Explicit NLO expression for FH
2 in the SACOT scheme

Altogether, taking the transition scale to be Q2
t = m2

H, the explicit NLO formulae for heavy-quark
structure function in SACOT scheme are:

At Q2
f < m2

H: αs(nf )

1

x
FH

2 (x,Q2) = 2e2
H

∫ 1

χ

dz

z
fg(z,Q

2
f )

{
αs
2π
Cg→H

2

(
χ

z
,
m2

H

Q2

)}

At Q2
f > m2

H: αs(nf + 1), H introduced as a new parton in DGLAP evolution

1

x
FH

2 (x,Q2) = 2e2
H

∫ 1

χ

dz

z
fg(z,Q

2
f )

[
−αs

2π
log

(
Q2
f

m2
H

)
Pqg

(χ
z

)
+
αs
2π
Cg→H

2

(
χ

z
,
m2

H

Q2

)]
,

+e2
H

∫ 1

χ

dz

z

[
fH(z,Q2

f ) + fH(z,Q2
f )
]
[

1− αs
2π

log

(
Q2
f

Q2

)
Pqq

(χ
z

)
+
αs
2π
CMS

2,q→q
(χ
z

)]

The log(Q2
f/m

2
H)Pqg term is often called the subtraction term in the literature. On one hand,

it avoids the double counting when the contributions from heavy-quark PDFs are included. On
the other hand, it makes the cross section IR safe at large Q2.

Whether we should refer to the above example as being “NLO” is not unique: For Q2
f > m2

H

there are clearly both O(α0
s) and O(αs) contributions, so we may say the calculation is an NLO

one. However, for Q2
f < m2

H there is only O(αs) term present, and as this is the first non-zero
term, it can be seen to be a LO approximation. In other words, the counting of orders in not
unique, and there is some variation among independent groups. If the contribution of FH

2 is just
part of the inclusive (anything in the final state) then there’s no ambiguity.
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Beyond O(αs), the notion of “heavy-quark structure function” is not theoretically well defined:
cross sections containing at least one heavy-quark in the final state still retain log(m2

H/Q
2) type

of terms (even after subtracting the logs which are resummed into the heavy-quark PDFs). In
inclusive cross sections (anything in the final state) they cancel against virtual corrections with
heavy-quark loops. On the other hand, cross sections in which the photon couples to the heavy
quark are finite, and in phenomenological studies this is usually how the “heavy-quark structure
function” is defined beyond O(αs).

Figure 25: An NNLO diagram for heavy-quark production and a virtual correction involving a
heavy-quark loop.
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Figure 26: GM-VFNS vs. ZM-VFNS for F2 (left) and FL (right). Figure from Ref. [30]
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5.4 Miscellaneous ZM-VFNS vs. GM-VFNS effects

Figure 26 demonstrates the size of the relative difference between GM-VFNS and ZM-VFNS
schemes for F2(x,Q2) and FL(x,Q2) ≡ F2(x,Q2)−2xF1(x,Q2) in the case of charm-quarks. The
effect is most significant at small x and low Q2. The GM-VFNS also does quantitatively better
in global fits. Figure 27 illustrates this in the context of CTEQ6.6 NLO global analysis. For
∼3000 data points the χ2 is 300 units lower for GM-VFNS analysis than for ZM-VFNS.

Figure 27: The effect of ZMVFNS vs. GMVFNS in a global fit. Figure from Ref. [32]

6 Practicalities of PDF analysis

The industry of extracting PDFs from experimental data is big, and there are several groups
involved each with somewhat different approaches. The idea of global analysis is to use as
much data as possible. To give an idea Figure 28 shows a table of the data included in the
MMHT2014 analysis [33]. There are around 3000 data points from DIS, Drell-Yan, W, Z, jets
and top-quark production. The kinematic coverage (in terms of probed x and Q2 in PDFs) is
also wide as shown in Figure 29 in the case of NNPDF3.1 fit [34]. The scales Q2 reach now up
to 1 TeV, and x below 10−4 is reach within the perturbative domain.

Apart from the NNPDF group’s approach, the PDFs are usually parametrized at parametriza-
tion scale Q2

param ∼ 1 GeV by some functional form,

fi(x,Q
2
param) = xa

i
1(1− x)a

i
2 × Fi(x, ai3, . . . , ain) , (200)

where Fi(x, a3, . . . , an) is a suitable, flexible enough function. Usually, the parametrized PDF
components are gluons the light-flavour quarks (the heavy-flavour is generated perturbatively by
the DGLAP evolution). However, the new NNPDF analysis (NNPDF3.1) now also parametrizes
the charm quarks. The typical amount of free parameters is 20 to 30 in global analyses. After
defining this initial condition, the PDFs can be obtained at the entire (x,Q2) plane by solving
the DGLAP equations. The PDFs so obtained are then used to compute theory predictions for
the observables included in the analysis.
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Figure 28: The data in MMHT2014 global fit. Figure from Ref. [33]

6.1 χ2 figure-of-merit function and the importance of correlations

In one way or another, the optimal correspondence between set of PDFs fi=g,q,q depending on a
set of parameters {a} is almost always defined as the minimum of the global χ2 function. In its
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Figure 29: The kinematic coverage NNPDF3.1 global fit. Figure from Ref. [34]

most simple form, we can write it as

χ2[f({a})] =
∑

k

[
ytheory
k [f({a})]− ydata

k

δdata
k

]2

, (201)
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Figure 30: Elements and flow of a global PDF analysis. Figure from Ref. [35]

where ytheory
k [f({a})] are the theory predictions depending on the PDFs. The corresponding

experimental values are denoted by ydata
k and their uncorrelated uncertainties by δdata

k . This
simple form of the χ2 function has, however, become largely inadequate for the precision PDF
analysis. This is because the uncertainties of the data points are often mutually correlated.
The simplest example is the luminosity L, which affects the cross-section extraction as,

number of events = L × (cross section) . (202)

We can account for the correlated systematic errors by constructing a covariance matrix. To
be specific, we define the elements of the covariance matrix C by

Cij = δij (σuncorr
i )2 +

∑

k

βki β
k
j , (203)

where σuncorr
i is the uncorrelated error of data point i, and βki denotes the absolute shift of this

data point corresponding to 1-sigma deviation of the systematic parameter k. In other words,
the data point ydata

i is considered to lie in the region

ydata
i − βki < ydata

i < ydata
i + βki (204)

with 68% probability, due to uncertainties in the kth systematic source. Typical sources of
correlated uncertainties include luminosity, unfolding and jet energy scale uncertainties. The χ2

function generalizes to

χ2 =

Ndata∑

i,j=1

(
ytheory
i [f ]− ydata

i

)
C−1
ij

(
ytheory
j [f ]− ydata

j

)
. (205)

47



Calculating the χ2 in this way is equivalent to (see e.g. [36, 37, 38]) minimizing

χ2 =
∑

i

[
ytheory
i − ydata

i −∑k skβ
k
i

σuncorr
i

]2

+
∑

k

s2
k, (206)

with respect to the systematic parameters sk. Effectively, this corresponds to assuming that the
systematic uncertainties obey a Gaussian probability distribution. The minimum occurs with
the parameter values

smin
k =

∑

j


βkj −

∑

i,`,s

βki C
−1
i` β

s
`β

s
j


 y

theory
j − ydata

j

(σuncorr
j )2

, (207)

and
−
∑

k

smin
k βki (208)

is the net systematic shift for the data point ydata
i . This shift can sometimes be significant. To see

this concretely Figure 31 shows a comparison between the CMS 7 TeV jet data [39] and a NLO
QCD prediction using CTEQ6.6 PDFs [40]. The left-hand panel shows the ratio to the central
CTEQ6.6 prediction without applying the systematic shifts on the data — the data-vs-theory
correspondence does not look particularly good, does it?. The right-hand panel shows the result
after applying the optimal systematic shift on the data — this brings the data to a much better
agreement with the prediction. The importance of the correlated systematic uncertainties is on
the level that if the experiment does not provide these correlations, the PDF fitters are hesitant
to include the data into their fits. However, this is not all. Above we have implicitly considered
the systematic uncertainties as being additive. However, they can be multiplicative as well
(given as percents to the measured data value). In principle, it’s up to the experiments to say
which kind of uncertainties they provide. An improper use of uncertainties can lead to so-called
D’Agostini bias [41].

6.2 PDF uncertainties in the Hessian method

In the Hessian approach to quantify the PDF errors [43], the behaviour of χ2 around the best fit
S0 is approximated by a second order polynomial in the space of fit parameters {a}

χ2{a} ≈ χ2
0 +

∑

ij

δaiHijδaj , Hij ≡
1

2

∂2χ2

∂ai∂aj
, (209)

where δaj ≡ aj − a0
j are the excursions from the best-fit values and χ2

0 is the minimum value of

χ2. The terms linear in δaj are absent since the first derivatives are zero at the minimum. Being

symmetric, the Hessian matrix Hij has Neig orthonormal eigenvectors v(k) and eigenvalues εk
satisfying

Hijv
(k)
j = εkv

(k)
i , (210)

∑

j

v
(k)
j v

(`)
j =

∑

j

v
(j)
k v

(j)
` = δk`. (211)

At the minimum of χ2 the eigenvalues are positive definite εk > 0 for ∀ k, and we can define a
new set of variables as

zk ≡
√
εk
∑

j

v
(k)
j δaj . (212)
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Figure 31: Left-hand panels: The CMS inclusive jet cross sections for the five rapidity intervals
compared to the NLO calculation with CTEQ6.6 PDFs and taking µf = µr = pT /2. The
error bars in the data points show the statistical uncertainty, while the total systematic error is
indicated by the blue lines. The colored bands show the CTEQ6.6 PDF uncertainty. Right-hand
panels: As the left-hand panels, but after applying the systematic shifts. Figure from Ref. [42].

One then easily finds that

χ2{a} ≈ χ2
0 +

∑

i

z2
i . (213)

That is, the transformation in Eq. (212) diagonalizes the Hessian matrix. Figure 32 illustrates
the transformation graphically. In the original variables, the constant-χ2 surfaces are ellipses
(for any pair of parameters). The Eq. (212) transforms these into circles. In other words, the χ2

increases uniformly to an arbitrary direction in the z space — the zi coordinates are uncorrelated.
On paper this is all simple. In practice, it can be numerically rather challenging to obtain a
reliable Hessian matrix. One of the reason is that the χ2 may not be as smooth as one would
think, but it may contain discontinuities. This is related to the limited precision to which the
DGLAP equations are numerically solved and to the finite accuracy of the integrals required in
computation of the observables. Also, if some fit parameters are not particularly well constrained,
the higher-order terms in the expansion of the χ2 function may be relevant which complicates
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Figure 32: Diagonalization of the Hessian graphically.

the computation of the second derivatives. A typical situation is that even if the minimization
algorithm cannot find a lower χ2, some of the eigenvalues of the Hessian may come out negative.
One possibility is to use the linearized Hessian matrix

H linearized
ij =

∑

k

(
∂ytheory

k [f({a})]
∂ai

)(
∂ytheory

k [f({a})]
∂aj

)
1

δdata
k

, (214)

which can be obtained from Eq. (201) discarding the double derivatives. Since this involves only
single derivatives, it’s computation is somewhat easier than when also the double derivatives
are kept. The most appealing property of H linearized

ij is, that it is positive definite. That is,
it’s eigenvalues are all positive — always. Recalling from calculus that the eigenvalues of the
Hessian matrix should be positive definite only when the χ2 is at its minimum, shows that using
H linearized
ij some information is clearly lost.

6.2.1 Error propagation

Let us now consider any quantity X that depends on the PDFs, that is X ≡ X({z}). In a linear
approximation, X may be expanded in the vicinity of its central value X0 ≡ X({z = 0}) as

X ≈ X0 +
∑

j

(
∂X

∂zj

)
δzj

︸ ︷︷ ︸
∆X

. (215)

How large can the deviation ∆X be if we require that χ2 grows from its best-fit value χ2
0 by

some fixed amount ∆χ2? Since χ2 grows uniformly in all z-space directions, the z-space vector
that extremizes ∆X for a given ∆χ2, is in the direction of the gradient of X and has a length of√

∆χ2. The components of this vector are

δzi =
√

∆χ2

(
∂X

∂zi

)
∑

j

(
∂X

∂zj

)2


−1/2

︸ ︷︷ ︸
ith component of the gradient vector of length 1

, (216)

giving

(∆X)2
extremum ≈ ∆χ2

∑

j

(
∂X

∂zj

)2

. (217)
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In order to facilitate the computation of the derivatives ∂X/∂zk in Eq. (217), we define a
collection of auxiliary PDFs in several z-space coordinates:

S0 = (0, 0, 0, . . . , 0)

S±1 = ±
√

∆χ2 (1, 0, 0, . . . , 0)

S±2 = ±
√

∆χ2 (0, 1, 0, . . . , 0)

... (218)

S±N−1 = ±
√

∆χ2 (0, 0, . . . , 1, 0)

S±N = ±
√

∆χ2 (0, 0, . . . , 0, 1).

Using these PDF sets, the derivatives ∂X/∂zk can be approximated by a finite difference

∂X

∂zk
≈ X(S±k )−X(S0)

±
√

∆χ2
≈ X(S+

k )−X(S−k )

2
√

∆χ2
, (219)

where X(S±k ) denotes the value of X computed with the PDF set S±k . Using these in Eq. (217)
we get

(∆X)2
extremum ≈

∑

k

(
X(S±k )−X(S0)

)2 ≈ 1

4

∑

k

(
X(S+

k )−X(S−k )
)2
. (220)

These are the simplest equations by which the PDF uncertainties are propagated to any quantity
X. They can also be generalized to asymmetric errors [44], though their mathematical meaning
is not as clear as here. The PDF sets defined in Eq. (218) are referred to as PDF error sets
and they are usually distributed along with the central set. The tolerance ∆χ2 required to define
the uncertainty levels are usually taken to be much larger than unity. The tolerance can also be
different for each eigendirection.

6.3 Monte-Carlo techniques

The Monte-Carlo techniques are used particularly in PDF analyses of the NNPDF collaboration.
Although there are different variants of the method, the basic idea is, in fact, quite much simpler
than the Hessian one. In principle, one prepares several replicas k = 1, . . . , Nreplica of the original
data values ydata

i by the transformation

ydata
i (k)→ ydata

i

[
1 + δydata

i Ri(k)
]
, i = 1, . . . , Ndata , (221)

where Ri(k) is a random number drawn from a Gaussian distribution centered at 0 and with
unit variance. Changes to the equation above are necessary if the uncertainties are correlated
(also whether the uncertainties are additive or multiplicative, counts). After the a set of data has
been prepared, the PDFs are fitted to these data. Thus, one obtain a collection of Nreplica PDFs,
fk=1,...,Nreplica

. From these PDF replicas one can then compute the expectation value 〈O〉 and
variance δ〈O〉 for an observable O as

〈O〉 =
1

Nreplica

Nreplica∑

k=1

O [fk] , (222)

δ〈O〉 =

√√√√ 1

Nrep

Nreplica∑

k=1

(O [fk]− 〈O〉)2. (223)
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It can be shown that the obtained PDFs are distribute according e−χ
2/2-like distribution and the

variance corresponds to ∆χ2 = 1 in the Hessian approximation (when the approximations required
for the Hessian method to be reliable, are valid). By increasing the variance of the Gaussian
distribution from which the random numbers Ri(k) are drawn from, also higher tolerance levels
(corresponding to ∆χ2 > 1) can be set. Although simple, robust and easy to implement, the
problem is that in order to get enough statistics, hundreds (or thousands) of separate PDF fits
are required.

6.4 Proton PDF sets: NNPDF3.1 vs. CT14 vs. MMHT14

A comparison of the latest global PDF fits by NNPDF, CTEQ, and MMHT collaborations is
shown in Figure 33. Despite the different details (schemes, fitting methodology,. . .) all are pretty
much compatible.

6.5 Nuclear PDFs

All PDFs are hadron specific (though universal in all processes that hadron is involved). That is,
the PDFs of protons, neutrons, pions, kaons, etc. are different. It has also been noticed that the
PDFs of bound nucleons appear different than their free counterparts (though experiments with
free neutrons are a bit difficult to do...). This observation stems from the experimental findings

— like those shown in Figure 34 — which clearly indicate that the DIS structure functions are
modified in lepton-nucleus scattering. At small-x the ratio FA2 /F

p
2 is less than unity, which is

often called nuclear shadowing. Around x ∼ 0.1 the ratio is above unity (antishadowing).
Towards larger x the ratio goes below unity again, which is known as EMC effect. At very
high x the ratio rises again strongly (Fermi motion).
Often, the bound proton PDFs, or just nuclear PDFs, are written as

fproton,A
i (x,Q2) = RAi (x,Q2)× fproton

i (x,Q2), (224)

where A refers to the mass number of the nucleus. The factors RAi (x,Q2) are nuclear modifications
to the free-proton PDFs. The nuclear fproton,A

i (x,Q2) and free-proton fproton
i (x,Q2) PDF obey

the same DGLAP equations, and thereby also the nuclear modification is Q2 dependent. The
nuclear PDFs can be extracted essentially the same way as the free proton PDFs, though the
available data are much more scarce (no “nuclear HERA” data). The two most recent global fits
are EPPS16 [45] and nCTEQ15 [46]. The nuclear modifications from these two are compared in
Figure 34 at Q2 = 10 GeV2.
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Figure 33: A comparison between NNPDF3.1, CT14, and MMHT2014 PDFs [34].

7 Photons in protons

Until now, we have only considered the QCD part of PDFs. However, as well as quarks can
radiate gluons, they may also radiate photons, and photons may split into leptons. Thus, the
partonic content of protons is more than just quarks and gluons. We will discuss the photon
PDFs here. The QED coupling αem is of course much smaller than QCD coupling αs, so the
photon distribution will be much smaller than e.g. that of gluons. However, at 3-loop QCD
level (NNLO PDFs, the current standard) the LO QED effects begin to compete with QCD:
At Q = 10 GeV, αs(Q) ≈ 0.2 we have α3

s(Q) ≈ 0.008, which is of the same order as the QED
coupling αem ≈ 1/137 ≈ 0.007. Furthermore, for some processes at the LHC the photon-photon
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Figure 34: Up: Structure functions measured on a heavy nucleus divided by deuteron structure
functions. Down: Nuclear modifications from EPPS16 and nCTEQ15 global fits. Figs. from
Ref. [45].

channels can be important for other reasons. For example, in the Drell-Yan dilepton production,
the qq channel is significantly suppressed at high invariant masses M`+`− � MZ due to the
∼ 1/M2

`+`− behaviour of the s-channel propagator. In contrast, the photon-photon channel
proceeds via t/u channels which are not similarly suppressed.

7.1 Evolution with QED corrections

The DGLAP equations are readily generalized to include QED effects. They can be written,
using the convolution notation, e.g. as

dg

dt
=

∑

j

Pgqj ⊗ qj +
∑

j

Pgq̄j ⊗ q̄j + Pgg ⊗ g + Pgγ ⊗ γ , (225)

dγ

dt
=

∑

j

Pγqj ⊗ qj +
∑

j

Pγq̄j ⊗ q̄j + Pγg ⊗ g + Pγγ ⊗ γ , (226)

dqi
dt

=
∑

j

Pqiqj ⊗ qj +
∑

j

Pqiq̄j ⊗ q̄j + Pqig ⊗ g + Pqiγ ⊗ γ , (227)
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where t = lnµ2. The splitting functions involve pure QCD, pure QED, plus mixed terms,

Pij =
(αs

2π

)
P

(1,0)
ij +

(αs
2π

)2
P

(2,0)
ij +

(αs
2π

)3
P

(3,0)
ij +

(αem

2π

)
P

(0,1)
ij +

(αem

2π

)(αs
2π

)
P

(1,1)
ij +... . (228)

The QCD O(αs) kernels were discussed in Section 2. The pure QED splitting functions are

P (0,1)
qq (x) = e2

q

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
, (229)

P (0,1)
qγ (x) = NC e

2
q

[
x2 + (1− x)2

]
, (230)

P (0,1)
γq (x) = e2

q

[
1 + (1− x)2

x

]
, (231)

P (0,1)
γγ (x) = −2

3

∑

f

e2
f δ(1− x) , (232)

entailing some interesting features. The splitting functions involving quarks depend explicitly
on the electromagnetic charge. This means that the upper (up, charm, top) and lower (down,
strange, bottom) quarks no longer evolve with equal pace. This also explicitly destroys the
isospin symmetry between up and down quarks,

fproton
u (x,Q2) 6= fneutron

d (x,Q2)

fproton
d (x,Q2) 6= fneutron

u (x,Q2) ,
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which would be an exact symmetry in (massless) QCD. The γ → γ splitting function involves a
sum over fermion charges,

∑

f

e2
f = NC

nF∑

q

e2
q +

nL∑

l

e2
l , (233)

where nF and nL are the number of quark and lepton flavours. In comparison to QCD case, only
δ-function part is present, as photons do not self-interact.

The effect of isospin violation in two different PDFs including photon component are shown in
Figure (35). Apart from the photon distribution, the isospin-breaking effects are some at the
level of percents, (the input parametrization is isospin symmetric in NNPDF2.3QED). The lower
photon content of the neutron can be understood on the basis of lower effective charge of the
neutron,

Proton :
∑

e2
u + e2

u + e2
d = 1

Neutron :
∑

e2
d + e2

d + e2
u = 2/3 .

Thus, to first approximation fneutron
γ /fproton

γ ≈ 2/3 ≈ 0.7. This is in qualitative agreement with
Figure (35).

Figure 35: Figure from Ref. [47].

Along with the increasingly precise LHC data, the role of photon PDFs has become more and
more important and several data-driven analyses have tried to pin down the photon PDFs. Out
of the LHC data, the high-mass Drell-Yan is indeed one of the most constraining ones. Figure 36
below shows some recent ATLAS data up to TeV mass range. These data can put constraints for
the photon PDF as illustrated in Figure 37 below. However, a recent theory breakthrough which
we now consider in some detail, has now revolutionized the way the photon PDFs are extracted.
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Figure 36: Figure from Ref. [48]
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Figure 37: Figure from Ref. [48]

7.2 Calculation of the photon PDF in terms of F2 and FL

Here, we will go through (in a bit simplified way) the method introduced in Refs. [49, 50], of how
to relate the photon PDFs and the usual F2 and FL DIS structure functions. The starting point
here is a hypothetical Beyond-Standard-Model (BSM) probe that couples to the Standard-Model
particles only via photon exchange. What one assumes here are two spin-1/2 leptons, incoming `
an outgoing L, where the former is massless, M` = 0, and the latter is heavy ML � Mp. The
interaction term introduced in the Lagrangian is

( e
Λ

)
Lσµν`Fµν , (234)

where σµν =
i

2
[γµ, γν ], and Fµν is the electromagnetic tensor. The electromagnetic coupling

is e and the scale Λ is introduced for dimensional reasons. The limit Λ→∞ will be assumed
throughout the calculation. The corresponding vertex factor reads
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∝ i
( e

Λ

)
σµνqµ

l, k

L, k

q

,

7.2.1 General expression

The general diagram for scattering of lepton ` off a proton is show in Figure 38. First, considering

l, k

L, k

P

q

,

Figure 38: Probing the proton in a `+ proton→ L+X process.

such a BSM probe may appear as an extra complication. However, the advantage lies in taking
the Λ→∞ limit. In this limit all the corrections to the incoming and outgoing lepton lines (as
well as multi-photon exchange) will be suppressed by additional inverse powers of Λ and they
disappear in the considered limit. Thus, the QED corrections for the process in Figure 38 are
restricted to the virtual photon self-energy corrections. One subtlety here is whether part of these
self-energy loops should be included in the definition of the hadronic part. Here, the definition of
the hadronic tensor is taken to be such that it does not contain any of these. In other words, at
partonic level, the diagrams entering the hadronic tensor are all one-photon-irreducible. The
matrix element for the process in Figure 38 can be written as,

M =
[
u(k′, s′)(−i e

Λ
σµαqα)u(k, s)

](
− igµν

q2

)
〈out| − ieĴµ(0)|(P, σ), in〉 . (235)

Squaring and averaging over the spins, gives,

|M |2 =
e4

q4

1

Λ2

1

2

∑

s,s′

[
u(k′, s′)σµαqαu(k, s)

] [
u(k′, s′)σνβqβu(k, s)

]∗

︸ ︷︷ ︸
Lµν

(236)

× 1

2

∑

σ

〈n, out|Ĵµ(0)|(P, σ), in〉〈n, out|Ĵν(0)|(P, σ), in〉∗
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so that, as in Section 1.1, the cross section is 4πMpWµν “hadronic tensor“

dσ =
1

4P · k
e4

q4

d3k′

(2π)32E′
Lµν× 1

2

∑

σ

∑

n

∫ n∏

i=1

d3ki

(2π)32k0
i

(2π)4δ(4)(P + q −
n∑

j=1

kj) (237)

〈n, out|Ĵµ(0)|(P, σ), in〉〈n, out|Ĵν(0)|(P, σ), in〉∗ .

Here, the leptonic tensor is

Lµν ≡ 1

Λ2

1

2
Tr
[(
/k′ +ML

)
σµα/kσνβ

]
qαqβ (238)

=
1

Λ2

(
M2

L +Q2
) (
qµqν −M2

Lg
µν
)

+ 4Q2kµkν − 2
(
M2

L +Q2
)

(kµqν + kνqµ) .

The total cross section can thus be written as

σ =
4πMp

4P · k

∫
e4

ph(q2)

q4

d4q

(2π)3
[LµνWµν ] θ

(
k′0
)
θ
(
p0 + q0

)
θ
[
(p+ q)2 −M2

p

]
δ
(
k′2 −M2

L

)
, (239)

where we have traded the k′ integral with a q integral. The θ functions impose the positivity of
the final state energies, and that the final-state invariant mass is at least the proton mass (proton
is the lightest baryon and the baryon number is conserved). The inclusion of loop corrections to
the intermediate photon line results in replacing the constant QED coupling e by the physical
running coupling eph(q2). In what follows, we will use the notation e(−q2) = e(Q2) ≡ eph(q2).
The phase space integral can be written as

∫
d4q

(2π)3
θ
(
k′0
)
θ
(
p0 + q0

)
θ
[
(p+ q)2 −M2

p

]
δ
(
k′2 −M2

L

)
(240)

=
1

16π2M2
L

∫ 1− 2ηMp
ML

η
dz

∫ Q2
max

Q2
min

Q2dQ2 , (241)

where

η ≡ M2
L

2P · k =
M2

L

s−Mp
, z ≡ η

x
, (242)

and x is the usual Bjorken variable x = Q2/(2P · q). Neglecting terms which are suppressed by
powers of M2

p/M
2
L, the integration limits for the Q2 integral can be shown to be,

Q2
min =

M2
pη

2

1− z , Q2
max =

M2
L(1− z)
z

. (243)

In Section 1.1 we argued that the general structure (which is of relevance here) for the hadronic
tensor is

Wµν = −F1(x,Q2)

Mp

(
gµν −

qµqν
q2

)
+

2x

Q2

F2(x,Q2)

Mp

(
Pµ −

P · q
q2

qµ

)(
Pν −

P · q
q2

qν

)
, (244)

where we have already included Q2 as a an argument of F1,2 as we know that they are also
functions of Q2. The contraction LµνWµν gives,

LµνWµν =
1

Λ2

M4
L

zηMp

[(
−z2 − z2Q2

2M2
L

+
z2Q4

2M4
L

)
FL(x,Q2) (245)

+

(
2− 2z + z2 +

2η2M2
p

Q2
− 2zQ2

M2
L

+
z2Q2

M2
L

−
2η2M2

pQ
2

M4
L

)
F2(x,Q2)

]
,
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where the longitudinal structure function is, with finite target mass,

FL(x,Q2) ≡
(

1 +
4x2M2

p

Q2

)
F2(x,Q2)− 2xF1(x,Q2) . (246)

The total cross section thus becomes,

σ =
2π

Λ2

∫
dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2(Q2)

[(
−z2 − z2Q2

2M2
L

+
z2Q4

2M4
L

)
FL

(η
z
,Q2

)
(247)

+

(
2− 2z + z2 +

2η2M2
p

Q2
− 2zQ2

M2
L

+
z2Q2

M2
L

−
2η2M2

pQ
2

M4
L

)
F2

(η
z
,Q2

)]
.

For future convenience, we write the front factor as

2π

Λ2
=

2πe2(µ2)

Λ2e2(µ2)
=

2πe2(µ2)

4πΛ2α2(µ2)
=
πe2(µ2)

Λ2

1

2πα(µ2)
= σ0 ×

1

2πα(µ2)
(248)

σ0 =
πe2(µ2)

Λ2
. (249)

Let us now split the equation for the cross section as,

σ =
σ0

2πα(µ2)

∫ 1

η

dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2(Q2) (250)

[
−z2FL

(η
z
,Q2

)
+

(
2− 2z + z2 +

2η2M2
p

Q2

)
F2

(η
z
,Q2

)]

+
σ0

2πα(µ2)

∫ 1

η

dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2(Q2)

[(
−z

2Q2

2M2
L

+
z2Q4

2M4
L

)
FL

(η
z
,Q2

)
+

(
−2zQ2

M2
L

+
z2Q2

M2
L

−
2η2M2

pQ
2

M4
L

)
F2

(η
z
,Q2

)]
.

The lower part is suppressed at low Q2 by additional factors of Q2, whereas the upper part gets
contributions from all Q2. In the lower part we may drop the FL term as it’s higher order in
QCD and QED couplings, FL = O(αs) +O(α). In the upper part we cannot do the same for the
logarithmic Q2 integral which leads to a log(αs) behaviour as we saw in Section 2.5. In the lower
part we may also write

F2

(η
z
,Q2

)
= F2

(η
z
, µ2
)

+O(αs) +O(α) ,

α2(Q2) = α2(µ2) +O(α) .

(251)

These approximations render the Q2 integral in the lower part trivial, and the above expression
simplifies to

σ = σ0

{
1

2πα(µ2)

∫ 1

η

dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2(Q2) (252)

[
−z2FL

(η
z
,Q2

)
+

(
zpγq(z) +

2η2M2
p

Q2

)
F2

(η
z
,Q2

)]

+
α(µ2)

2π

∫ 1

η

dz

z

[
(1− z)(2− z)F2

(η
z
, µ2
)]}

,
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where pγq(z) = [1 + (1− x)2]/x = Pγq(z)/e
2
q . We now split the remaining Q2 integral into

”low-Q2“ and ”high-Q2“ parts,

σ = σ0





1

2πα(µ2)

∫ 1

η

dz

z

∫ µ2

1−z

Q2
min

dQ2

Q2
α2(Q2)

[
−z2FL

(η
z
,Q2

)
+

(
zpγq(z) +

2η2M2
p

Q2

)
F2

(η
z
,Q2

)]

+
1

2πα(µ2)

∫ 1

η

dz

z

∫ Q2
max

µ2

1−z

dQ2

Q2
α2(Q2)

[
−z2FL

(η
z
,Q2

)
+

(
zpγq(z) +

2η2M2
p

Q2

)
F2

(η
z
,Q2

)]

+
α(µ2)

2π

∫ 1

η

dz

z

[
(1− z)(2− z)F2

(η
z
, µ2
)]}

,

In the second line we may again replace the Q2 in the arguments of α and F2 by µ2, as well as
throw away the FL and 2η2M2

p/Q
2 terms. Performing the Q2 integral gives finally,

σ = σ0





1

2πα(µ2)

∫ 1

η

dz

z

∫ µ2

1−z

Q2
min

dQ2

Q2
α2(Q2)

[
−z2FL

(η
z
,Q2

)
+

(
zpγq(z) +

2η2M2
p

Q2

)
F2

(η
z
,Q2

)]

+
α(µ2)

2π

∫ 1

η

dz

z

[
(1− z)(2− z) + zpγq(z) log

(
M2

L(1− z)2

zµ2

)]
F2

(η
z
, µ2
)


 . (253)

7.2.2 QCD-improved parton-model result
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Figure 39: Diagrams for `+ proton→ L+X process in parton-level calculation.

As in Section 1.2, we now need the parton-model counter part to compare with the general
expression Eq. (253). To O(α), there are three diagrams to consider, as shown in Figure 39.
The leftmost graph corresponds to the leading-order contribution. The matrix elements for this
process can be written as

M =
[
u(k′, s′)(−i e

Λ
σµα(−pα))u(k, s)

]
εµ(p, λ) . (254)

Squaring and averaging/summing over the spins/polarization, we have

|M|2 =
e2

4Λ2
Tr
[(
/k′ +ML

)
σµα/kσνβ

]
pαpβ ×

∑

λ

εµ(p, λ)ε∗ν(p, λ)

︸ ︷︷ ︸
−gµν

=
e2ŝ2

Λ2
. (255)
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The corresponding LO partonic cross section is then

σ̂(0) =
1

ŝ

∫
d3k′

2E′(2π)3
|M|2(2π)4δ(4)

(
p+ k − k′

)
=
π

ŝ

e2ŝ2

Λ2
δ
(
ŝ−M2

L

)
= σ0 ×M2

Lδ
(
ŝ−M2

L

)
. (256)

The hadronic cross section is obtained by folding the partonic results with the photon PDFs,

σ(0) =

∫
dξσ̂(0)fγ(ξ, µ2) = σ0 ×M2

L

∫
dξδ

(
ŝ−M2

L

)
= σ0 ×

M2
L

s

∫
dξδ

(
ξ − M2

L

s

)
fγ(ξ, µ2)

= σ0 × ηfγ(η, µ2) . (257)

The second graph in Figure 39 contains a collinear singularity when the quark from the proton
spits a photon along its line of path. There, we also meet again the just-derived leading-order
result. Within the dimensional regularization, the resulting partonic cross section reads,

σ̂(1) = σ0e
2
q

{
α

2π

(
−1

ε̂
+ log

M2
L

µ2
D

)
zpγq(z) +

α

2π
h(z)

}
(258)

h(z) = −2 + 3z + zpγq(z) log
(1− z)2

z
, (259)

where z ≡M2
L/ŝ = η/ξ. The corresponding hadronic cross section then becomes

σ(1) =
∑

q

∫ 1

η
dξσ̂(1)fq(ξ, µ

2) (260)

= σ0

∑

q

e2
q

∫ 1

η

dξ

ξ

{
α

2π

(
−1

ε̂
+ log

M2
L

µ2
D

)
zpγq(z) +

α

2π
h(z)

}
ξfq(ξ, µ

2) . (261)

As in Section 3.5, we can write the photon PDF, to first order in α in the MS scheme as,

fγ(η, µ2) =

∫ 1

η

dξ

ξ

( α
2π

)[
−1

ε̂
− log

(
µ2
D

µ2

)]∑

q

Pγq

(
η

ξ

)
fq
(
ξ, µ2

)
, (262)

or, multiplying by η = zξ,

ηfγ(η, µ2) =

∫ 1

η

dξ

ξ

( α
2π

)[
−1

ε̂
− log

(
µ2
D

µ2

)]∑

q

zPγq (z) ξfq
(
ξ, µ2

)
. (263)

Thus,

σ(1) =
∑

q

∫ 1

η
dξσ̂(1)fq(ξ, µ

2) = σ0 × ηfγ(η, µ2) (264)

+ σ0

∫ 1

η

dξ

ξ

α

2π

{
log

M2
L

µ2
zpγq(z) + h(z)

}
×
∑

q

e2
qξfq(ξ, µ

2) .

Recalling that to leading order F2(x, µ2) =
∑

q

e2
qxfq(x, µ

2), we can write the above expression

as,

σ(1) = σ0

{
ηfγ(η, µ2) +

∫ 1

η

dz

z

α(µ2)

2π

[
log

M2
L(1− z)2

zµ2
zpγq(z)− 2 + 3z

]
F2

(η
z
, µ2
)
.

}
(265)

The rightmost diagram in Figure 39 involving an on-shell photon, is zero in the MS scheme
with massless fermions. In any case, we would not contribute to the hadronic tensor, as it’s
one-photon reducible. Thus, Eq. (265) is our final parton-model result.
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7.2.3 Combination of the general and parton-model expressions

Expressions in Eq (253) and Eq. (265) represent the same cross section, so they are equal. By
equating the two,

σparton model = σgeneral ,

we see that the front factors σ0 as well as log(M2
L(1− z)2)/(zµ2) terms cancel. What is left is,

ηfγ(η, µ2) =
1

2πα(µ2)

∫ 1

η

dz

z

∫ µ2

1−z

M2
pη

2

1−z

dQ2

Q2
α2(Q2)

[
−z2FL

(η
z
,Q2

)
(266)

+

(
zpγq(z) +

2η2M2
p

Q2

)
F2

(η
z
,Q2

)]
− α(µ2)

2π

∫ 1

η

dz

z

[
z2F2

(η
z
, µ2
)]

.

This is the final result for the photon distribution. It does not depend on any of the parameters
of the considered BSM process. This is how it must be as required by the universality of the
PDFs. We see that if we know the structure functions F2 and FL accurately enough, we also
know the photon content of the proton. This formula is included as a theoretical constraint e.g.
in the recenr NNPDF3.1luxQED [51] global fit of PDFs.

7.3 Photons in global fits

To evaluate Eq. (266) numerically, one needs to consider a wide range in x and Q2. However, all
regions are either covered by data or they can be computed from PDFs, as illustrated in Figure 40.
Note that there are contributions from low-W resonanace region, (Mp +Mπ)2 < W 2 < 3.5 GeV2,
low-W continuum W 2 > 3.5 GeV2, as well as the elastic region F2,L(x = 1, Q2). As shown in
Figure 40, it’s necessary to account for all these regions. The additional theory constraint of
Eq. (266) leads to a significantly more precise photon PDF that when it’s extracted directly from
the data by conventional methods. Figure 41 shows the effect within the context of NNPDF3.1
global analysis. The fraction of the proton’s momentum carried by the photon is always small,
< 1%, see Figure 42. As already discussed, the contributions of photon-photon channels can
become important in particular at high-invariant masses – some examples are shown in Figure 43.
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Figure 40: Figure from Ref. [49].
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