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Prologue

Do not keep saying to yourself, if you can possibly avoid it, "But

how can it be like that?" because you will get "down the drain," into

a blind alley from which nobody has yet escaped. Nobody knows how

it can be like that.

Feynman

As I am interested in the theory of the particle physics, I find it very annoying
to take any formulas as "God’s gift" without knowing how they exactly come
about, and just feed them on numbers. Occasionally, to make any progress with
a physical problem, one cannot, however, avoid it. But doing such, bothers me
and this is the reason why this thesis became quite long: I wanted to explicitly
include many nontrivial calculations and the field theory related calculations
are usually not the shortest ones.

I am most grateful to my supervisor Kari J. Eskola for a fruitful collaboration
and being patient enough as I have took my time really digging into the subject.
My special thanks goes also to the professor Vesa Ruuskanen for pointing out
some of my mistakes that are now absent from this thesis. For the financial
support, I acknowledge the grants from the URHIC project at the Helsinki
Institute of Physics and from the Academy of Finland, project 206024.

Finally, I wish to thank my parents and all my sisters for their love and care
on the road I have chosen.

At Kortepohja, Jyväskylä just before Christmas 2005

Hannu Paukkunen

3



4



Contents

1 Introduction 7

1.1 Strange result from Fermilab! . . . . . . . . . . . . . . . . . . . . 7
1.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Possible explanations . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Electroweak Lagrangian 11

2.1 Gauge transformation . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Field strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Particle content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Charged-current interactions . . . . . . . . . . . . . . . . . . . . 15
2.6 Neutral-current interactions . . . . . . . . . . . . . . . . . . . . . 15
2.7 Gauge boson self-interactions . . . . . . . . . . . . . . . . . . . . 17
2.8 The Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Gauge boson masses . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Tree-level quantization 21

3.1 Correlation functions in path integral formalism . . . . . . . . . . 21
3.2 Change of representation . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Choice of gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Heavy boson propagator . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Goldstone propagator . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Fermion propagator . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Interacting theory . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Deep inelastic scattering 35

4.1 Deep inelastic scattering in a nutshell . . . . . . . . . . . . . . . 35
4.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 General cross-section formula . . . . . . . . . . . . . . . . 37

4.2 Charged current neutrino DIS . . . . . . . . . . . . . . . . . . . . 37
4.2.1 General charged current matrix element . . . . . . . . . . 37
4.2.2 Leptonic tensor . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Hadronic tensor . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Contraction LµνWµν . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Antineutrino scattering . . . . . . . . . . . . . . . . . . . 43
4.2.6 DIS in the parton model . . . . . . . . . . . . . . . . . . . 44
4.2.7 Accommodating antiquarks . . . . . . . . . . . . . . . . . 48

5



6 CONTENTS

4.2.8 νh DIS in the parton model . . . . . . . . . . . . . . . . . 49
4.3 Neutral current DIS . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 General neutral current cross-section . . . . . . . . . . . . 50
4.3.2 Connection to the parton model . . . . . . . . . . . . . . 51

4.4 QED DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Parton model DIS in QED . . . . . . . . . . . . . . . . . 53

4.5 Drell-Yan process . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 The quark sub-process . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Embedding to hadronic level . . . . . . . . . . . . . . . . 57

4.6 Phenomenology: from free proton to the bound nucleus . . . . . 58
4.6.1 Structure function EMF2 for free proton . . . . . . . . . . 58
4.6.2 Nuclear effects . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.3 EKS98 parametrization . . . . . . . . . . . . . . . . . . . 63

5 nPDFs and NuTeV anomaly 67

5.1 Observables Rν , Rν and R− . . . . . . . . . . . . . . . . . . . . . 67
5.1.1 Sophistications to structure functions . . . . . . . . . . . 67
5.1.2 Observables Rν and Rν and Llewellyn Smith formula . . 68
5.1.3 Observable R− and Paschos-Wolfenstein formula . . . . . 70

5.2 Can RA
d/V 6= RA

u/V cause NuTeV anomaly? . . . . . . . . . . . . . 71
5.2.1 The procedure . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Consequences in RDY and RF2

. . . . . . . . . . . . . . . 76
5.3 Conclusion an outlook . . . . . . . . . . . . . . . . . . . . . . . . 77



Chapter 1

Introduction

1.1 Strange result from Fermilab!

The Weinberg weak mixing angle sin2 θW is one of the most crucial parameters
in The Standard Model of particle physics. The current world average of this
quantity combined from several experiments is [1]

〈
sin2 θW

〉
= 0.2227± 0.00037.

A few years ago, the NuTeV collaboration announced [2] that their measure-
ments in deep inelastic neutrino-nucleus scattering indicated the value of Wein-
berg weak mixing angle

sin2 θNuTeV
W = 0.2277± 0.0013(stat)± 0.0009(syst).

The result was surprising and unexpected being about 3σ apart from the world
average value. Today, this deviation — the NuTeV anomaly — still remains as
an open question without a unique explanation.

1.2 Experiment

Neutrino and antineutrino beams needed in the experiment were produced as
follows (see also fig. 1.1): High energy (800 GeV) protons from the Tevatron
were first impinged on a BeO target. The subsequent shower of hadrons entered
in the Sign Selected Quadrupole Train (SSQT) — a group of dipole magnets
that selected the pions and kaons of a particular charge to a secondary beam
toward the NuTeV target. These subsequently decayed producing muons and
either neutrinos or antineutrinos depending of the charge of the meson:

π+,K+ → µ+ + νµ

π−,K− → µ− + νµ.

At the last stage, the residual muons were removed from the beam by the muon
shield — a huge block of lead and steel.

The actual NuTeV target shown in fig. 1.2 consisted of steel (mainly iron
56Fe) plates interspersed with scintillation counters and drift chambers. At the

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: Conceptual sketch from the NuTeV beamline [3].

end of the detector there was a muon detector. Every now and then a neutrino
interacted with a iron nucleus producing a shower of hadrons. The events were
classified to the charged current (CC) and neutral current (NC) events according
to whether there was a muon in the final state or not, as illustrated in fig. 1.3.

Figure 1.2: The target used in the NuTeV experiment [3].

From the number of counted NC and CC events the NuTeV collaboration
extracted the cross-section ratios

Rν ≡ σNC (νN)

σCC (νN)
(1.1)

Rν ≡ σNC (νN)

σCC (νN)
. (1.2)

for ν and ν beams. Both of these can be separately related to the weak mixing
angle sin2 θW but to reduce the amount of uncertainties arising from the nuclear
parton distributions, they were combined to a single observable

R− ≡ σNC(νN)− σNC(νN)

σCC(νN)− σCC(νN)
(1.3)

which is also related to sin2 θW. The actual extraction of the value of sin2 θW
trusted on a sophisticated Monte Carlo simulation which is needed to predict the
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Figure 1.3: Example of CC and NC events in the NuTeV detector. In the CC
reaction there is muon in the final state and the energy deposited in the detector
is distributed along the muon track. NC event is distinguished from the CC one
since there is no muon in the final state and the energy is deposited in a much
smaller volume [3].

actual flux and energy distribution of the incoming neutrinos. Having considered
and examined various sources of errors the NuTeV group then reported their
astonishing result which has thereafter caught a great deal of attention by the
particle physics community.

1.3 Possible explanations

A number of proposed resolutions extending from the conventional explanations
within the Standard Model [4, 5] to the more exotic ones that would require
novel physics outside the Standard Model [6, 5], has emerged.

As intriguing as it would be to see some new physics appearing in the result
it has turned out to be quite difficult to find beyond-Standard-Model physics
that would explain the NuTeV anomaly while agreeing with other precision
electroweak measurements. Exotics like extra Z vector bosons or Leptoquarks
would need to be precisely ’fine-tuned’ in order to reconcile the anomaly while
the loop corrections from Supersymmetric models tend to be in wrong direction
[7]. Question about varying coupling constant GF and mixing angle sin2 θW
from a process to another has also been posed [8] and even the possibility of
magnetic monopoles has been proposed [9] to be hiding behind the anomaly!
This just illustrates how amazing the result in question is.

However, it is important to carefully investigate whether the NuTeV anomaly
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could be explained within the current framework of Standard Model. The possi-
ble effects of the next-to-leading-order QCD [6, 10] and the radiative electroweak
corrections [11, 12] are supposed to be under control. But all relevant contribu-
tions were not implemented in the original NuTeV analysis and there is still a
question mark about the issue.

Another thing that has to be taken into account is that the NuTeV target
is mainly iron and some consequences from the non-isoscalar nature of a fairly
heavy nucleus can arise. Indeed, the recent discussion implies that considerable
part of the NuTeV anomaly can be simply due to our insufficient knowledge of
the parton structure of the heavy nucleus! Although still uncertain at this stage,
the possible asymmetry between strange and antistrange quark distributions
S− ≡

∫
x[s(x) − s(x)]dx 6= 0 [13, 14, 15] and isospin violating PDFs [13, 15]

may both be viable in interpreting the anomaly.
The main purpose of this thesis is to study the NuTeV anomaly from the

point of view of nuclear parton distributions (nPDFs). Particularly, we point
out that the possible difference between the nuclear corrections for the valence-u
and valence-d distributions in a bound proton compared to to the free proton
ones contributes to the anomaly. This difference may, as we show, be signif-
icant enough to explain the NuTeV anomaly without disagreeing with other
experimental data constraining the nPDFs.

Before we attack this issue, we need to do some preparations. First, we
briefly review the electroweak Lagrangian and then quantize it to such extent
that simple tree-level contributions to scattering events can be computed. We
go on and work out the cross-sections for deep inelastic scattering and Drell-
Yan processes and after these preliminaries we are ready to discuss the NuTeV
experiment.

We will derive some simple expressions for Rν , Rν and R− — often men-
tioned when these observables are discussed — that relate them to sin2 θW. At
the end we present the results of our numerical calculations [16] that demon-
strate the chance that the NuTeV anomaly could be due to the different nuclear
effects between u-valence and d-valence quark distributions.



Chapter 2

Electroweak Lagrangian

The Standard Model of the electroweak interactions is a beautiful example of
close interplay between experiments and theoretical notions. On the one hand
there is a deep theoretical principle of gauge invariance that fixes the framework
and constrains the possible interactions. The remaining freedom is then fixed
in such a way that the phenomenology observed in the experiments is correctly
reproduced. The most important underlying experimental facts are:

• Only left-handed fermions and right-handed antifermions participate in
weak processes such as β-decays n → p νe e

− or µ− → e− νe νµ. Thus,
parity is broken in weak interactions. The strength of the interaction
appears to be universal in such processes.

• Only left-handed neutrinos and right-handed antineutrinos exist.

• Fermions come in three families.

• Lepton number is conserved.

Such facts were good enough for Steven Weinberg and Abdus Salam to for-
mulate the unified electroweak theory that describes the electrodynamics and
weak phenomena [17, 18]. It was originally an idea of Sheldon Glashow that
the weak phenomena are mediated by heavy intermediate bosons. But such a
theory was ill-defined: it was not renormalizable. In the Weinberg model the
intermediate bosons are originally massless but become massive due to the spon-
taneous symmetry breaking — the Higgs mechanism. As Geradus ’t Hooft later
showed, such a theory is indeed renormalizable. This theory has been hugely
successfull and at present the only missing piece is the experimental evidence
of the Higgs boson that emerges from the spontaneous symmetry breaking and
gives all fermions and heavy bosons their masses.

In what follows, we will review how the Lagrangian of the Glashow-Weinberg-
Salam model (GWS-model for short) emerges from the requirement of gauge
invariance and how parity breaking is introduced.

11



12 CHAPTER 2. ELECTROWEAK LAGRANGIAN

2.1 Gauge transformation

The underlying principle fo the GWS theory is to require Lagrangian to remain
invariant under local SU(2)× U(1) gauge transformations

V (x) ≡ eiY β(x)eiT
iαi(x) (2.1)

where Y is the weak hypercharge operator and T i’s are hermitian weak isospin

generators satisfying the SU(2) algebra

[T i, T j] = iǫijk T k, (2.2)

where ǫijk is completely antisymmetric Levi-Civita symbol

ǫijk =







+1 if ijk is even permutation of 123,
−1 if ijk is odd permutation of 123,
0 otherwise.

(2.3)

2.2 Covariant derivative

To include fermions we should have the kinetic term

iΨγµ∂µΨ, (2.4)

where Ψ is a four-component spinor and Ψ ≡ Ψ†γ0, where γ0 is one of the four
Dirac-matrices γµ. Such terms gives the Dirac equation as a equation of motion
for massless fermions. This includes the derivative ∂µ. The problem is that the
usual definition of the derivative

nµ∂µΨ(x) = lim
ǫ→0

1

ǫ
[Ψ(x+ ǫn)−Ψ(x)] (2.5)

makes no sense since the two terms in square brackets transform in a different
way. To solve this problem we define unitary comparator U(y, x) between two
space-time points with a transformation property

U(y, x) → V (y)U(y, x)V †(x). (2.6)

Now the quantity U(y, x)Ψ(x) transforms as

U(y, x)Ψ(x) → V (y)U(y, x)Ψ(x), (2.7)

which is exactly how Ψ(y) transforms. Thus, it makes sense to define the co-

variant derivative

nµDµΨ(x) = lim
ǫ→0

1

ǫ
[Ψ(x+ ǫn)− U(x+ ǫn, x)Ψ(x)] . (2.8)

Due to the unitarity and natural requirement U(y, y) = 1, U(y, x) can be taken
as pure phase

U(x, y) = eif(x,y)

where f(x, y) is a smooth function constructed out of operators Y and T i.
Expanding this for infinitesimal ǫ gives

U(x+ ǫn) = 1 + iǫnµ
[
gAi

µ(x)T
i + g′Bµ(x)Y

]
, (2.9)
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where g and g′ are real constants and Bµ(x) and Ai
µ(x) are real vector fields.

Using this expansion in 2.8 we end up with

DµΨ(x) = [∂µ − igAµ(x) − ig′Bµ(x)Y ] Ψ(x), (2.10)

where Aµ(x) ≡ Ai
µ(x)T

i. The transformation properties of Ai
µ(x) and Bµ(x)

can be inferred from (2.6) as

igAµ(x) + ig′Bµ(x)Y → V (x) [−∂µ + igAµ(x) + ig′Bµ(x)Y ]V †(x), (2.11)

or for an infinitesimal transformation

Bµ(x) → Bµ(x) +
1

g′
∂µβ(x)

Ai
µ(x) → Ai

µ(x) +
1

g
∂µα

i(x) + ǫijkAj
µα

k(x). (2.12)

With these transformation properties the covariant derivative DµΨ transforms
as the field on which it acts:

DµΨ(x) → V (x)DµΨ(x),

and the kinetic term
LΨ ≡ iΨγµDµΨ (2.13)

is invariant under the gauge transformation V (x).

2.3 Field strengths

As we introduced 4 vector fields we should then add also the kinetic terms

−1

4
(∂µBν − ∂νBµ) (∂

µBν − ∂νBµ)

in order to interpret them as true propagating gauge bosons. Such terms give
a massless Klein-Gordon equation as a equation of motion. For Bµ singlet this
works as such but for Ai

µ triplet the kinetic term alone would break the gauge
invariance! Thus, we need some additional terms to ensure the gauge invariance.

The general procedure for obtaining kinetic terms for gauge bosons is to
compute the commutator of covariant derivatives

[Dµ, Dν] = −ig (∂µAν − ∂νAµ − ig[Aµ, Aν ]) (2.14)

−ig′ (∂µBν − ∂νBµ) ,

from which we can read the field strengths B̃µν and Ãµν

Ãµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν ] (2.15)

B̃µν ≡ ∂µBν − ∂νBµ

The B̃µν is gauge invariant as such and we can add aterm ∝ B̃µνB̃
µν into the

Lagrangian. Although Ãµν is not invariant,

Ãµν → Ã′
µν = V ÃµνV

†,
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it is easy to see that the trace of the product ÃµνÃ
µν is:

Tr
(

Ã′
µνÃ

′µν
)

= Tr
(

V ÃµνV
†V ÃµνV †

)

= Tr
(

ÃµνÃ
µν
)

. (2.16)

The trace can be evaluated using the SU(2) algebra (2.2) giving

Tr
(

ÃµνÃ
µν
)

∝ Ãi
µνÃ

µν, i. (2.17)

Thus, the properly normalized gauge invariant terms we add to the Lagrangian
are

−1

4
B̃µνB̃

µν − 1

4
Ãi

µνÃ
µν, i. (2.18)

2.4 Particle content

The interactions between fermions and gauge fields are fixed by the covariant
derivative in (2.13) and as the W± bosons should couple only to the left-handed
fermions, we should treat left- and right-handed fermions in a different manner.

The left- and right-handed components of the Dirac spinor Ψ are most con-
veniently obtained using the projection operators:

Left handed spinor : ΨL = PLΨ =

(
1− γ5

2

)

Ψ (2.19)

Right handed spinor : ΨR = PRΨ =

(
1 + γ5

2

)

Ψ, (2.20)

with γ5 ≡ iγ0γ1γ2γ3. Using these it is easy to see that the kinetic term for
fermions splits in two pieces

iΨγµ∂µΨ = iΨLγ
µ∂µΨL + iΨRγ

µ∂µΨR, (2.21)

and we are fully allowed to assign ΨL and ΨR in different representations of the
gauge group and still maintain the gauge invariance.

In the GWS-theory, the left-handed fermions are assigned to doublets whereas
the right-handed fermions are assigned to singlets:

(
νe
e−

)

L

(
u

d

)

L

(
e−
)

R
(u)R (d)R

(
νµ
µ−

)

L

(
c

s

)

L

(
µ−)

R
(c)R (s)R

(
ντ
τ−

)

L

(
t

b

)

L

(
τ−
)

R
(t)R (b)R

In the Standard Model there is no right-handed neutrinos and hence they are
not included to the chart above.
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νℓ, qdℓ−, qu

W±

Figure 2.1: Charged-current interaction vertex where charged lepton ℓ− and
corresponding neutrino νℓ interact. ’Upper quarks’ u, c and t are denoted
collectively by qu and ’lower quarks’ d, s and b by qd.

2.5 Charged-current interactions

Charged current interactions are mediated by charged W± boson and hence the
corresponding vector field should be complex. Indeed, as left-handed particles
are assigned to doublets the corresponding generators T are just Pauli matrices
T i = σi/2 and then

Aµ ≡ Ai
µ

σi

2
=

1

2

(
A3

µ A1
µ − iA2

µ

A1
µ + iA2

µ −A3
µ

)

=
1√
2

(
A3

µ/
√
2 W †

µ

Wµ −A3
µ/

√
2

)

, (2.22)

where we defined a complex vector field Wµ ≡
(
A1

µ + iA2
µ

)
/
√
2. To see that Wµ

is really involved in CC interactions consider the interaction term for left-handed
fermions

gΨLγ
µAµΨL. (2.23)

Writing out terms containing Wµ and W †
µ for a single family of quarks and

leptons produces interaction terms

LCC =
g√
2

{
W †

µ [uLγ
µdL + νeLγ

µeL] + h.c.
}

(2.24)

=
g

2
√
2

{
W †

µ

[
uγµ(1 − γ5)d+ νeγ

µ(1− γ5)e
]
+ h.c.

}
,

where h.c. stands for hermitian conjugation.

2.6 Neutral-current interactions

There are still two neutral fields A3
µ and Bµ from which we would like to identify

Z and γ (photon) bosons. However, we cannot identify either of these alone as
a photon field: A3

µ does not couple to right-handed fermions and if Bµ was to
correspond photon field, fermions within the same doublet would have similar
strength of interaction, i.e. the same electric charge. This is not true. The
solution is to try an arbitrary linear combination of them

(
A3

µ

Bµ

)

=

(
cos θW sin θW
− sin θW cos θW

)(
Z0
µ

Aµ

)

, (2.25)
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Z0, γ

f f

Figure 2.2: Neutral current and QED interaction vertex. In the case of Z
interaction f can be any fermion but when the intermediate boson is photon,
the fermion f must be a charged one.

where parameter θW is the Weinberg weak-mixing angle and Aµ and Z0
µ are the

fields corresponding to the real observed photon and Z-boson. Writing out the
remaining interaction terms yields

Ψγµ
[

Aµ

(
σ3

2
g sin θW + Y g′ cos θW

)

+ Z0
µ

(
σ3

2
g cos θW − Y g′ sin θW

)]

Ψ.

In order to have Aµ describing the photon field the following conditions must
be satisfied:

g sin θW = g′ cos θW = e
σ3

2
+ Y = Q, (2.26)

where e is unit charge and Q is electric charge operator. Thus, the Lagrangian
for electromagnetic interactions becomes

LQED = eAµΨγ
µQΨ. (2.27)

The conditions (2.26) also fix the Lagrangian for neutral current interactions:

LNC =
e

2 sin θW cos θW
Z0
µΨγ

µ
(
σ3 − 2Qe sin2 θW

)
Ψ

=
e

2 sin θW cos θW
Z0
µ (2.28)

[
ΨLγ

µ
(
σ3 − 2Qe sin2 θW

)
ΨL +ΨRγ

µ
(
−2Qe sin2 θW

)
ΨR

]
.

Since σ3 and Q are diagonal this can be written separately for each fermion
type in terms of usual Dirac spinors f as

LNC = gZfγ
µ
[
Lf(1 − γ5) +Rf (1 + γ5)

]
f, (2.29)

where

gZ =
e

4 sin θW cos θW

Lf = T 3
f − 2Qf sin

2 θW (2.30)

Rf = −2Qf sin
2 θW.

Here T 3
f ≡ σ3 and Qf are the quantum numbers of the corresponding operators.

The values of Lf and Rf for fermions are summarized in Table (2.1).
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Table 2.1: Neutral-current couplings of fermions

coupling νe, νµ, ντ e, µ, τ u, c, t d, s, b

Lf 1 −1 + 2 sin θW 1− 4
3 sin θW −1 + 2

3 sin θW

Rf 0 2 sin θW − 4
3 sin θW

2
3 sin θW

2.7 Gauge boson self-interactions

Due to the non-Abelian nature of SU(2), eq. (2.18) includes, apart from the
kinetic terms, interactions between gauge bosons. There are cubic and quartic
terms:

L3 = −ie cot θW
{
(∂µW ν − ∂νWµ)W †

µZν −
(
∂µW ν† − ∂νWµ†)WµZν

+ (∂µZν − ∂νZµ)WµW
†
ν

}

−ie
{
(∂µW ν − ∂νWµ)W †

µAν −
(
∂µW ν† − ∂νWµ†)WµAν

+ (∂µAν − ∂νAµ)WµW
†
ν

}

(2.31)

L4 = − e2

2 sin θW

{
(W †

µW
µ)2 −W †

µW
µ†WνW

ν
}

−e2 cot2 θW
{
W †

µW
µZνZ

ν +W †
µW

νZνZ
µ
}

−e2
{
W †

µW
µAνA

ν +W †
µW

νAνA
µ
}

−e2 cot θW
{
2W †

µW
µAνZν −W †

µW
ν [AνZ

µ + ZνA
µ]
}
.

The generated vertices are shown in fig. 2.3.

γ, Z0

W +

W−

(a)

W +

W−

W +

W−

(b)

γ, Z0

W +

W−

γ, Z0

(c)

Figure 2.3: Gauge interactions

2.8 The Higgs mechanism

At this stage all particles, fermions and gauge bosons, are still massless: had we
included the mass terms −mΨΨ = −m

(
ΨLΨR +ΨRΨL

)
for fermions and/or

M2
WW †

µW
µ + 1

2M
2
ZZµZ

µ for gauge bosons, the gauge invariance would not be
respected. However, we know that fermions and gauge bosons are massive and
a possible way to introduce mass terms is via the Higgs mechanism.
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Let us introduce a doublet of complex scalar fields

φ(x) ≡
(
φ(+)(x)

φ(0)(x)

)

=
1√
2

(
φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

)

, (2.32)

where + and 0 refer to the electric charges, with a Lagrangian

LHiggs = (Dµφ)
†(Dµφ)− V (φ, φ†), (2.33)

where the potential V is

V = µ2φ†φ+ λ(φ†φ)2 (2.34)

with λ > 0 and µ2 < 0. Due to the covariant derivative, this is explicitly
invariant under local SU(2) × U(1) gauge transformation. The Y quantum
number of the doublet is fixed to be Yφ = 1/2 by the requirement that fields in
the doublet have correct QED interactions.

Since µ2 < 0, the potential V = µ2φ†φ+λ(φ†φ) has a minimum that satisfies

φ†φ =
1

2
(φ21 + φ22 + φ23 + φ24) =

−µ2

2λ
. (2.35)

There is of course an infinite amount of solutions for this equation and choosing
one of them corresponds to the spontaneous symmetry breaking (SSB). Since
the vacuum should be electrically neutral, only Q = 0 field can acquire vacuum
expectation value and we choose φ1 = φ2 = φ4 = 0, whence

φ23 =
−µ2

λ
≡ v2, (2.36)

and the field φ acquires a vacuum expectation value

< φ >≡ φ0 =
1√
2

(
0

v

)

. (2.37)

Without loss of generality we can parametrize φ around the vacuum as

φ(x) = exp
(

i
σi
2
χi(x)

) 1√
2

(
0

v +H(x)

)

. (2.38)

The three fields χi(x) correspond to the so called Goldstone bosons but due to
the invariance of the Lagrangian under SU(2) transformation we can always ro-
tate away any χ dependence with a proper gauge transformation. This property
makes these three fields unphysical and only one physical field H(x) correspond-
ing to the Higgs boson remains in the Lagrangian as we choose physical (unitary)
gauge χi = 0.

2.9 Gauge boson masses

In the unitary gauge the Lagrangian (2.33) becomes

LHiggs =
1

2
∂µH∂

µH +
1

4
λv4 − v2λH2 − λvH3 − 1

4
H4

+ (v +H)2
{
g2

4
W †

µW
µ +

g2

8 cos2 θW
ZµZ

µ

}

(2.39)
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which includes gauge boson and Higgs mass terms

M2
WW †

µW
µ +

1

2
M2

ZZµZ
µ − 1

2
M2

HH
2 (2.40)

where

MZ cos θW =MW =
1

2
vg, MH =

√

−2µ2 =
√
2λv. (2.41)

Thus, we can rewrite (2.39) as

LHiggs =
1

2
∂µH∂

µH +
1

4
λv4 − 1

2
M2

HH
2 − M2

H

2v
H3 − M2

H

8v2
H4

+ (1 +
H

v
)2
{

M2
WW †

µW
µ +

1

2
M2

ZZµZ
µ

}

, (2.42)

where also interaction terms appear. Interactions between Higgs and gauge
bosons are shown in fig. 2.4 and Higgs self-interactions in fig. 2.5.

Z0, W±

Z0, W±

H

(a)

H

HZ0, W +

Z0, W−

(b)

Figure 2.4: Gauge-Higgs interaction vertices

H

H

H

(a)

H

HH

H

(b)

Figure 2.5: Higgs self-interaction vertices

2.10 Fermion masses

Let us couple the scalar doublet φ(x) and fermions in a gauge invariant way:

LYukawa = fe(νe e)L

(
φ(+)

φ(0)

)

eR + fd(u d)L

(
φ(+)

φ(0)

)

dR (2.43)

+ fu(u d)L

(
φ∗(0)
−φ(−)

)

dR + h.c.
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and similarly for other generations. Here fe, fu and fd are arbitrary constants
that are to be fixed by experiment, and the last term includes charge conjugate
of the scalar field φc = iσ2φ

∗. After SSB and going to unitary gauge this reduces
to

LYukawa = 1√
2
(v +H)

{
fe ee+ fd dd+ fu uu

}
, (2.44)

which contains fermion masses

mi = − v√
2
f i, (2.45)

and we can write

LYakawa = −(1 + H
v )
{
me ee+md dd+mu uu

}
. (2.46)

Thus, the fermions become massive and we get an additional coupling between
Higgs boson and fermions where the coupling strength is proportional to fermion
masses.

H

f

f

Figure 2.6: Higgs coupling to fermions

For convenience, the whole GWS-Lagrangian in the unitary gauge is given
below:

LGWS = ifγµDµf − 1

4
(∂µZν − ∂νZµ)

2

+ −1

4
(∂µAν − ∂νAµ)

2 − 1

2

(
∂µW

†
ν − ∂νW

†
µ

)
(∂µW ν − ∂νWµ)

︸ ︷︷ ︸

kinetic terms for massless fermions and gauge bosons

+
g

2
√
2

{
W †

µ

[
uγµ(1− γ5)d+ νeγ

µ(1− γ5)e
]
+ h.c.

}
+ other families

︸ ︷︷ ︸

charged−current interactions

+ gZfγ
µ
[
Lf(1 − γ5) +Rf (1 + γ5)

]
f

︸ ︷︷ ︸

neutral−current interactions

+ eAµfγ
µQf

︸ ︷︷ ︸

QED interactions

+ (1 +
H

v
)

{

−mf ff +M2
WW †

µW
µ +

1

2
M2

ZZµZ
µ

}

︸ ︷︷ ︸

fermion and gauge boson mass terms and interactions with Higgs

+
1

2
∂µH∂

µH +
1

4
λv4 − 1

2
M2

HH
2 − M2

H

2v
H3 − M2

H

8v2
H4

︸ ︷︷ ︸

Higgs mass term and self−interactions

+ L3 + L4.
︸ ︷︷ ︸

gauge boson self−interactions



Chapter 3

Tree-level quantization

In this chapter we perform the tree level quantization for the GWS theory,
that is, we work out the Feynman rules for computing diagrams that do not
contain loops. What we will ultimately need are the gauge boson and fermion
propagators and the vertex factors for the interactions. As we proceed we will
make use of some general results of quantum field theory that can be found, for
example, from the excellent book of Peskin and Schroeder [19].

3.1 Correlation functions in path integral formal-

ism

The path integral formalism is an efficient way to quantize gauge theories. It is
straightforwardly based on the classical action

∫
L and has a certain advantage

that is absent in the canonical formalism, namely, gauge freedom.
Suppose we have a Lagrangian L and let us label the independent fields it

contains with Ψi. With this notation the correlation functions in a path integral
formalism are obtained from

〈Ω |T {O(ΨH)}|Ω〉 = lim
T→∞(1−iǫ)

1

N

∫

DΨO(Ψ) exp

{

i

∫ T

−T

d4xL
}

, (3.1)

where the limit ǫ→ 0 should be taken at the end.
The structure of the equation above is the following: On the left-hand side

|Ω〉 is the ground state (vacuum) of the theory and T {O(ΨH)} is the time-
ordered product of Heisenberg picture field operators. This is replaced on the
right-hand side with a similar term O(Ψ) where the Ψ’s are no longer opera-
tors but fields appearing in the Lagrangian. The integration is performed over
all field configurations. This is usually defined by discretizing the space-time
whence the integration measure DΨ is, up to possible constant

DΨ :=
∏

i,j

dΨj(xi). (3.2)

The whole thing is divided by the normalization factor N which is nothing but
the same integral without O(Ψ), and thus the possible constant in front of the
integration measure is irrelevant.

21
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The correlation function can be seen as an expectation value of the operator
O(Ψ) — a quantum amplitude for the process described by O(Ψ) to happen.

3.2 Change of representation

Under an infinitesimal transformation the complex scalar doublet φ transforms
as

φ(x) →
(

1 + iαaσ
a

2
+ i

β

2

)

φ(x).

This doublet is now the one where our Higgs and Goldstone bosons reside.
Rather than dealing with two complex quantities it will be easier to write them
as four real-valued fields. Then, the transformation above can be expressed as

φi(x) → φi(x) − αaT a
ijφj (3.3)

where summation runs over a = 1, 2, 3, Y and representation matrices T are real
and antisymmetric

T 1 =
1

2







0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0







T 2 =
1

2







0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0







T 3 =
1

2







0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0







T Y =
1

2







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







Within this representation the Lagrangian (2.33) becomes

L =
1

2
(Dµφi)(D

µφi)−
1

2
µ2φ2i −

λ

4
(φ2i )

2, (3.4)

where the covariant derivative is

Dµφi = ∂µφi + gaAa
µT

a
ijφj . (3.5)

We have here made our notation slightly faster by obvious definitions: ga = g
for a = 1, 2, 3 and gY ≡ g′ and AY

µ ≡ Bµ.
As the SSB happens φi acquires vacuum expectation value

〈φ〉i = (0, 0, v, 0), (3.6)

and we can expand the scalar multiplet around the vacuum as

φi = 〈φ〉i + (χ1, χ2, H, χ3), (3.7)

where we have distinguished the Higgs H ≡ H(x) from the Goldstone bosons
χi ≡ χi(x).

Terms involving χis in the Lagrangian (3.4) are

LGoldstone =
1

2
(∂µχi)(∂

µχi) + ga(∂µχi)A
a
µF

a
i + interaction terms (3.8)
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where we have defined a matrix

F a
i ≡ T a

ij 〈φ〉j =
v

2







0 −1 0
−1 0 0
0 0 1
0 0 −1






. (3.9)

The terms in (3.8) are those that contribute to the Goldstone propagators and,
as we shall see, the peculiar ’mixed’ term linear in ∂µχi and Aa

µ can be wiped
out with a suitable choice of gauge condition. There are no terms quadratic in
χi which means that the Goldstone bosons remain massless at this stage.

3.3 Choice of gauge

Let us forget the fermion content of the GWS-theory for a moment and consider
the path integral

Z =

∫

DADχDHeiS[A,χ,H]. (3.10)

The integral is troublesome: due to our freedom to make an action-preserving
gauge transformation

Aa
µ → (Aα)aµ = Aa

µ +
1

ga
∂µα

a + ǫabcAb
µα

c, (3.11)

there is an infinite number of physically equivalent field configurations which
are inevitably counted repeadetly. As such, the integral above is infinite and
meaningless. However, there is a way to isolate the physically interesting part
from the formal infinity.

This is accomplished by imposing a set of gauge conditionsG(Aa) = 0 so that
only one representative of each inequivalent field configurations contributes to
the integral. To do so without affecting the value of integral we follow Faddeev
and Popov and use the identity

1 = ∆a
FP

∫

Dαa(x) δ
(
G(Aα)aµ

)
(3.12)

where

∆a
FP ≡ det

(
δ(G(Aα)aµ)

δαa

)

(3.13)

is the Faddeev-Popov determinant. It involves a functional derivative with re-
spect to the gauge transformation parameter and it is gauge invariant if Ga(Aa)
is linear in Aa (and this will be the case).

Since the action and the integration measure are both invariant under gauge
transformation we have

Z =
∏

a

∫

Dαa

∫

DADχDH eiSδ (G(A)a)∆a
FP . (3.14)

The path integral is now restricted to the physically inequivalent field configu-
rations and the formal infinity is pushed to multiplicative integral

∫
Dαa.



24 CHAPTER 3. TREE-LEVEL QUANTIZATION

To proceed, we have to specify the gauge condition. A specially suitable
choice is

G(Aa) =
1√
ξ

(
∂µAa

µ − ξgaF a
i χi

)
− ωa(x) (3.15)

where ξ is any constant and ωa(x) is an arbitrary scalar function. We can
as well write Z as combination of different ωa(x)’s weighted by a function

exp
[

−i
∫
d4x (ωa)2

2

]

. Translating this to the path integral language we get

Z =
∏

a

N ′
∫

Dωa exp

[

−i
∫

d4x
(ωa)2

2

]∫

Dα
∫

DADχDH eiSδ (G(A)a)∆a
FP ,

where N ′ is an unimportant normalization factor. Doing the ω(x) integrals gives

Z = Ñ

∫

DADχDH exp

{

i

∫

d4x

[

L−
∑

a

(
∂µAa

µ − ξgaF a
i χi

)2

2ξ

]}
∏

a

∆a
FP .

(3.16)
This is the normalization factor appearing in (3.1) and provided that the op-
erator O(A,H, χ) is gauge invariant, similar manipulations can be done in the
numerator. Thus, the awkward constants Ñ cancel and we are left with

〈Ω |T {O}|Ω〉 = lim
T→∞(1−iǫ)

1

N

∫

DADχDH O exp

{

i

∫ T

−T

d4xL′

}
∏

a

∆a
FP ,

(3.17)
where

L′ = Lold −
1

2ξ
(∂µAa

µ)
2 − 1

2
ξ(ga)2(F a

i χi)
2 + ga(∂µAµ

a)F
a
i χi

= Lold +
1

2
Aa

µ(
1

ξ
∂µ∂ν)Aa

ν − ga(∂µχi)A
a
µF

a
i − 1

2
ξ(ga)2(F a

i χi)
2.(3.18)

Notice that the term linear in Aa
µ exactly cancels the one in (3.8) and that the

Goldstone bosons acquire a mass term − 1
2m

2
ijχiχj where the mass matrix mij

is

m2
ij ≡ ξ(ga)2F a

i F
a
j = ξ

v2

4





g2 0 0
0 g2 0
0 0 g2 + g′2



 =





ξm2
W 0 0
0 ξm2

W 0
0 0 ξm2

Z



 .

(3.19)
We have now successfully made the path integral well-defined effectively

adding few extra terms to the Lagrangian. However, the Faddeev-Popov de-
terminants ∆a

FP are completely new ingredient. They can be expressed as a
Gaussian Grassman integral (see eq. 3.50) and included into the Lagrangian.
This gives rise to so called ghosts that appear in the loop-level computations
and processes involving gauge boson self-couplings. Since our interest is only
in the simple tree-level calculations without gauge boson self-couplings we shall
forget the ghost terms hereafter.

3.4 Heavy boson propagator

A specially important class of correlation functions are the two-point correlation
functions for a non-interacting Lagrangian. These are the propagators that
appear in the Feynman rules.
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Let us now compute the propagator for massive gauge boson Z0 in a rigor-
ous manner. This will illustrate the general way how the propagators can be
read off from the action. The Z-propagator is given by the following two-point
correlation function

〈0 |T {Zµ(x)Zν(y)}| 0〉 = lim
T→∞(1−iǫ)

∫
DZ Zµ(x)Zν(y)e

iSZ
0

∫
DZeiSZ

0

, (3.20)

where, after the Faddeev-Popov procedure, the non-interacting part of the action
is

SZ
0 =

∫

d4x

[

−1

4
(∂µZν − ∂νZµ)(∂

µZν − ∂νZµ)− 1

2ξ
(∂µZµ)

2 +
1

2
M2

ZZµZ
µ

]

=
1

2

∫

d4x

[

Zµ(x)

(

gµν(∂2 +M2
Z)−

(

1− 1

ξ

)

∂µ∂ν
)

Zν(x)

]

. (3.21)

To compute the path integral we discretize the space-time with a periodic
square lattice with volume V = L4 and lattice spacing ǫ. The integration
measure is

DZ ≡
∏

i,j

dZj(xi), (3.22)

where a possible constant factor is suppressed as it would cancel in (3.20). The
fields Zµ(xi) can be expanded as a discrete Fourier series of momentum space
functions

Zµ(xi) =
1

V

∑

n

e−ikn·xi Zµ(kn), (3.23)

where kµn = 2πnµ

L , with nµ an integer.
Although the vector field Zµ(xi) is real the coefficients Zµ(kn) appearing in

the Fourier series are, in general, complex. This implies that the coefficients
obey Z∗

µ(kn) = Zµ(−kn) and

ReZµ(kn) = ReZµ(−kn) (3.24)

ImZµ(kn) = −ImZµ(−kn).
This means that we can consider real and imaginary parts of Zµ(kn) with k0n > 0
as independent variables. The unitarity of Fourier transformation guarantees
the unity of Jacobian and the integration measure is simply

DZ =
∏

j

∏

k0
n>0

dReZj(kn) d ImZj(kn). (3.25)

The action S0(k) becomes

S0(k) =
1

2V

∑

n

Zµ(kn)

[

gµν
(
M2

Z − k2n
)
+

(

1− 1

ξ

)

kµnk
ν
n

]

Zν(−kn)

= − 1

2V

∑

n

Zµ(kn)∆
µνZ∗

ν (kn)

= − 1

2V

∑

n

∆µν [ReZµ(kn)ReZν(kn) + ImZµ(kn)ImZν(kn)] (3.26)

= − 1

V

∑

k0
n>0

[ReZµ(kn)∆
µνReZν(kn) + ImZµ(kn)∆

µν ImZν(kn)] ,
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where we have defined

∆µν
kn

= ∆νµ
kn

= −gµν
(
M2

Z − k2n
)
−
(

1− 1

ξ

)

kµnk
ν
n (3.27)

to speed up our notation. Note that since the time integral is tilted slightly in
the imaginary direction t → t(1 − iǫ) we should change k0 → k0(1 + iǫ) in the
above. We will keep this implicit in what follows.

After this change of variables the denominator of (3.20) is

N =




∏

j

∏

k0
n>0

∫

dReZj(kn) d ImZj(kn)





exp



− i

V

∑

k0
m>0

∆µν [ReZµ(km)ReZν(km) + ImZµ(km)ImZν(km)]





=
∏

k0
n>0





∫
∏

j

dReZj(kn) exp

(

− i

V
ReZµ(kn)∆

µνReZν(kn)

)

(3.28)

∫
∏

j

d ImZj(kn) exp

(

− i

V
ImZµ(kn)∆

µνImZν(kn)

)


 .

To proceed we use the general identity for Gaussian integrals
∫
∏

n

dξn exp (−ξiBijξj) =

√

πn

detB
, (3.29)

which works if B is a symmetric matrix and by analytic continuation it goes
also for imaginary matrices. We get

N =
∏

k0
n>0

√

π4

det
(

i
V ∆kn

)

√

π4

det
(

i
V ∆kn

) (3.30)

The numerator of (3.20) is somewhat more complicated due to the additional
factor

Zµ(x)Zν(y) =
1

V 2

∑

m,ℓ

e−i(km·x+kℓ·y)Zµ(km)Zν(kℓ)e
iS0

in the integral. The Fourier coefficients can be splitted in to a real and imaginary
parts as

Zµ(km)Zν(kℓ) = ReZµ(km)ReZν(kℓ)− ImZµ(km)ImZν(kℓ) (3.31)

+ iReZµ(km)ImZν(kℓ) + iImZµ(km)ReZν(kℓ),

and the whole integral becomes then

1

V 2

∑

m,ℓ

e−i(km·x+kℓ·y)
∏

k0
n>0









∫
∏

j

dReZj(kn) d ImZj(kn)





(
ReZµ(km)ReZν(kℓ)− ImZµ(km)ImZν(kℓ)

+iReZµ(km)ImZν(kℓ) + iImZµ(km)ReZν(kℓ)

)

(3.32)

exp

(

− i

V
∆ηρ [ReZη(kn)ReZρ(kn) + ImZη(kn)ImZρ(kn)]

)]

.
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At first sight this looks quite nasty but can, in fact, be evaluated with two
additional Gaussian identities:

∫
∏

n

dξnξa exp (−ξiBijξj) = 0 (3.33)

∫
∏

n

dξnξaξb exp (−ξiBijξj) =
1

2

√

πn

detB
(B−1)ab. (3.34)

Terms that contain the product ReZµImZν or ImZµReZν are odd and vanish
due to the identity (3.33) for all km and kℓ. Similarly, if km 6= ±kℓ the product
∏

k0
n>0 contains odd integrals that cause the expression go to zero. If km = kℓ

the part with ReZµReZν gives

∏

k0
n>0





∫
∏

j

dReZj(kn)



ReZµ(km)ReZν(km) exp

(

− i

V
ReZη(kn)∆

ηρReZρ(kn)

)

=
∏

k0
n>0

1

2

√

π4

det
(

i
V ∆kn

) (∆−1
km

)µν ,

but there is a similar term from ImZµImZν part with minus sign and these terms
cancel. However, if km = −kℓ the relation (3.24) gives an additional minus sign
to ImAµImAν term and the two terms add giving

− i

V

∑

m

e−ikm·(x−y)
∏

k0
n>0

√

π4

det
(

i
V ∆kn

)

√

π4

det
(

i
V ∆kn

) (∆−1
km

)µν .

Quite remarkably, the normalization factor N in (3.30) occurs also in the nu-
merator and they will eventually cancel!

Going back to the continuum limit means

1

V

∑

m

→
∫

d4km
(2π)4

, (3.35)

and we find

〈0 |T {Zµ(x)Zν(y)}| 0〉 =
∫

d4k

(2π)4
e−ik·(x−y)

[
−i(∆−1)µν

]
. (3.36)

This is nothing but a Fourier transform of a momentum space propagator
Dµν

F (k) = −i(∆−1)µν that can be worked out from equation

[

−gµρ
(
M2

Z − k2
)
−
(

1− 1

ξ

)

kµkρ

]

Dµν
F (k) = −iδνρ .

This has the solution

Dµν
F (k) =

−i
k2 −M2

Z + iǫ

(

gµν − kµkν

k2 − ξM2
Z

(1 − ξ)

)

, (3.37)

where we have now explicitly restored the iǫ prescription mentioned earlier.
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In order to get other gauge boson propagators we just replace the MZ above
with a appropriate mass, namely MW for W± or 0 for photon. The parameter
ξ is, in principle, a free parameter to choose. But as we choose it once, the
same parameter must be used consistently when calculating the S-matrix. The
other sector where the parameter ξ appears is in the propagators for Goldstone
bosons. We deal with these next.

3.5 Goldstone propagator

The non-interacting action for each three Goldstone bosons is given by

SG
i =

∫

d4x

[
1

2
(∂µχi)(∂

µχi)−
1

2
ξm2

iχ
2
i

]

, (3.38)

where the squared masses are m2
1 = m2

2 = m2
W and m2

3 = m2
Z . Doing the

Fourier expansion as earlier we get

Si(k) = − 1

2V

∑

n

χi(kn)
[
m2

i − k2n
]
χi(−kn), (3.39)

and we can immediately write down the equation for momentum space Gold-
stone propagator DGi

F (k):

(
m2

i − k2n
)
DGi

F (k) = −i. (3.40)

This implies

DGi

F (k) =
i

k2 − ξm2
i + iǫ

, (3.41)

DGi

F (x− y) =

∫
d4k

(2π)4
e−ik·(x−y) i

k2 − ξm2
i + iǫ

. (3.42)

where we have again restored the iǫ prescription. From this we see that the
limit ξ → ∞ makes the Goldstone propagators vanish — it is the quantum
realization of the unitary gauge that was used during construction of the classical
Lagrangian. If we choose some other value of ξ, the Goldstone bosons must be
included in the Feynman rules!

There is of course a Higgs particle that has a propagator that comes inde-
pendently of ξ-parameter:

DHiggs
F (k) =

i

k2 −m2
H + iǫ

, (3.43)

3.6 Fermion propagator

The expression that gives the Fermion propagator is given by the correlation
function

〈
0
∣
∣T {Ψ(x)Ψ(y)}

∣
∣ 0
〉
= lim

T→∞(1−iǫ)

∫
DΨDΨΨ(x)Ψ(y)eiS

F
0

∫
DΨDΨ eiS

F
0

, (3.44)
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where SF
0 is the action for free massive fermion

SF
0 =

∫

d4xΨ(x) (iγµ∂µ −m)Ψ(x). (3.45)

The fermionic field operators on the left-hand side of (3.44) obey the canonical
anticommutation relations and the Ψ’s appearing in the right-hand side of (3.44)
are Grassmann variables. Since Ψ’s are four-component objects we can express
the fields as

Ψ(x) =
∑

i

ηi(x)ψi, (3.46)

Ψ(x) =
∑

i

ηi(x)ψT
i ,

where each ηi(x) is a Grassmann number and ψi is a some four component basis.
The simplest choice for the basis is of course

ψ1 =







1
0
0
0







ψ2 =







0
1
0
0







ψ3 =







0
0
1
0







ψ4 =







0
0
0
1






. (3.47)

To proceed, we do as earlier and expand Ψ(x) as a discrete Fourier series

Ψ(x) =
1

V

∑

i,n

ηi(kn)e
−ikn·xψi, (3.48)

and the action becomes then

SF
0 =

1

V 2

∫

d4x
∑

i,n

ψT
i η

i(kn)e
ikn·x (iγµ∂µ −m)

∑

j,ℓ

ηj(kℓ)e
−ikℓ·xψj

=
1

V 2

∑

i,j,n,ℓ

∫

d4xψT
i η

i(kn)e
ikn·x (/kℓ −m) ηj(kℓ)e

−ikℓ·xψj

=
1

V 2

∑

i,j,n,ℓ

∫

d4x e−ix·(kℓ−kn)ψT
i η

i(kn) (/kℓ −m) ηj(kℓ)ψj

=
1

V

∑

i,j,n

ηi(kn) (/kn −m)ij η
j(kn). (3.49)

The denominator of (3.44) can then be written as

∫

DΨDΨ eiS
F
0 =

∫
∏

ℓ

dηi(kℓ)dη
i(kℓ) exp







i

V

∑

i,j,n

ηi(kn) (/kn −m)ij η
j(kn)







=
∏

n

∫

dηi(kn)dη
i(kn) exp







i

V

∑

i,j

ηi(kn) (/kn −m)ij η
j(kn)






,

and using the Grassmann identity
∫
∏

i

dθidθie
−θiBijθj = detB (3.50)
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we finally get

∫

DΨDΨ eiS
F
0 =

∏

n

det

[−i
V

(/kn −m)

]

. (3.51)

The numerator includes an additional factor

Ψ(x)Ψ(y) =
1

V 2

∑

i,j,q,r

ψiη
i(kq)e

−ix·kqψT
j η

j(kr)e
iy·kr

=
1

V 2

∑

i,j,q,r

ei(y·kr−x·kq) ψiψ
T
j η

i(kq)η
j(kr), (3.52)

and we have to compute the following expression

1

V 2

∑

i,j,q,r

ei(y·kr−x·kq) ψiψ
T
j

∏

n

∫
∏

s

dηs(kn)dη
s(kn)



ηi(kq)η
j(kr) exp







i

V

∑

i,j

ηi(kn) (/kn −m)ij η
j(kn)











=
1

V 2

∑

i,j,q

e−ikq ·(x−y) ψiψ
T
j

∏

n

∫
∏

s

dηs(kn)dη
s(kn)



ηi(kq)η
j(kq) exp







i

V

∑

i,j

ηi(kn) (/kn −m)ij η
j(kn)









 (3.53)

Using here another Grassmann identity

(
∫
∏

i

dθidθi

)

θkθℓe
−θiBijθj = detB(B−1)kℓ (3.54)

we get

1

V 2

∑

i,j,q

e−ikq·(x−y) ψiψ
T
j

∏

n

det

[−i
V

(/kn −m)

] ([−i
V

(
/kq −m

)
]−1

)

ij

=
i

V

∑

i,j,q

e−ikq·(x−y) ψiψ
T
j

∏

n

det

[−i
V

(/kn −m)

] [(
/kq −m

)−1
]

ij

=
i

V

∑

q

e−ikq·(x−y)
∏

n

det

[

− i

V
(/kn −m)

] [(
/kq −m

)−1
]

→
∫

d4q

(2π)4
e−iq·(x−y)

∏

n

det

[

− i

V
(/kn −m)

]

i
[(

/q −m
)−1
]

,

where the last line is achieved by going back to the continuum as in (3.35).
Again, the normalization factor occurs in the numerator and we finally get

〈
0
∣
∣T {Ψ(x)Ψ(y)}

∣
∣ 0
〉
=

∫
d4q

(2π)4
ie−iq·(x−y)

/q −m+ iǫ
, (3.55)
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which is a Fourier transform of the momentum space propagator

SF (q) =
i

/q −m+ iǫ
=

i(/q +m)

q2 −m2 + iǫ
, (3.56)

where the iǫ prescription has again been explicitly restored.

3.7 Interacting theory

To calculate correlation functions within the full interacting theory we must
include all the interaction terms into the Lagrangian appearing in (3.1). Per-
forming a small calculation it is easy to see that everything reduces essentially
to the correlation functions of the non-interacting theory:

〈Ω |T {O(ΨH)}|Ω〉 = lim
T→∞(1−iǫ)

∫
DΨO(Ψ) exp

{
i
∫
d4xL

}

∫
DΨ(Ψ) exp

{
i
∫
d4xL

}

= lim
T→∞(1−iǫ)

1
N0

∫
DΨO(Ψ) exp

{
i
∫
d4xL0

}
exp

{
i
∫
d4xLint

}

1
N0

∫
DΨ(Ψ) exp

{
i
∫
d4xL0

}
exp

{
i
∫
d4xLint

}

=
〈0 |T {O(ΨH) exp {iSint}}| 0〉

〈0 |T {exp{iSint}}| 0〉
.

Now, the denominator contains expression that is independent of O(ΨH)
and thus it acts as a normalization factor that is common for all correlation
functions. This notion already implies that this factor should be rather irrelevant
since all important information is contained in the numerator.

Indeed, in analogy with the cancellation of the normalization factors in ex-
pressions for the free propagators, it can be shown that similar miracle happens
here! This result is known as a vacuum bubble exponentiation and it states that

〈Ω |T {O(ΨH)}|Ω〉 = 〈0 |T {O(ΨH) exp {iSint}}| 0〉connected graphs , (3.57)

where connected graphs means that as the factor exp {iSint} is expanded, only
those terms that can be represented as Feynman graphs that can be drawn
without lifting a pen from the paper are taken into account.

To see how the vertex factors for the GWS-theory can be read off from the
Lagrangian let us consider a 4-point correlation function

〈
Ω
∣
∣T {e(x1) ν(x2)u(x3) d(x4)}

∣
∣Ω
〉
, (3.58)

where e(x1) represents an electron in a space-time point x1, and similarly ν(x2),
u(x3) and d(x4) represent neutrino, up and down quark respectively. The first
non-zero term in the expansion of exp {iSint} is given by (see eq. (2.25))

1

2!
· 2
∫

d4x d4y
(

ig

2
√
2

)

W †
µ(x)

[
u(x)γµ

(
1− γ5

)
d(x)

]
(3.59)

(
ig

2
√
2

)

Wν(y)
[
e(y)γν

(
1− γ5

)
ν(y)

]
,

where the factor 1
2! comes from Taylor expansion and the subsequent factor 2 is

due to the fact that there is a second similar term with x and y interchanged.
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x1 x2

x4ux3

e− ν

d

W±

Figure 3.1: Feynman graph for the first non-zero term in 4-point correlation
function

〈
Ω
∣
∣T {e(x1) ν(x2)u(x3) d(x4)}

∣
∣Ω
〉
.

The Feynman graph for this expression is illustrated in fig. 3.1. The quantum
amplitude for this graph is then

∫

d4x d4y
1

N0

∫

D(e, e, ν, ν, u, u, d, d,W,W †) exp{iS0}
{

e(x1)e(y)

(
ig

2
√
2

)

γµ
(
1− γ5

)
ν(y)ν(x2)W

†
µ(x)Wν (y)

u(x3)u(x)

(
ig

2
√
2

)

γν
(
1− γ5

)
d(x)d(x4)

}

=

∫

d4x d4y

{[

SF (x1 − y)

(
ig

2
√
2

)

γµ
(
1− γ5

)
SF (y − x2)

]

(3.60)

DF,µν(x− y)

[

SF (x3 − x)

(
ig

2
√
2

)

γν
(
1− γ5

)
SF (x− x4)

]}

,

where the SF ’s are fermion propagators given by eq. (3.55) and Dµν
F is the

heavy boson propagator given by eq. (3.36). The integration
∫
d4x d4y tells us,

in the spirit of Feynman, that the quantum amplitude gets contribution from
all different spatial configurations of the interaction vertices.

As we calculate quantum amplitudes for real scattering processes the incom-
ing and the outgoing (external) particles must be treated in a special manner.
The question how to do this, is a deep one since the interactions are not only
involved in the scattering, but affect also the single particle-states themselves.
At the end, however, the result is simple: By the LSZ reduction theorem [20]
the propagators corresponding these particles are just replaced by the free par-
ticle plane waves. If the external fermion with momentum k and spin-state s is
attached to a vertex x, the correct way to do the reduction is

Incoming fermion : SF (x− y) → u(k, s)e−ik·x

Outgoing fermion : SF (y − x) → u(k, s)e+ik·x

Incoming antifermion : SF (x− y) → v(k, s)e+ik·x

Outgoing antifermion : SF (x− y) → v(k, s)e−ik·x

where u(k, s) and u(k, s) are Dirac spinors.
To continue our example, let us implement these in (3.60) to describe the
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e−

u

νe

d

k, s

p, r

k′, s′

p′, r′

W± q = k − k′ = p′ − p

Figure 3.2: Leading order graph in νe + d→ e− + u scattering.

lowest order contribution to neutrino-quark scattering shown in fig. 3.2.
〈
Ω
∣
∣T {e(x1) ν(x2)u(x3) d(x4)}

∣
∣Ω
〉
→

∫

d4x d4y

{[

u(k′, s′)e+ik′·y
(

ig

2
√
2

)

γµ
(
1− γ5

)
u(k, s)e−ik·y

]

∫
d4q

(2π)4
e−iq·(x−y)DF,µν(q)

[

u(p′, r′)e+ip′·x
(

ig

2
√
2

)

γν
(
1− γ5

)
u(p, r)e−ip·x

]}

,

= (2π)4δ(4)(p− p′ + k − k′)

u(k′, s′)

(
ig

2
√
2

)

γµ
(
1− γ5

)
u(k, s)DF,µν(q)u(p

′, r′)γν
(

ig

2
√
2

)
(
1− γ5

)
u(p, r).

The factor (2π)4δ(4)(p− p′ + k− k′) ensures just the energy-momentum conser-
vation and it is usually implemented into phase-space element in the expression
for the corresponding cross-section. Thus the true quantum amplitude for the
νe + d→ e− + u scattering would be

iM(νd→ e−u) ≡
[

u(k′, s′)

(
ig

2
√
2

)

γµ
(
1− γ5

)
u(k, s)

]

DF, µν(q)

[

u(p′, r′)

(
ig

2
√
2

)

γν
(
1− γ5

)
u(p, r)

]

.

From the expression above we can now straightforwardly read off the charged
current vertex factor

Charged current vertex factor =

(
ig

2
√
2

)

γµ
(
1− γ5

)

that enters into the Feynman rules. Similarly, one obtains the QED and neutral
current vertex factors

Neutral current vertex factor = igZγ
µ
[
Lf

(
1− γ5

)
+Rf

(
1 + γ5

)]

QED vertex factor = ieQγµ

This example illustrates the general way how the expressions for the Feyn-
man graphs are constructed from the Dirac spinors, free propagators and the
vertex factors, all in the momentum-space representation. For convenience, we
summarize the relevant vertex factors and propagators in the following page.
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• Vertex factors

QED vertex factor = ieQγµ

Charged current vertex factor =

(
ig

2
√
2

)

γµ
(
1− γ5

)

Neutral current vertex factor = igZγ
µ
[
Lf

(
1− γ5

)
+Rf

(
1 + γ5

)]

gZ =
e

4 sin θW cos θW

Lf = T 3
f − 2Qf sin

2 θW (3.61)

Rf = −2Qf sin
2 θW.

νe, νµ, ντ e, µ, τ u, c, t d, s, b

Lf 1 −1 + 2 sin θW 1− 4
3 sin θW −1 + 2

3 sin θW

Rf 0 2 sin θW − 4
3 sin θW

2
3 sin θW

• Propagators

For each internal particles with momentum q there is a factor

Intermediate boson propagator =
−i

q2 −M2 + iǫ

(

gµν − qµqν

q2 − ξM2
(1− ξ)

)

Goldstone propagator =
i

q2 − ξM2 + iǫ

Higgs propagator =
i

q2 −M2
H + iǫ

, (3.62)

where M =MW± ,MZ . For internal fermions

Fermion propagator =
i(/q +m)

q2 −m2 + iǫ
. (3.63)

• External particles

For each external fermion with momentum k and spin s there is factor

Incoming fermion : u(k, s)

Outgoing fermion : u(k, s)

Incoming antifermion : v(k, s)

Outgoing antifermion : v(k, s)



Chapter 4

Deep inelastic scattering

4.1 Deep inelastic scattering in a nutshell

Deep inelastic scattering (DIS) is an invaluable tool for studying the fundamen-
tal structure of nuclear matter. When a lepton projectile scatters off a target
nucleon some of its initial energy and momentum is lost in the collision. The
energy-momentum transfer q = (ν, ~q) is carried to the nucleon by exchange of a
photon or heavy W± or Z0 boson. The exchanged boson probes the structure
of the nucleon, and in order to resolve individual quarks within the nucleon,
momentum transfer, virtuality, |q2| must be large enough so that the corre-
sponding de Broglie wavelength is small compared to the size of the nucleon.
This requires momentum transfer |q2| > GeV2.

As the scattering with momentum transfer |q2| ≫M2 (M is the mass of the
nucleon) occurs from an individual quark, the quark acquires high momentum
and is therefore virtually “knocked out” from the parent nucleon. However, in
nature there is no such thing as free quark and consequently the struck quark
and the remnants of the nucleon will fragment to a collection of hadrons allowed
by conservation laws. Such scattering is said to be deep inelastic: a high energy
projectile breaks up the target nucleon and completely wipes out its original
identity.

The deep inelastic reactions we are going to consider here are the electromagnetic

H

a

d

r

o

n

s

νℓ, ℓνℓ, ℓ

Figure 4.1: Deep inelastic scattering

35
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k′, s′k, s

p, σ
M

q = k − k′

k1

.

.

.
kn

Figure 4.2: Kinematic quantities in DIS. The four-momenta of the incoming
and the outgoing leptons with spin states s and s′ are denoted by k and k′,
respectively. Similarly, p and σ are the four-momenta and spin state of initial
nucleon with mass M. Momenta of the final state hadrons are denoted with
k1...kn.

reactions

QED : ℓ− + h→ ℓ− +X

and the weak interaction neutrino (antineutrino) reactions

CC : νℓ(νℓ) + h→ ℓ−(+) +X

NC : νℓ(νℓ) + h→ νℓ(νℓ) +X

where h denotes the initial hadron and X is any set of hadrons allowed by
conservation laws. These reactions occur dominantly via one γ, W± or Z0

boson exchange as shown in fig. 4.1, and in this thesis we will not discuss higher
order terms arising from multiple boson exchanges or radiative corrections.

4.1.1 Kinematics

Throughout this thesis, the following conventional Lorentz invariant vari-
ables will be used to describe DIS

Q2 ≡ −q2

x ≡ Q2

2p · q (4.1)

y ≡ p · q
p · k .

In the target rest frame (LAB) the the four-momenta of particles can be written
as

k = (E,~k) = (E, 0, 0, E)

k′ = (E′, ~k′) = (E′, E′ sin θ, 0, E′ cos θ) (4.2)

p = (p0, ~p) = (M, 0, 0, 0)

q = (ν, ~q) = (E − E′, ~k − ~k′),
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where the axes have been chosen so that the motion of the incident lepton is
along the z-axis and the final-state lepton lies in the xz-plane. In our discussion
the leptons involved are highly relativistic and they will always be treated as
massless particles. In LAB frame the invariants (4.1) become

Q2 = 4EE′ sin2
(θ

2

)

x =
Q2

2Mν
(4.3)

y =
ν

E
.

The last two of these variables are in a range 0 ≤ x, y ≤ 1, which follows from the
requirement p2X ≥M2 where p2X is the invariant mass of the produced hadrons.

4.1.2 General cross-section formula

The differential cross-section for the process shown in fig. 4.2 can be written as

dσ =
|M|2
F

dQ (4.4)

where dQ is the Lorentz invariant element of the n+ 1 particle phase space

dQ = (2π)4δ(4)(k + p− k′ −
n∑

j=1

kj)
d3k′

(2π)32E′

n∏

i=1

d3ki

(2π)32k0i
, (4.5)

and F is the incident flux

F = 4
[
(k · p)2 −m2M2]1/2, . (4.6)

where m is mass of the projectile lepton. The spin-averaged square of the
invariant amplitude is denoted by |M|2.

4.2 Charged current neutrino DIS

In this and in the following section we shall construct the appropriate DIS cross-
section formulas for charged current, neutral current, and QED deep inelastic
processes. The conventions we are going to use are adopted from ref. [21]. This
reference contains definitions and almost all usual properties of Dirac spinors
and gamma matrices we shall need. We also make use of some methods of Ref.
[22] as we manipulate matrix elements of the scattering processes.

4.2.1 General charged current matrix element

We are now dealing with weak interaction that violates the parity conservation.
This emerges in the matrix element as a V-A (vector–axial vector) structure:
The vector part ∝ γµ is similar to the electromagnetic current while the axial
part ∝ −γµγ5 causes the parity violation.

Using the Feynman rules we just derived, the CC νh-matrix element corre-
sponding n hadrons in the final state X is

Mn = u(k′, s′)

(
ig

2
√
2

)

γµ(1−γ5)u(k, s)
(

−i
gµν − qµqν

M2
W

q2 −M2
W

)

< n, out| ig
2
√
2
Ĵν |h, in >,

(4.7)
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where we have adopted the unitary gauge ξ → ∞ for the propagator. The
hadronic part of the matrix element is written in a very general way with Ĵν

representing hadronic part of the charged-current operator.
The matrix element Mn above can be immediately simplified: in the term

proportional to qµqν =
(
kµ − k′µ

)
qν we have

u(k′, s′)/k(1− γ5)u(k, s)− u(k′, s′) /k′(1− γ5)u(k, s). (4.8)

With anticommutator
{
γµ, γ5

}
= 0 and Dirac equations,

(

/p−m
)
u (p) = 0

u (p)
(

/p−m
)
= 0,

this can be turned to

mu(k′, s′)(1 + γ5)u(k, s)−m′u(k′, s′)(1− γ5)u(k, s), (4.9)

and as we are considering high energy scattering, neglecting lepton masses makes
these terms vanish and we are left just with

Mn =
i

64

(
g2W

q2 −M2
W

)

u(k′, s′)γµ(1− γ5)u(k, s) < n, out|Ĵµ|h, in > . (4.10)

In the unpolarized situation we do not have a priori knowledge of the initial
spin-state of the struck hadron and our detector is blind for spin orientations.
Then we must account for scattering in all possible spin configurations. The
corresponding square of the matrix element Mn is constructed by squaring Mn,
summing over the spin states s and s′ of the leptons and averaging over the two
spin states σ of the initial nucleon.

Now, here is one subtlety: why do we sum over spin states of the initial
neutrino although the present belief is that only left-handed neutrinos exist?
Notice that the matrix element includes the projection operator ∝ 1

2 (1 − γ5)
that projects out only the left-handed component of the neutrino spinor u(k, s),
and although we formally sum over spin states s of the initial neutrino, the
right-handed component does not contribute.

|Mn|2 =
1

2

∑

s,s′,σ

MnMn

∗ (4.11)

=
g4

64 (q2 −M2
W )

2

∑

s,s′

u(k′, s′)γµ
(
1− γ5

)
u(k, s)u(k, s)γν

(
1− γ5

)
u(k′, s′)

1

2

∑

σ

< n, out|Ĵµ|h, in >< h, in|Ĵ†
ν |n, out >

=
G2

FM
4
W

2 (Q2 +M2
W )

2 L
µν 1

2

∑

σ

< n, out|Ĵµ|h, in >< h, in|Ĵ†
ν |n, out >,

where Lµν is a leptonic tensor

Lµν ≡
∑

s,s′

u(k′, s′)γµ
(
1− γ5

)
u(k, s)u(k, s)γν

(
1− γ5

)
u(k′, s′), (4.12)
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and we used the definition of the Fermi coupling constant GF

g2

M2
W

≡ 4
√
2GF , (4.13)

which is an effective coupling constant for low Q2 and the current numerical
value is GF /(h̄c)

3 = 1.6637× 10−5GeV−2 [23].
Summing over the contributions of all n-particle final states and setting

mν = 0 in the flux factor (4.6), we have

dσ =
1

4|k · p|
G2

FM
4
W

2 (Q2 +M2
W )

2

d3k′

(2π)32E′L
µν

1

2

∑

n

∑

σ

n∏

i=1

d3ki

(2π)32k0i
(2π)4δ(4)(p+ q − k′ −

n∑

j=1

kj)

< n, out|Ĵµ|h, in >< h, in|Ĵ†
ν |n, out > . (4.14)

We define the hadronic tensor Wµν as follows

4πMWµν ≡ 1

2

∑

n

∑

σ

n∏

i=1

d3ki

(2π)32k0i
(2π)4δ(4)(p+ q − k′ −

n∑

j=1

kj)

< n, out|Ĵµ|h, in >< h, in|Ĵ†
ν |n, out >, (4.15)

which enables us to write the differential cross-section dσ in a simple form
involving contraction between leptonic and hadronic tensors

dσ =
π

2

G2
FM

4
W

(Q2 +M2
W )

2

M

|k · p|
d3k′

(2π)32E′L
µνWµν . (4.16)

All information about the interaction resides now in these tensors Lµν and Wµν

— other factors are purely kinematic origin.

4.2.2 Leptonic tensor

The leptonic tensor is now

Lµν =
∑

s,s′

u(k′, s′)γµ
(
1− γ5

)
u(k, s)u(k, s)γν

(
1− γ5

)
u(k′, s′)

Let us write this explicitly as a sum of spinor and gamma matrix elements
labeled c,d,e and f :

Lµν =
∑

s,s′

uc(k
′, s′)

(
γµ(1 − γ5)

)

cd
ud(k, s)

ue(k, s)
(
γν(1− γ5)

)

ef
uf(k

′, s′), (4.17)

which can be rearranged to

Lµν =
∑

s′

uf(k
′, s′)uc(k

′, s′)
(
γµ(1 − γ5)

)

cd
(4.18)

∑

s

ud(k, s)ue(k, s)
(
γν(1 − γ5)

)

ef
.
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We can now make use of the completeness relation of spinors

∑

s

u(p, s)u(p, s) = /p+m, (4.19)

and neglecting the lepton masses we have

Lµν = (/k
′
)fc
(
γµ(1− γ5)

)

cd
(/k)de

(
γν(1 − γ5)

)

ef

= Tr
[

(/k
′
)
(
γµ(1− γ5)

)
(/k)
(
γν(1− γ5)

)]

= 2 ·
[

Tr
(

/k
′
γµ/kγν

)

− Tr
(

γ5/k
′
γµ/kγν

)]

,

where we have used Dirac algebra

(
γ5
)2

= 1 γ5γµ = −γµγ5

in reaching the last line. Furthermore, with “Dirac-traceology”

Tr
(
γeγfγgγh

)
= 4

(
gghgef + gehgfg − gfhgeg

)

Tr
(
γ5γaγbγcγd

)
= −4iǫabcd

where ǫabcd is the completely antisymmetric Levi-Civita tensor defined as

ǫabcd =







+1 if abcd is even permutation of 0123,
−1 if abcd is odd permutation of 0123,
0 otherwise,

(4.20)

we obtain
Lµν = 8

(
k′µkν + k′νkµ − gµνk · k′ + iǫαµβνk′αkβ

)
. (4.21)

It turns out to be useful to express this as a sum of terms which are symmetric
and antisymmetric under interchange of indices µ and ν:

Lµν = Lµν
S + Lµν

A , (4.22)

where

Lµν
S ≡ 8 (k′µkν + k′νkµ − gµνk · k′) (4.23)

Lµν
A ≡ 8iǫαµβνk′αkβ . (4.24)

4.2.3 Hadronic tensor

The hadronic tensor Wµν , a priori unknown, contains all information about
the structure of the hadron and the coupling of weak current to the hadron.
The general form of the hadronic tensor can, however, be determined without
further input. Using the initial state momentum p and momentum transfer q
as independent variables, the most general hadronic tensor is a sum of all pos-
sible rank-two tensors multiplied with arbitrary coefficients. Like the leptonic
tensor, it is convenient to express the hadronic tensor as a sum of symmetric
and antisymmetric parts:

Wµν =WS
µν +WA

µν , (4.25)
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where

WS
µν ≡ V1gµν + V2pµpν + V3(pµqν + pνqµ) + V5qµqν

WA
µν ≡ V4(pµqν − pνqµ) + iV6ǫµνηγp

ηqγ . (4.26)

The symmetric part WS
µν represents the vector current while the antisymmetric

part WA
µν represents the axial current.

For the parity conserving symmetric part we have, in analogy with the con-
servation of the electromagnetic current

qµWS
µν = 0, (4.27)

and imposing this requirement on WS
µν we have

V1qν + V2(p · q)pν + V3
[
(p · q)qν + q2pν

]
+ V5q

2qν = 0. (4.28)

Because q and p are linearly independent of each other, the coefficients of pν
and qν must vanish separately:

{
V1 + V3(p · q) + V5q

2 = 0
V2(p · q) + V3q

2 = 0

Eliminating V3 and V5 we find that

WS
µν = V1

(

gµν − qµqν
q2

)

+ V2

(

pµ − p · q
q2

qµ

)(

pν − p · q
q2

qν

)

. (4.29)

It is conventional to define coefficients W1, W2 and W3 through

V1 ≡ −W1 V2 ≡ W2

M2 V6 ≡ W3

2M2 ,

in terms of which we can rewrite the hadronic tensor as

WS
µν = −W1

(

gµν −
qµqν
q2

)

+
W2

M2

(

pµ − p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

WA
µν = V4(pµqν − pνqµ) + i

W3

2M2
ǫµνηγp

ηqγ . (4.30)

The term proportional to V4 will vanish under contraction with leptonic tensor
(as we shall shortly see), and it has not therefore been redefined.

4.2.4 Contraction L
µν
Wµν

Having now determined the exact form of leptonic tensor and the general struc-
ture of the hadronic tensor we can now proceed and make the contraction.

LµνWµν = (Lµν
S + Lµν

A )
(
WS

µν +WA
µν

)

= Lµν
S WS

µν + Lµν
A WA

µν + Lµν
A WS

µν + Lµν
S WA

µν
︸ ︷︷ ︸

=0

(4.31)

Using equations (4.23) and (4.30), and neglecting lepton masses

Lµν
S WS

µν = 16W1 (k
′ · k) + 4W2

M2

[
4(k′ · p)(k · p) + p2q2

]
. (4.32)
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For the antisymmetric tensors we have, using (4.24) and (4.30)

Lµν
A WA

µν = 8iV4ǫ
αµβνk′αkβ(pµqν − pνqµ)− 4

W3

M2
ǫαµβνǫµνηγk

′
αkβp

ηqγ (4.33)

Because

ǫαµβνk′αkβ(pµqν − pνqµ) = 2ǫαµβνk′αpµkβqν

= 2 det(k′, p, k, q)

= 2 det(k′, p, k, k − k′)

= 2 det(k′, p, k, k) = 0, (4.34)

we can set V4 = 0 in (4.30). Using identity (in Minkowski space-time)

ǫabcdǫabef = −2 (δceδdf − δcfδde) ,

we have

ǫαµβνǫµνηγk
′
αkβp

ηqγ = 2 [(k′ · p)(k · q)− (k′ · q)(k · p)] , (4.35)

and consequently

Lµν
A WA

µν = −8
W3

M2
[(k′ · p)(k · q)− (k′ · q)(k · p)] . (4.36)

Neglecting the lepton masses

k′ · q = −k · q = k′ · k = −1

2
q2,

and hence

Lµν
A WA

µν = −4
W3

M2
q2 [(k′ · p) + (k · p)] . (4.37)

Transforming to the the LAB frame where

(p · k) =ME (p · k′) =ME′ p2 =M2,

we have

Lµν
S WS

µν = 16EE′
[

2W1 sin
2

(
θ

2

)

+W2 cos
2

(
θ

2

)]

(4.38)

Lµν
A WA

µν = 16EE′
[
W3

M
(E′ + E) sin2

(
θ

2

)]

. (4.39)

Neglecting the mass of the final state lepton

d3k′ = |k′|2d|k′|dΩ = E′2dE′dΩ, (4.40)

the differential cross-section (4.16) can be written in LAB as

dσ =
G2

FM
4
W

(Q2 +M2
W )

2

1

32π2

E′

E
dE′dΩ · LµνWµν , (4.41)
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and hence the cross-section for charged-current νh DIS in LAB is

dσ

dE′dΩ
=

G2
FM

4
W

(Q2 +M2
W )

2

E′2

2π2

[

2W1 sin
2

(
θ

2

)

+W2 cos
2

(
θ

2

)

+W3
(E′ + E)

M
sin2

(
θ

2

)]

. (4.42)

It is conventional to define the following dimensionless structure functions







F1(x,Q
2) ≡ MW1

F2(x,Q
2) ≡ νW2

F3(x,Q
2) ≡ νW3.

(4.43)

In terms of these the cross-section becomes

dσ

dE′dΩ
=

G2
FM

4
W

(Q2 +M2
W )

2

E′2

2π2

[
2

M
F1 sin

2

(
θ

2

)

+
F2

ν
cos2

(
θ

2

)

.

+
(E′ + E)

νM
F3 sin

2

(
θ

2

)]

(4.44)

The cross-sections are usually expressed in an invariant form. With the relation

d2σ

dxdy
=

2πMν

E′
d2σ

dE′dΩ
= x(s−M2)

d2σ

dxdQ2
(4.45)

between the invariant variables x, y, Q2 and LAB coordinates, we obtain the
charged-current νh cross-section:

dσCC(νh)

dxdy
=

G2
FM

4
W

(Q2 +M2
W )

2

ME

π

[

F1 · xy2 + F2

(

1− y − xyM2

2ME

)

+F3 · xy
(

1− y

2

)]

, (4.46)

or

dσCC(νh)

dxdQ2
=

G2
FM

4
W

(Q2 +M2
W )

2

1

2πx

[

F1 · xy2 + F2

(

1− y − xyM2

2ME

)

+F3 · xy
(

1− y

2

)]

, (4.47)

where 2ME can also be written as s−M2 which is clearly Lorentz invariant.

4.2.5 Antineutrino scattering

In order to obtain the corresponding cross-section for antineutrino scattering
(fig. 4.3), we must make the following replacement in matrix element (4.10):

u(k′, s′)γµ(1− γ5)u(k, s) → v(k, s)γµ(1 − γ5)v(k′, s′), (4.48)

in which v(k, s) and v(k′, s′) are the antifermion spinors of the initial and the
final state antileptons respectively. The calculation then proceeds similarly as
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H

a

d

r

o

n

s

nucleon

W−

k, sνℓ

q

ℓ+
k′, s′

Figure 4.3: Charged-current νh scattering where k and k′ are the four-momenta
of leptons and s and s′ denotes their spins. Note that the direction of the fermion
particle-number flow is reversed compared to fig. 4.1.

in the case of neutrinos. The only difference is in the leptonic tensor (4.21)
where the sign of the antisymmetric term reverses:

Lµν = 8
(
k′µkν + k′νkµ − gµνk · k′ − iǫαµβνk′αkβ

)
, (4.49)

and this causes also a change of sign in the coefficient of structure functions
W3 and F3. Consequently, the general CC cross-section for antineutrino-hadron
(νh) scattering is

dσCC(νh)

dxdQ2
=

G2
FM

4
W

(Q2 +M2
W )

2

1

2πx
[

F1 · xy2 + F2

(

1− y − xyM2

2ME

)

− F3 · xy
(

1− y

2

)]

. (4.50)

We can now sum up the results for general CC cross-sections in νh and νh
scatterings as

dσCC(νh, νh)

dxdQ2
=

G2
FM

4
W

(Q2 +M2
W )

2

1

2πx
[

CCF1 · xy2 + CCF2

(

1− y − xyM2

2ME

)

± CCF3 · xy
(

1− y

2

)]

. (4.51)

The + sign in front of CCF3 corresponds to the neutrino scattering and − sign to
the antineutrino scattering. We have also explicitly expressed that the structure
functions involved are those for CC interaction.

4.2.6 DIS in the parton model

Next we work out the neutrino-nucleon cross-section assuming that the hadron
consists of individual spin- 12 partons (quarks) from which the scattering oc-
curs. First, the intermediate boson interacts with one of the constituent quarks
and then a complicated fragmentation process converts the recoiled quark and
remains of the nucleon into hadrons (fig. 4.4).

In order to establish the connection between the structure functions F1, F2,
F3 and the parton model we must be able to construct an equation for parton
model cross-section similar to (4.16) where Lµν is defined as in (4.21). Then we
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W +

νℓ

ℓ−

H

a

d

r

o

n

s

nucleon

Figure 4.4: Neutrino scattering off an individual parton of a nucleon.

can compare the obtained hadronic tensor with the general form of (4.30) and
deduce what the structure functions are.

One way to achieve this is to work in the “infinite momentum frame” in
which the momentum of the target hadron is extremely large. In this frame,
taking the z-axis parallel with the hadron’s momentum, we can write

p = (|p|, 0, 0,−|p|),

and the motion of the constituent quarks will be mainly collinear with the
hadron’s momentum. Assuming the quark masses to be insignificant, the four-
momentum of each quark within the parent hadron is then simply

p̂i = ξip, (4.52)

where ξi is the fraction of the hadron’s momentum carried by the individual
quark.

We will also assume that interactions between quarks may be neglected, so
that the total cross-section is just a sum over contributions of all quarks. This
assumption is justified with the notion that in this frame the quarks are highly
relativistic, and time dilatation slows down the rate at which the quarks interact
with one another. Hence, quarks may be treated as free particles during the
short time that they interact with the intermediate W+-boson. We will make
use of this incoherence assumption [24] later.

q = k − k′

k, s

p̂ = ξp, r p′, r′

k′, s′

Figure 4.5: Subprocess of νh-scattering where k, s and k′, s′ are (four-
momentum, spin) for incoming neutrino and outgoing lepton respectively. Sim-
ilarly p̂, r and p′, r′ for incoming and outgoing quarks.
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The subcross-section for scattering of a neutrino off an individual quark
within the nucleon can now be written as

dσ̂q =
1

4|k · p̂|
d3k′

(2π)32E′
d3p′

(2π)32p′0
(2π)4δ(q + p̂− p′)|Mq |2, (4.53)

where the variables are as explained in fig. 4.5. The corresponding matrix
element is now

Mq = u(k′, s′)

(
ig

2
√
2

)

γµ(1 − γ5)u(k, s)

(

−i
gµν − qµqν

M2
W

q2 −M2
W

)

u(p′, r′)

(
ig

2
√
2

)

γν(1− γ5)u(p̂, r) (4.54)

Construction of spin-averaged square of the matrix element (4.54) proceeds
as in Eq. (4.11), and the result is

|Mq|2 =
G2

FM
4
W

2 (Q2 +M2
W )

2L
µνQµν , (4.55)

where the neutrino tensor Lµν is identical with (4.21) and quark tensor Qµν has
a similar structure:

Lµν = 8
(
k′µkν + k′νkµ − gµνk · k′ + iǫαµβνk′αkβ

)

Qµν = 4
(
p′µp̂ν + p′ν p̂µ − gµν p̂ · p′ + iǫφµην · p′φp̂η

)
. (4.56)

It will turn out to be useful to rewrite the quark tensor as

Qµν = 4
[
2(p · q)ξ Φ+ iξǫµνφηp

φqη
]

(4.57)

Φ = −1

2

(

gµν − qµqν
q2

)

+
ξ

p · q

(

pµ − p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

. (4.58)

It might not be obvious that these two descriptions are equivalent and it in-
deed requires a bit of work to establish. The cross-section (4.53) may now be
integrated over p′ and rearranged,

dσ̂q =
1

4ξ|k · p|
G2

FM
4
W

2(Q2 +M2
W )2

d3k′

(2π)32E′L
µν

4πM·W q
µν

︷ ︸︸ ︷
∫

d3p′

(2π)32p′(0)
(2π)4δ(4)(q + p̂− p′)Qµν

=
π

2

G2
FM

4
W

(Q2 +M2
W )2

M

ξ|k · p|
d3k′

(2π)32E′L
µνW q

µν , (4.59)

where we have defined

4πMW q
µν ≡

∫
d3p′

(2π)32p′(0)
(2π)4δ(4)(q + p̂− p′)Qµν . (4.60)

Inserting unit operator

∫

dp′02p′0θ
(
p′0
)
δ
(
p′2
)
= 1 (4.61)
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in to the (4.60) we obtain

4πMW q
µν = 2π

∫

d4p′ δ
(
p′2
)
θ
(

p′(0)
)

︸ ︷︷ ︸

δ+(p′2)

δ(4)(q + p̂− p′)Qµν

= 2πδ+
(
q2 + p̂2 + 2q · p̂

)
Qµν

≈ 2πδ
(
q2 + 2ξp · q

)
Qµν

=
π

p · q δ
(

q2

2p · q + ξ

)

Qµν

=
π

p · q δ (ξ − x)Qµν , (4.62)

where we have neglected the term p̂2 = (ξp)2 = ξ2M2, which is safe as we
assume Q2 ≫M2. Thus we find

W q
µν =

δ (ξ − x)

4M(p · q)Qµν =
ξ

M
δ (ξ − x)

[

2Φ +
i

p · q ǫµνφηp
φqη
]

. (4.63)

The delta-function in the expression suggests that x — also known as Bjorken-
x — can be interpreted as the fraction of hadron’s momentum carried by the
struck quark.

Introducing the momentum distribution q(ξ) of each quark flavor, so that

∫ 1

0

dξ q(ξ)

is the total number of quarks of flavor q in the hadron h, the total cross-section
— according to incoherence assumption mentioned earlier — is now obtained
as an incoherent sum over all quark flavors:

dσ =
∑

q

∫ 1

0

dξ q(ξ)dσ̂q

=
π

2

G2
FM

4
W

(Q2 +M2
W )

2

M

|k · p|
d3k′

(2π)32E′L
µν
∑

q

∫ 1

0

dξ q(ξ)
1

ξ
W q

µν

︸ ︷︷ ︸

Wµν

=
π

2

G2
FM

4
W

(Q2 +M2
W )

2

M

|k · p|
d3k′

(2π)32E′L
µνWµν , (4.64)

where we have defined hadronic tensor Wµν as

Wµν ≡
∑

q

∫ 1

0

dξ q(ξ)
1

ξ
W q

µν (4.65)

Thus, we see that with a proper definition of hadronic tensor Wµν the cross-
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section becomes formally same as in Eq. (4.16). Now, using (4.63) we have

Wµν =
∑

q

∫ 1

0

dξ q(ξ)
1

ξ
W q

µν

=
∑

q

∫ 1

0

dξ q(ξ)
1

M
δ (ξ − x)

[

2Φ(ξ) +
i

p · q ǫµνφηp
φqη
]

=
∑

q

q(x)
1

M

[

2Φ(x) +
i

p · q ǫµνφηp
φqη
]

= −
∑

q

q(x)

M

(

gµν −
qµqν
q2

)

+
∑

q

2xq(x)

M (p · q)

(

pµ − p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

+i
∑

q

q(x)

M (p · q)ǫµνφηp
φqη. (4.66)

Comparing this result with the general hadronic tensor (4.30) we can identify
the coefficients W1,W2,W3 as:

W1 =
∑

q

q(x)

M

W2 =
∑

q

2xq(x)

M (p · q)

W3 =
∑

q

q(x)

M (p · q)

Using definitions (4.43) with Mν = p · q, the dimensionless structure functions
for CC interaction become

CCF1(x,Q
2) =

∑

q

q(x,Q2)

CCF2(x,Q
2) =

∑

q

2xq(x,Q2) (4.67)

CCF3(x,Q
2) =

∑

q

2q(x,Q2).

We have now incorporated also Q2 dependence in the momentum distributions
and hence in the structure functions although the origin of this dependence can
not be seen from our current discussion. The Q2 dependence follows from the
strong interactions (QCD) between quarks and gluons, and we shall return to
this issue later on.

4.2.7 Accommodating antiquarks

The contribution of antiquarks (fig. 4.6) can be obtained by performing the
following replacement in (4.54):

u(p′, r′)γν(1 − γ5)u(p̂, r) → v(p̂, r)γν(1 − γ5)v(p′, r′).
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q = k − k′

k, s

p̂ = ξp, r p′, r′

k′, s′

Figure 4.6: Subprocess of νh scattering involving antiquarks.

This replacement causes the sign of antisymmetric part in the quark tensor
(4.56) to reverse:

Qµν = 4
(
p′µp̂ν + p′ν p̂µ − gµν p̂ · p′ − iǫφµηνp

′φp̂η
)
. (4.68)

Consequently, the sign of the structure function F3 also changes:

CCF q
1 (x,Q

2) =
∑

q

q(x,Q2)

CCF q
2 (x,Q

2) =
∑

q

2xq(x,Q2) (4.69)

CCF q
3 (x,Q

2) = −
∑

q

2q(x,Q2).

The intermediateW+ boson can interact only with negatively charged quarks
and antiquarks. Hence, using (4.67) and (4.69) charged-current νh scattering
structure functions can be summarized as

CCF ν
2 (x,Q

2) = 2x · CCF ν
1 (x,Q

2) = 2x
[
d+ s+ b+ u+ c+ t

]

CCF ν
3 (x,Q

2) = 2
[
d+ s+ b− u− c− t

]
(4.70)

where q ≡ q(x,Q2) for each quark flavor. They, supplemented with the gluon
distributions, are usually what is referred to as parton distribution functions

(PDFs).

4.2.8 νh DIS in the parton model

Having already worked out the general cross-section for νh scattering (4.50)
and structure functions F1, F2, F3 for quarks and antiquarks, the extension to
antineutrino scattering is rather easy. The quark and antiquark contributions
for νh CC cross-section are obtained using results (4.67) and (4.69) with cross-
section (4.50).

The intermediateW− boson can interact only with positively charged quarks
and antiquarks and so we have

CCF ν
2 (x,Q

2) = 2x · F ν
1 (x,Q

2) = 2x
[
u+ c+ t+ d+ s+ b

]

CCF ν
3 (x,Q

2) = 2
[
u+ c+ t− d− s− b

]
(4.71)

We have seen that the the structure functions do not depend explicitly on
E. Thus, looking back to eq. (4.46), we would expect that in the limit E ≫M

σtotal(νN, νN → ℓ± + anything) ∝ E.
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Indeed, the experimental results shown in fig. 4.7 reveal this to be true to an
excellent approximation!
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Figure 4.7: The total cross-section for CC neutrino and antineutrino scattering
off iron target divided by the neutrino beam energy. Data is from CCFR [25],
CCFR [26] and CDHS [27] experiments.

4.3 Neutral current DIS

4.3.1 General neutral current cross-section

H

a

d

r

o

n

s

nucleon

k, sνℓ

q = k − k′

νℓk′, s′

Z

p

Figure 4.8: Neutral current νh-scattering

Construction of general neutrino-hadron neutral current (NC) DIS cross-
section proceeds similarly to the case of charged-current process. The scattering
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matrix-element related to an n hadron final-state is

Mn = u(k′, s′)
(
igZγ

µ(1− γ5)
)
u(k, s)

(

−i
gµν − qµqν

M2
Z

q2 −M2
Z

)

< n, out|igZ Ĵν |h, in > (4.72)

where Ĵν denotes the neutral weak-current operator. Formally, this is rather
similar to the charged current matrix element (4.10) and the calculation proceeds
exactly in the same way. The result is

dσ =
π

8

G2
FM

4
Z

(Q2 +M2
Z)

2

M

|k · p|
d3k′

(2π)32E′L
µνWµν , (4.73)

where the tensors are defined as in (4.21) and (4.30):

Lµν = 8
(
k′µkν + k′νkµ − gµνk · k′ + iǫαµβνk′αkβ

)

Wµν = −W1

(

gµν −
qµqν
q2

)

+
W2

M2

(

pµ − p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

+i
W3

2M2
ǫµνηγp

ηqγ ,

and we have used the relation

16g2Z
M2

Z

= 4
√
2GF (4.74)

where GF is again the low-energy Fermi coupling constant. Consequently, the
cross-sections for neutral current DIS are obtained straightforwardly from (4.51):

d2σNC(νh, νh)

dxdQ2
=

G2
FM

4
Z

(Q2 +M2
Z)

2

1

2πx
[

NCF1 · xy2 +NC F2

(

1− y − xyM2

2ME

)

± NCF3 · xy
(

1− y

2

)]

.(4.75)

The + sign corresponds to neutrinos and − sign to antineutrinos in the initial
state.

4.3.2 Connection to the parton model

While charged current interaction couples only left-handed quarks and right-
handed antiquarks, neutral current interaction couples both helicity-states of
quarks and antiquarks (left and right handed) and the matrix element therefore
includes an additional term proportional to +γµγ

5:

M
NC
q = u(k′, s′)

[
igZγ

µ(1− γ5)
]
u(k, s)

(

−i
gµν − qµqν

M2
Z

q2 −M2
Z

)

u(p′, r′)
[
igZγ

ν
(
Rq(1 + γ5) + Lq(1− γ5)

)]
u(p̂, r). (4.76)

The coefficients Lq and Rq are defined in eq. (3.61)

Lq = τ3 − 2eq sin
2 θW ,

Rq = −2eq sin
2 θW . (4.77)
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The spin-averaged square of the matrix element (4.76) can be again expressed
as a contraction of rank-two tensors

|MNC
q |2 =

G2
FM

4
Z

8 (Q2 +M2
Z)

2L
µν
NCQ

NC
µν , (4.78)

where the neutrino tensor Lµν is identical with that in Eq. (4.21) but the quark
tensor Qµν has now more complicated structure:

Lµν
NC = 8

(
k′µkν + k′νkµ − gµνk · k′ + iǫαµβνk′αkβ

)

QNC
µν = 4

(
L2
q +R2

q

) (
p′µp̂ν + p′ν p̂µ − gµν p̂ · p′

)
+ (4.79)

4i
(
L2
q −R2

q

)
ǫφµηνp

′φp̂η. (4.80)

The quark mass has again been neglected. From here on the calculation
proceeds as in the case of CC (sections 4.2.6–4.2.7) but keeping the coefficients
(
L2
q +R2

q

)
and

(
L2
q −R2

q

)
in front of symmetric and antisymmetric term respec-

tively. The equations for structure functions F1, F2, and F3 are therefore easy
to track. For quarks we obtain:

NCF q
1 (x,Q

2) =
∑

q

(
L2
q +R2

q

)
q(x,Q2)

NCF q
2 (x,Q

2) =
∑

q

2
(
L2
q +R2

q

)
xq(x,Q2) (4.81)

NCF q
3 (x,Q

2) =
∑

q

2
(
L2
q −R2

q

)
q(x,Q2),

and for antiquarks:

NCF q
1 (x,Q

2) =
∑

q

(
L2
q +R2

q

)
q(x,Q2)

NCF q
2 (x,Q

2) =
∑

q

2
(
L2
q +R2

q

)
xq(x,Q2) (4.82)

NCF q
3 (x,Q

2) =
∑

q

2
(
R2

q − L2
q

)
q(x,Q2).

Unlike W±, the intermediate Z0 can interact with all quarks and antiquarks
and hence the sums in equations above must extend over all flavors.

4.4 QED DIS

QED analysis for DIS proceeds as in the case of weak interaction but is simplified
by the absence of the axial-vector part.

The QED matrix element corresponding to ℓ + nucleon scattering with n
hadrons in the final state X reads now

Mn = u(k′, s′) (−ieγµ) u(k, s)
(

−i gµν
q2

)

< n, out|ieĴν
em|h, in > . (4.83)

where e is the electron charge and Ĵν
em is electromagnetic current operator. The

differential cross-section for unpolarized scattering can, again, be expressed in
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terms of leptonic and hadronic tensors as

dσ = π
e4

q4
M

|k · p|
d3k′

(2π)32E′L
µνWµν , (4.84)

where

Lµν =
1

2

∑

s,s′

u(k′, s′)γµu(k, s)u(k, s)γνu(k′, s′)

= 2 (k′µkν + k′νkµ − gµνk · k′) (4.85)

Wµν = −W1

(

gµν − qµqν
q2

)

+
W2

M2

(

pµ − p · q
q2

qµ

)(

pν − p · q
q2

qν

)

.

We have now explicitly included a factor of 1/2 in the leptonic tensor Lµν which
is due to averaging over two spin states of a charged lepton. Note that Wµν is
now fully symmetric as all antisymmetric terms would vanish under contraction
with Lµν . This means that we eventually get just two structure functions F1,
F2 instead of three as in the ν-scattering. Doing the same analysis as earlier
but omitting all antisymmetric terms we end up with a differential cross-section
for QED DIS

dσEM

dxdQ2
=

4πα2

Q4

1

x

[

EMF1 · xy2 + EMF2

(

1− y − xyM2

2ME

)]

, (4.86)

where α ≡ e2/4π is the Sommerfeld fine structure constant. We have also
explicitly written EMF1 and EMF2 to distinguish them for structure functions
in ν-scatterings.

4.4.1 Parton model DIS in QED

As earlier, we want to know the explicit form of the structure functions in terms
of parton distribution functions. Thus, we begin with the matrix element for
QED scattering of a charged lepton off an individual quark

Mq = u(k′, s′) (−ieγµ)u(k, s)
(

−i gµν
q2

)

u(p′, r′) (ieeqγ
µ)u(p̂, r), (4.87)

where eq is the electric charge of a struck quark. The spin-averaged square is
then

|Mq|2 =
e4e2q
q4

LµνQµν (4.88)

where

Lµν = 2 (k′µkν + k′νkµ − gµνk · k′) (4.89)

Qµν = 2
(
p′µp̂ν + p′ν p̂µ − gµν p̂ · p′

)
.

The quark tensor Qµν differs from (4.56), aside from lacking the antisymmetric
part, with the factor of 2 and hence we can simply read the outcome for our
parton model result for hadronic tensor Wµν appearing in 4.84 from eqn. (4.66)
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to be

Wµν = −
∑

q

e2q
q(x)

2M

(

gµν − qµqν
q2

)

+
∑

q

e2q
xq(x)

M (p · q)

(

pµ − p · q
q2

qµ

)(

pν −
p · q
q2

qν

)

.

Comparing this with (4.86) we deduce

W1 =
∑

q

e2q
q(x)

2M

W2 =
∑

q

e2qM
xq(x)

(p · q) ,

and with the definitions of (4.43) we obtain

EMF q
2 (x,Q

2) = 2xEMF q
1 (x,Q

2) =
∑

q

e2qxq(x,Q
2), (4.90)

where the superscript q reminds us that only quarks are considered. The sums
above extend of course over all flavors since all quarks are charged particles and
can interact exchanging a photon. Furthermore, it is easy to see that a similar
result holds for scattering off an antiquark and we can finally write the complete
QED structure functions:

EMF2(x,Q
2) = 2xEMF1(x,Q

2) =
∑

q

e2qx
[
q(x,Q2) + q(x,Q2)

]
,(4.91)

the sum ranging over all quark flavors q.

4.5 Drell-Yan process

One other process that is closely related to DIS and which we will discuss
shortly is the Drell-Yan (DY) process.

hadron + hadron → µ+ + µ− + anything

This process was initially proposed to explain the observed fall of the cross-
section with increasing invariant mass M of the dimuon pair (fig. 4.9). Drell
and Yan suggested [28] that this happened mainly through a channel shown in
fig. (4.10) in which an antiquark from one hadron annihilates with a quark from
the other hadron to produce a virtual photon which subsequently splits to a pair
of opposite-sign leptons. The remainder of the hadrons fragment to produce a
background of various hadrons allowed by conservation laws.

4.5.1 The quark sub-process

The cross-section for DY-process is most easily constructed by computing first
the total cross-section for the sub-process

q + q → µ+ + µ−.
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Figure 4.9: Dimuon spectra for 800 GeV/c protons. Enhancements around
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Figure 4.10: The Drell-Yan process with associated kinematic quantities. The
momentum and spin for quark and antiquark emerging from the initial state
hadrons are denoted by (p, r) and (p′, r′). Similarly (k, s) and (k′, s′) are the
momentum and spin for outgoing muon and antimuon. The momentum of the
virtual photon is q = p+ p′.
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The matrix element for this process is

iMq = u(k, s) (−ieγµ) v(k′, s′)
(

−i gµν
q2

)

v(p′, r′) (ieeqγ
ν)u(p, r), (4.92)

where the kinematic quantities are given in fig. 4.10. As in DIS, we are not
interested in any particular spin configuration and thus, after squaring Mq we
sum over the lepton pair spin states and average over the annihilating quark’s
spin states. The result can be written as

|Mq|2 =
1

4

∑

spins

|Mq|2 =
e2qe

4

q4
Lµν
ℓ Lq

µν , (4.93)

where

Lµν
ℓ =

1

2

∑

s,s′

u(k, s)γµv(k′, s′)v(k′, s′)γνu(k, s) (4.94)

Lq
µν =

1

2

∑

r,r′

v(p′, r′)γµu(p, r)u(p, r)γνv(p
′, r′). (4.95)

Using the methods of section 4.2.2 and neglecting all masses involved we get

Lµν
ℓ = 4 [kµk′ν + kνk′µ − gµν(k · k′)] (4.96)

Lq
µν = 4 [pµp′ν + pνp′µ − gµν(p · p′)] , (4.97)

which under contraction yield

Lµν
ℓ Lq

µν = 32 [(k · p)(k′ · p′) + (k · p′)(k′ · p)] . (4.98)

Thus, the unpolarized matrix element reads

|Mq|2 = 8
e2qe

4

q4
[(k · p)(k′ · p′) + (k · p′)(k′ · p)] . (4.99)

The kinematics is most easily done in the CMS frame of the colliding quarks.
The total cross-section at the parton level is now

σ̂ =
(2π)4

4
√

(p · p′)2 −m2
qm

2
q

∫
d3k

(2π)32Ek

d3k′

(2π)32Ek′

δ(4) (p+ p′ − k − k′) |Mq|2

(4.100)
Integrating over k′ fixes the condition k′ = p+p′ − k, and transforming to the
spherical coordinates we get

σ̂ =
(2π)4

2ŝ

∫ |k|2d|k|dΩ
4(2π)6EkEk′

δ
(√

ŝ− k0 − k′
0
)

|Mq|2, (4.101)

where we also neglected all quark masses and used

ŝ ≡ (p+ p′)
2
=
(
p0 + p′0

)2 ≈ 2p · p′.

The δ-function can be written as

δ
(√

ŝ− 2|k|
)

=
1

2
δ

(

|k| − 1

2

√
ŝ

)

. (4.102)
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Hence we get

σ̂ =
(2π)4

2ŝ

∫
ŝ dΩ

32(2π)6EkEk′

|Mq|2 (4.103)

=
(2π)4

2ŝ

∫
ŝ dΩ

8(2π)6ŝ
|Mq|2 (4.104)

=
1

64π2ŝ

∫

dΩ|Mq|2, (4.105)

where we used CMS-frame result ŝ = 4EkEk′ . In this frame the matrix element
4.99 takes a simple form

|Mq|2 = e2qe
4
(
1 + cos2 θ

)
, (4.106)

and inserting this in to the cross-section formula we can perform the angular
integration

σ̂ =

∫
e2qe

4

64πŝ

(
1 + cos2 θ

)
dΩ =

4πα2

3ŝ
e2q. (4.107)

Note that the quark colour effects have not been considered yet — these will be
discussed below.

4.5.2 Embedding to hadronic level

Now we are ready to consider the process at the hadronic level. We are interested
in the differential cross-section for particular invariant mass M of the final state
lepton pair and we first rewrite (4.107) as

dσ̂

dM2
=

4πα2

3M2
e2q δ

(
M2 − ŝ

)
(4.108)

This expression has now to be multiplied by a factor q1(x1) that gives the number
of quarks of flavor q with momentum fraction x1 in the first hadron and by a
factor q2(x2) that gives the number of antiquarks of the same flavor in the second

hadron. For the total cross-sections the integration
∫ 1

0
dx1

∫ 1

0
dx2 should the be

performed. It is also possible that the origins of the quark and the antiquark
are reversed. This gives an an additional term where q1(x1)dx1q2(x2)dx2 is
replaced with q1(x1)dx1q2(x2)dx2.

Because each quark flavor can contribute we must sum over all flavors. Fur-
thermore, the colors of the annihilating quark and antiquark must match which
reduces the cross-section by a factor of 3. Putting these together we arrive at

dσ

dM2
=

4πα2

9M2

∑

q

e2q

∫

[q1(x1)q2(x2) + q1(x1)q2(x2)] dx1dx2 δ
(
M2 − x1x2s

)
,

where s is the squared total CMS-energy of the colliding hadrons. The integra-
tion over x1 can be performed, yielding

dσ

dM2
=

4πα2

9M2s

∑

q

e2q

∫

[q1(x1)q2(x2) + q1(x1)q2(x2)]
1

x2
dx2, (4.109)
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where it is implicitly understood that x1 = M2

sx2
. Although the remaining x2

integration can not be done analytically eq. (4.109) suggests that the cross-
section should go as

dσ

dM2
∝ 1

M2
, (4.110)

explaining the observed decrease in the cross-section with increasing dilepton
mass.

For our later purposes, we will need the double differential cross-section

d2σ

dM2dx2
=

4πα2

9M4

∑

q

e2q
[
q1(x1, Q

2)q2(x2, Q
2) + q1(x1, Q

2)q2(x2, Q
2)
]
x1dx2,

(4.111)
where the QCD scale in the PDFs is Q2 ∼M2.

4.6 Phenomenology: from free proton to the bound

nucleus

In this section, we will discuss the phenomenology of DIS. We will restrict our
discussion to the QED structure function

EMF2(x,Q
2) =

∑

q

e2qx
[
q(x,Q2) + q(x,Q2)

]
,

since it reflects the behavior of the PDFs most explicitly.

4.6.1 Structure function EM
F2 for free proton

Neglecting the transverse momentum of the partons in the infinite-momentum
frame and assuming Q2 ≫ M2 led us to the conclusion that the structure
functions of DIS seem to come independent of Q2 and depend only on a single
variable, the Bjorken-x. In fact, this so called Bjorken-scaling, derived originally
by Bjorken [30], is one of the most striking predictions of the parton model.

The structure functions are measurable quantities, and whether the theoret-
ical predictions are correct is always up to experiments to verify. Indeed, the
early experiments at SLAC for QED structure function EMF2 seemed to con-
firm the Bjorken-scaling and were the first clear experimental evidence about
the existence of the quarks!

That the Bjorken-scaling was really seen in the SLAC experiment was, how-
ever, somewhat accidental. This is because the further experiments that probed
a larger area with respect to the (Q2, x)-plane revealed that the Bjorken-scaling
is not an exact result. This is evident from fig. 4.11 that shows a set of represen-
tative data from measurements of EMF2 for the free proton. It just happened,
that the pioneering SLAC experiments probed a region of the (Q2, x)-plane
where the Bjorken-scaling happens to hold, i.e. the Q2-evolution is slow.

At low x, the structure function increases with increasing Q2 whilst at larger
x there is a fall with increasing Q2. The reason behind this apparent contradic-
tion between experimental evidence and the naive parton model prediction is
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Figure 4.11: Structure function EMF2 for the free proton as a function of Q2.
To make the plot readable each EMF2 has been scaled by adding constant i
ranging from 0 to 0.15 in 0.1 steps for x = 0.5 to x = 0.0045. The data shown
is from NMC [37] experiment.

that the effects of QCD were completely ignored. Within the framework of per-
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turbative QCD, this Q2 evolution is described by so called DGLAP equations
[31, 32, 33]. Here we will not give an exact QCD explanation of the Q2 depen-
dence but merely a qualitative picture about the physics behind this apparent
scaling violation.

According to QCD the quarks within the proton interact via emission and
absorption of coloured massless bosons, gluons. A gluon can split up to create
a quark-antiquark pair which in turn can annihilate back to a gluon and this
process leads to the picture of a proton in which the three valence quarks are
surrounded by a wildly fluctuating sea of gluons and quark-antiquark pairs.

As the proton is probed at a given Q2 a certain number of quarks, antiquarks
and gluons is observed. The duration of interaction goes as ∝ 1/Q2 and quantum
fluctuations — creation of quark-antiquark pairs via emission of gluons — that
happen within a timescale much shorter than 1/Q2 remains unobserved. As Q2

increases the timescale gets shorter and more short-lived virtual quark-antiquark
pairs and gluons are resolved. The partons are seen to contain partons, which
at larger Q2 are seen to contain partons and so on. In each successive gluon
emission partons lose momentum and consequently their momentum fraction x
declines. Thus, the PDFs and EMF2 tend to increase at small x and fall at large
x as Q2 increases.

Another feature that follows from QCD is that at the given Q2 the PDFs
should rise towards lower x. This is because the celebrated asymptotic freedom

of QCD: coupling strength increases as the energy involved in the process falls.
Since the energy decreases toward lower x there should be greater tendency
of quarks to radiate gluons which can eventually create quark-antiquark pairs.
Therefore the PDFs and EMF2 should peak as x tends to zero. Such a behavior
is very evident in fig. 4.12.
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Figure 4.12: Structure functions F2(x,Q
2) for free proton shown at two values

of Q2. The solid lines are computed form the latest CTEQ6 parton distribu-
tions. The data is from BCDMS [38], H1 [39], NMC [37], SLAC [40], and
ZEUS [41] experiments. The solid line is computed from CTEQ6 [35] PDF
parametrization.
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From the measurements of DIS and other hard-scattering processes like
Drell-Yan dimuon production described earlier, the actual PDFs for protons can
be unfolded through process that is usually referred as global analysis. In this
process the PDFs are first parametrized at some initial scale Q2

0 from which the
PDFs at other values of Q2 > Q2

0 are obtained by DGLAP evolution. Using the
PDFs at Q2

0 as non-perturbative input, structure functions and cross-sections
for variety of hard-scattering processes can be computed and eventually com-
pared with experimental results. Adjusting the parametrization in such a way
that the experimental results are recovered gives then the correct PDFs. A nice
description about the procedure and current state-of-art of PDFs can be found
in ref. [34].

Nowadays, several sets of proton PDFs are available. They are distributed
as a program-callable functions so that they can readily be used in computer
based calculations. In this thesis we will be using exclusively the latest CTEQ
[35] distributions of which fig. 4.13 shows an example.
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Figure 4.13: Distributions xq(x,Q2) in the free proton at Q2 = 25GeV2 for
(a) the valence and sea distributions of up and down quarks and (b) the sea
distributions of strange, charm and bottom quarks.
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4.6.2 Nuclear effects

The difference between F2 in heavier nuclei and deuterium is a well known
phenomenon. Fig. 4.14 shows an example of measured ratios, F ℓ±

2 of a heavy
nucleus (calsium) to that of deuteron, and it indeed reveals a clear deviation
from unity. These nuclear effects in the ratios 1

AF
A
2 /

1
2F

D
2 are usually divided
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Figure 4.14: Ratio 1
AF

Ca
2 / 1

2F
D
2 as a function of x. Data points are at various

values of Q2 = 0.4...40GeV2 but the parametrization shown is at fixed Q2 =
2.25GeV2 and Q2 = 40GeV2. Data is from NMC [42] experiment and the
curves are calculated with EKS98 parametrization [43, 44] supplemented with
CTEQ6 parton distributions.

as follows:

• The suppression at low x (x < 0.1) is conventionally referred to as shad-

owing.

• Subsequent enhancement at slightly higher x (0.1 < x < 0.3) is corre-
spondingly called anti-shadowing.

• The depletion at high x (0.3 < x < 0.7) is the EMC effect.

• The sharp enhancement at very high x (x > 0.7) is attributed to Fermi

motion.

Comparing these regions with fig. 4.13 we can deduce that EMC effect and
Fermi motion primarily affects the scattering from the valence quarks, while the
shadowing mainly affects the scattering off the sea. Anti-shadowing occurs in
the region of x where both sea and valence quarks are active.
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4.6.3 EKS98 parametrization

The EKS98 parametrization [43, 44] is a quantitative, perturbative QCD based
study of the PDFs of a bound proton in a nucleus with mass number A > 2.
Basically, the procedure is rather similar than the one in extracting the PDFs of
a free proton. The observables that have been compared with the experimental
data are the ratios of the QED structure functions F2 between nucleus A and
deuterium D

RA
F2
(x,Q2) ≡

1
AF

A
2 (x,Q2)

1
2F

D
2 (x,Q2)

, (4.112)

and the ratios of differential Drell-Yan cross-sections between nucleus A and
deuterium D

RA
DY(x2, Q

2) ≡
1
Adσ

pA
DY/dx2dQ

2

1
2dσ

pD
DY/dx2dQ

2
. (4.113)

In the EKS98 framework the total nPDFs are expressed in terms of the
nPDFs of a bound proton. This is achieved by means of assuming the isospin

symmetry

un/A = dp/A dn/A = up/A, (4.114)

where qp/A ≡ qp/A(x,Q
2) is the average quark distribution in a bound proton

of a nucleus A and similarly qn/A ≡ qn/A(x,Q
2) for bound neutron, to hold

for an arbitrary nucleus A. Similarly for antiquarks. This correspondence can
be justified by noting that the strong interactions dominate inside the nucleon
and from the point of view of strong interactions up and down quarks are just
similar particles. Thus, the normalization of valence quarks

∫ 1

0

dx
[

up/A − useap/A

]

= 2 =

∫ 1

0

dx
[

dn/A − dsean/A

]

∫ 1

0

dx
[

dp/A − dseap/A

]

= 1 =

∫ 1

0

dx
[

un/A − usean/A

]

implies that the isospin symmetry (4.114) should be rather reasonable as a first
approximation.

Now the total up quark distribution uA in a nucleus A with possible neutron
excess ∆ ≡ N − Z, where N = A− Z is the neutron number, can be expressed
as

uA = Zup/A +Nun/A

≈ Zup/A +Ndp/A

=
A

2

(
up/A + dp/A

)
+

∆

2

(
dp/A − up/A

)
. (4.115)

Similarly for down quark

dA = Zdp/A +Ndn/A

≈ Zdp/A +Nup/A

=
A

2

(
up/A + dp/A

)
− ∆

2

(
dp/A − up/A

)
. (4.116)
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For other flavors the distributions in a neutron and a proton are assumed to be
equal

qn/A = qp/A for q = c, s, b, t.

Since the quarks and antiquarks are always produced in pairs, any differences
between the quarks and the antiquarks in a nuclear sea can be neglected

qSA = qSA = qA,

and the valence quark distributions is just qAV ≡ qA − qA.
In this framework, the F2 ratio becomes

RA
F2

=
1

NF2

{
5
(
up/A + dp/A + up/A + dp/A

)

+
3∆

A

(
dp/A − up/A + dp/A − up/A

)

+ 4sp/A
}

(4.117)

where

NF2
= 5

(
up/D + dp/D + up/D + dp/D

)
+ 4sp/D.

The Drell-Yan ratio can be worked out from eq. (4.111). Denoting the free
proton PDFs as q1(x1) ≡ qp and the PDFs of a proton in a heavy target nucleus
as q2(x2) ≡ qp/A we get

RA
DY =

{
4
[
up
(
up/A + dp/A

)
+ up

(
up/A + dp/A

)]

+
[
dp
(
dp/A + up/A

)
+ dp

(
dp/A + up/A

)]

+
4∆

A

[
up
(
dp/A − up/A

)
+ up

(
dp/A − up/A

)]

+
∆

A

[
dp
(
up/A − dp/A

)
+ dp

(
up/A − dp/A

)]

+ 4spsp/A
} 1

NDY
, (4.118)

where

NDY = 4
[
up
(
up/D + dp/D

)
+ up

(
up/D + dp/D

)]

+
[
dp
(
dp/D + up/D

)
+ dp

(
dp/D + up/D

)]
+ 4spsp/D

Instead of absolute nPDFs, the quantities that have been quantified in the
EKS98 analysis are the ratios between the parton distributions of a proton in a
bound nucleus and those of the free proton

RA
q (x,Q

2) ≡ qp/A(x,Q
2)

qp(x,Q2)
(4.119)

for each flavor of quarks and antiquarks and separately for sea and valence
quarks in the case of u and d quarks. Due to the suppressing factor ∆

A in the
non-isoscalar parts of the Drell-Yan and F2 ratios and partly to the lack of non-
isoscalar (meaningN 6= Z) experimental FA

2 data the individual ratiosRA
uV
, RA

dV
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for the valence distributions and RA
u , R

A
d

for the sea have been impossible to fold
out. However, the combined valence and sea modifications, defined as

RA
V (x,Q

2) ≡
uVp/A(x,Q

2) + dVp/A(x,Q
2)

uVp (x,Q
2) + dVp (x,Q

2)
(4.120)

RA
u+d

(x,Q2) ≡ up/A(x,Q
2) + dp/A(x,Q

2)

up(x,Q2) + dp(x,Q2)
, (4.121)

can be rather well constrained and without a better knowledge, they are also
assumed to be equal to the individual modifications

RA
V (x,Q

2
0) = RA

uV
(x,Q2

0) = RA
dV

(x,Q2
0)

RA
u+d

(x,Q2
0) = RA

u (x,Q
2
0) = RA

d
(x,Q2

0)

at chosen initial scale Q2
0 = 2.25GeV2 [43, 44]. It has turned out that once this

assumption is made it holds also in the higher Q2 — the DGLAP evolution to
arbitrary Q2 does not generate significant deviations. In fig. 4.15 we show an
example of the the nuclear ratios and, not surprisingly, they closely resemble
the behavior seen in fig. 4.14.
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Figure 4.15: Example of nuclear ratios RA
q (x,Q

2) from EKS98 for A = 56 (iron)

at Q2 = 25GeV2. For up and down quarks both the valence and sea ratios are
shown and from the heavier quarks strange and charm ratios.
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Chapter 5

nPDFs and NuTeV anomaly

5.1 Observables R
ν, Rν and R

−

In this section we derive some simple formulas that relate the observables in
neutrino DIS to the weak mixing angle sin2 θW.

5.1.1 Sophistications to structure functions

So far we have treated all quarks as massless particles. However, under CC-
interaction flavor of the struck quark changes and when a heavy quark is pro-
duced our zero mass approximation is no longer valid. For heavy quark produc-
tion we have

(ξp+ q)
2

= m2
q′

(ξp)2
︸ ︷︷ ︸

≈0

+2ξp · q + q2 = m2
q′

ξ =
m2

q′ − q2

2p · q =
Q2

2p · q +
m2

q′

Q2

Q2

2p · q = x

(

1 +
m2

q′

Q2

)

≡ xq′ , (5.1)

where mq′ is the mass of the produced quark. We notice that Bjorken-x no
longer represents the momentum fraction carried by the struck quark but it
must be rescaled according to the equation above. Furthermore, because the
momentum fraction xq′ should not exceed unity we assume that

q (xq′ ≥ 1) = 0

for each flavor q.
There is still one more thing to remember before writing down the structure

functions for a nuclear target. The quarks that participate in weak interac-
tions are not pure mass eigenstates but they are mixed according to Cabibbo-
Kobayashi-Maskawa (CKM) matrix [23]:





d′

s′

b′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b
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|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|



 =





0.9739 · · ·0.9751 0.221 · · ·0.227 0.0029 · · ·0.0045
0.221 · · ·0.227 0.9730 · · ·0.9744 0.039 · · ·0.044
0.0048 · · ·0.014 0.037 · · ·0.043 0.9990 · · ·0.9992





When the CKM-matrix elements and rescaling due to heavy quark produc-
tion are taken account the structure functions for CC processes can be written
as

CCF ν
1

(
x,Q2

)
=

∑

q,q′

|Vqq′ |2
[
q
(
xq′ , Q

2
)
+ q′

(
xq, Q

2
)]

CCF ν
2

(
x,Q2

)
= 2

∑

q,q′

|Vqq′ |2
[
xq′q

(
xq′ , Q

2
)
+ xqq

′ (xq, Q
2
)]

(5.2)

CCF ν
3

(
x,Q2

)
= 2

∑

q,q′

|Vqq′ |2
[
q
(
xq′ , Q

2
)
− q′

(
xq, Q

2
)]
,

where q′ = {u, c, t}, q = {d, s, b} and |Vqq′ | denotes the CKM-matrix element
between flavors q and q′. Structure functions for antineutrino scattering are
easily obtained just interchanging q and q′:

CCF ν
1

(
x,Q2

)
=

∑

q,q′

|Vqq′ |2
[
q′
(
xq, Q

2
)
+ q

(
xq′ , Q

2
)]

CCF ν
2

(
x,Q2

)
= 2

∑

q,q′

|Vqq′ |2
[
xqq

′ (xq, Q
2
)
+ xq′q

(
xq′ , Q

2
)]

(5.3)

CCF ν
3

(
x,Q2

)
= 2

∑

q,q′

|Vqq′ |2
[
q′
(
xq , Q

2
)
− q

(
xq′ , Q

2
)]
.

In the neutral current processes the flavor of the struck quark does not
change and we do not have rescaling in the Bjorken-x variable. Formulas for
the structure functions are then

NCF1

(
x,Q2

)
=

∑

q

(
L2
q +R2

q

) [
q
(
x,Q2

)
+ q

(
x,Q2

)]

NCF2

(
x,Q2

)
= 2x

∑

q

(
L2
q +R2

q

) [
q
(
x,Q2

)
+ q

(
x,Q2

)]
(5.4)

NCF3

(
x,Q2

)
= 2

∑

q

(
L2
q −R2

q

) [
q
(
x,Q2

)
− q

(
x,Q2

)]
,

which are same for both ν and ν, and in which the sums now extend over all
flavors q = {d, u, s, c, b, t}. In principle, these are now the structure functions
that can be used together with general formulas (4.51) and (4.75) to compute
cross-sections for scattering off a nuclear target.

5.1.2 Observables R
ν and R

ν and Llewellyn Smith formula

As we now have the structure functions for nuclear target available we can derive
simple expressions for the observables (1.1) and (1.2)

Rν ≡ σNC (νN)

σCC (νN)
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Rν ≡ σNC (νN)

σCC (νN)

for an isoscalar nuclear target in an approximation where just up and down
quarks are present and there is no heavy quark production. Due to the negligible
current masses of up and down quarks we can replace xu and xd in (5.2) and
(5.3) with x. Leaving the Q2 dependence implicit below the structure functions
reduce to

CCF ν
1 = [dA(x) + uA(x)]

CCF ν
1 =

[
uA(x) + dA(x)

]

CCF ν
2 = CCF ν

1 · 2x CCF ν
2 = CCF ν

1 · 2x

CCF ν
3 = 2 [dA(x) − uA(x)]

CCF ν
3 = 2

[
uA(x)− dA(x)

]

NCF1 =
(
L2
u +R2

u

)
[uA(x) + uA(x)] +

(
L2
d +R2

d

) [
dA(x) + dA(x)

]

NCF2 = NCF1 · 2x

NCF3 = 2
(
L2
u −R2

u

)
[uA(x)− uA(x)] + 2

(
L2
d −R2

d

) [
dA(x)− dA(x)

]
.

Due to the isospin symmetry un/A = dp/A and dn/A = up/A we have, for
example

CCF ν
1 = dA(x,Q

2) + uA(x,Q
2) =

A

2

[
dp/A + dn/A + up/A + un/A

]

=
A

2

[
dp/A + up/A + up/A + dp/A

]
.

Decomposing all other structure functions above similarly we get

CCF ν
1 = CCF ν

1 ,
CCF ν

2 = CCF ν
2 ,

CCF ν
3 = CCF ν

3

NCF ν
1 = CCF ν

1

[(
L2
u + L2

d

)
+
(
R2

u +R2
d

)]

NCF ν
2 = CCF ν

2

[(
L2
u + L2

d

)
+
(
R2

u +R2
d

)]
(5.5)

NCF ν
3 = CCF ν

3

[(
L2
u + L2

d

)
−
(
R2

u +R2
d

)]
.

Plugging these into the differential cross-section formulas (4.51) and (4.75), and
taking Q2 ≪M2

Z ,M
2
W , we obtain

Rν =
1

4

(
L2
u + L2

d

)
+ r

1

4

(
R2

u +R2
d

)

=

(
1

2
− sin2 θW +

5

9
sin4 θW

)

+ r

(
5

9
sin4 θW

)

= g2L + r g2R (5.6)

Rν =
1

4

(
L2
u + L2

d

)
+ r−1 1

4

(
R2

u +R2
d

)

=

(
1

2
− sin2 θW +

5

9
sin4 θW

)

+ r−1

(
5

9
sin4 θW

)

= g2L + r−1 g2R, (5.7)
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where we have used the couplings (4.77) and introduced definitions

r ≡ d2σCC (νN) /(dxdQ2)

d2σCC (νN) /(dxdQ2)

g2L ≡ 1

2
− sin2 θW +

5

9
sin4 θW (5.8)

g2R ≡ 5

9
sin4 θW .

The equations (5.7) and (5.6) are the Llewellyn Smith ratios [45].

Although both of these are related to the weak mixing angle sin2 θW one
should still explicitly know the ratio r to extract the value of mixing angle.
Furthermore, these relations were derived simply forgetting the sea of heav-
ier quarks and the uncertainties arising from these would make extraction of
Weinberg angle more difficult. The solution is to combine these two to a single
quantity R−.

5.1.3 Observable R
− and Paschos-Wolfenstein formula

The observable that we are ultimately interested in is the ratio already intro-
duced in eq. (1.3),

R− =
σNC(νN)− σNC(νN)

σCC(νN)− σCC(νN)
,

which was also used in NuTeV the analysis. It is clear from the general formulas
(4.51) and (4.75) that we need to compute quantities F ν

1 − F ν
1 , F ν

2 − F ν
2 and

F ν
3 + F ν

3 for both CC and NC structure functions. Let us start with the CC
structure functions (5.3):

CCF ν
1 − CCF ν

1 =
∑

qq′

|Vqq′ |2 [q (xq′ )− q (xq′ ) + q′ (xq)− q′ (xq)]

=
∑

qq′

|Vqq′ |2 [qV (xq′ )− q′V (xq)] .

In a nuclear target A only up and down quarks have non-zero valence distribu-
tions and we get

CCF ν
1 − CCF ν

1 = |Vud|2
[
dAV (xu)− uAV (xd)

]
− |Vus|2 uAV (xs)

− |Vub|2 uAV (xb) + |Vcd|2 dAV (xc) ,

in which we have already omitted the term corresponding to top quark produc-
tion because its high mass and small CKM-matrix element |Vtd|. Due to the
small mass of u, d and s quarks, we can replace all xu, xd and xs with x and
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implementing this simplification we obtain

CCF ν
1 − CCF ν

1 = |Vud|2
[
dAV (x)− uAV (x)

]
− |Vus|2 uAV (x)

− |Vub|2 uAV (xb) + |Vcd|2 dAV (xc)

CCF ν
2 − CCF ν

2 = 2 |Vud|2 x
[
dAV (x)− uAV (x)

]
− 2 |Vus|2 xuAV (x)

−2 |Vub|2 xbuAV (xb) + 2 |Vcd|2 xcdAV (xc) (5.9)

CCF ν
3 + CCF ν

3 = 2 |Vud|2
[
dAV (x) + uAV (x)

]
+ 2 |Vus|2 uAV (x)

+2 |Vub|2 uAV (xb) + 2 |Vcd|2 dAV (xc) .

The results for F ν
2 − F ν

2 and F ν
3 + F ν

3 are also shown above.

It is straightforward to calculate these same quantities for NC structure
functions with the same procedure just explained and we now merely quote the
results

NCF ν
1 − NCF ν

1 = NCF ν
2 − NCF ν

2 = 0 (5.10)

NCF ν
3 + NCF ν

3 = 4

(

1− 8

3
sin2 θW

)

uAV (x) + 4

(

1− 4

3
sin2 θW

)

dAV (x) ,

where we have explicitly used the couplings (4.77).

If we consider R− in the case of an isoscalar target, when mixing between
quark generations is neglected, we set the neutron excess ∆ = 0 and for CKM-
matrix elements |Vus| = |Vub| = |Vcd| = 0, |Vud| = 1. The quantities above then
reduce to

uAV = dAV =
A

2

(

uVp/A + dVp/A

)

CC
(
F ν
3 + F ν

3

)
= 2A

[

uVp/A + dVp/A

]

NC
(
F ν
3 + F ν

3

)
= 4A

(
1− 2 sin2 θW

) [

uVp/A + dVp/A

]

.

With these simplifications together with an assumption of the range of low
momentum transfer Q2 ≪M2

W ,M2
Z , we get a very neat result

R− =
1

2
− sin2 θW . (5.11)

This is known as Paschos-Wolfenstein relation, originally derived in [46]. In this
quantity the contribution of heavier sea quarks is stripped away and it is thus
more reliable to extract the value of sin2 θW in this way.

5.2 Can R
A
d/V 6= R

A
u/V cause NuTeV anomaly?

Iron (A = 56, ∆ = 4) used in the NuTeV experiment is not an isoscalar target
and corrections to the simple Paschos-Wolfenstein relationship do arise. To first
order in ∆

A ∼ 0.07 the corrected version is
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R−(x,Q2, sW) ≈
(
1

2
− sW

)[

1− ∆

A
h(y, sW)

uVp/A − dVp/A

uVp/A + dVp/A

]

(5.12)

where

h(y, sW) ≡ 1 + (1− y)2

1− (1− y)2
− 2sW

3− 6sW
(5.13)

and

sW ≡ sin2 θW.

Interestingly, if the individual nuclear modifications RA
uV

= RA
dV

= RA
V as in

EKS98, the nuclear effects cancel! But are they really equal?
Let us now suppose that RA

dV 6= RA
uV , and see what consequences it may

bring about. Since RA
V is constrained by the measurable quantities RDY and

RF2
, the condition

RA
V (x,Q

2) =
uVp/A(x,Q

2) + dVp/A(x,Q
2)

uVp (x,Q
2) + dVp (x,Q

2)
=
RA

uV
uVp (x,Q

2) +RA
dV
dVp (x,Q

2)

uVp (x,Q
2) + dVp (x,Q

2)

should always be satisfied. This means that in the symmetric combination

uVp/A + dVp/A = RA
V

(
uVp + dVp

)

no change relative to the EKS98 is induced and the conservation of momentum
is guaranteed (meaning that valence quarks carry the same fraction of nucleon
momentum as before). However, the antisymmetric combination

uVp/A − dVp/A 6= RA
V

(
uVp − dVp

)
,

and consequently also the value of R− changes!
In what follows our ambitious intention is to show that instead of suggesting

a deviation in sin2 θW, the NuTeV anomaly could be as well as consequence of
simply having RA

uV 6= RA
dV !

5.2.1 The procedure

We want to understand quantitatively how RA
dV

and RA
uV

should deviate from

each other and RA
V in order to produce an effect that looks similar as having as

large deviation in sW reported by NuTeV. The principle is to calculate R− in
two ways:

1. For R−(x,Q2, sNuTeV
W , RA

uV
= RA

dV
= RA

V ) we use NuTeV sNuTeV
W = 0.2277

and assume RA
uV

= RA
dV

= RA
V .

2. For R−(x,Q2, 〈sW〉 , RA
uV

6= RA
dV

) we take world average 〈sW〉 = 0.2227

and allow RA
uV

6= RA
dV

.

The task is then to decompose RA
V to RA

dV
and RA

uV
in such a way that the

following conditions are met:
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• Difference between the above two R−s goes to zero

R−(x,Q2, sNuTeV
W , RA

uV = RA
dV = RA

V )−R−(x,Q2, 〈sW〉 , RA
uV 6= RA

dV ) → 0

• RA
V from EKS98 is recovered

RA
V (x,Q

2) =
RA

uV
uVp (x,Q

2) +RA
dV
dVp (x,Q

2)

uVp (x,Q
2) + dVp (x,Q

2)

• Charge and baryon number are conserved

∫ 1

0

dxRA
uV
uVp = 2

∫ 1

0

dxRA
dV
dVp = 1.

Rather than using the double differential cross-sections we should integrate
them over Bjorken-x according to the NuTeV kinematics taking heavy quark
production and Cabibbo-mixing into account. Although this calculation has to
be carried out numerically we can still understand the direction of the deviation
analytically from the differential form of R− in eq. (5.12): Since the quantity
h(y, sW) is not very sensitive to small changes in sW it is nearly constant h ≡
h(y, 〈sW)〉 ≈ h(y, sNuTeV

W ), and at given x and Q2 we require

(
1

2
− sNuTeV

W

)[

1− ∆

A
h
uVp − dVp
uVp + dVp

]

=

(
1

2
− 〈sW〉

)[

1− ∆

A
h
uVp/A − dVp/A

uVp/A + dVp/A

]

.

Because sNuTeV
W > 〈sW〉 we get

uVp − dVp
uVp + dVp

<
uVp/A − dVp/A

uVp/A + dVp/A
(5.14)

which leads to a condition

RA
dV

(x,Q2) < RA
V (x,Q

2) < RA
uV

(x,Q2). (5.15)

in a region of x and Q2 to which the NuTeV experiment is most sensitive.
Interestingly, our result seems contradictory to the one by Kumano [48], who
has also studied this issue.

5.2.2 Results

In the NuTeV experiment the ν and ν cross-sections were measured over a range
of beam energies Ebeam, virtualities Q2 and Bjorken-x. The details about the
flux and energy distribution of the incoming neutrinos rest on the Monte Carlo
simulation and we cannot reproduce the actual kinematical distribution of the
NuTeV data. Instead, we simply use the average values

〈Ebeam〉 = 116 GeV
〈
Q2
〉

= 20.5GeV2

and impose the NuTeV cuts on the final state hadronic energy yEbeam +M

Emin ≤ yEbeam +M ≤ Emax
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Figure 5.1: Differences of double differential neutrino and antineutrino cross-
sections. In the ratio R− the NC difference is in the numerator while the CC
difference enters to the denominator. The curves are calculated for iron (A = 56,
∆ = 4) with EKS98 nuclear modifications.

with Emin = 20GeV and Emax = 180GeV. These, together with the require-
ment y ≤ 1 constrain x between

0.094 ≈ Q2

2EM
= xmin ≤ x ≤ xmax =

Q2

2(Emin −M)
≈ 0.57, (5.16)

and fixes the x-region where (5.15) must hold in order to find a solution.
To find the x-region which mostly contributes in the ratio R− we use the

double differential cross-sections and calculate the numerator and the denomi-
nator of R− separately. The result is shown in fig. 5.1 and it is obvious that
the smallest x-region is the most important one. This means that the largest
differences between RdV

and RuV
should be introduced around x ∼ xmin ∼ 0.1.

To get a crude order-of-magnitude estimate to check whether our idea is
realistic or not we find a solution in which the valence-d modification RA

dV
is

parametrized in the following, very rough manner:

RA
dV

(x,Q2) =







C1 = constant, when x < xmin

C2 = constant, when xmin ≤ x ≤ xmax

RA
V (x,Q

2) fromEKS98 when xmax < x ≤ 1
. (5.17)

A solution of this kind is shown in fig. (5.2). Interestingly, the deviations of
RA

uV
and RA

dV
from RA

V that would cause as much deviation in R− as does

changing mixing angle from 〈sW〉 to sNuTeV
W are only modest in RA

uV
: About

20% modifications in RA
uV

from RA
V should be enough!

In addition to this ’extreme’ all-explaining case we consider a continuous,
more ’natural-looking’ parametrization for RA

dV
. An example of such is shown
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in fig. 5.3. Also in this case our conservation laws are fulfilled and the deviation
induced in R− is equivalent to a ∆sW ≈ 0.0018. This is around 36% of the
whole NuTeV anomaly.
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Figure 5.2: An order-of-magnitude estimate about the nuclear valence quark
modifications needed to alone account for the large value of xW reported by
NuTeV. The individual modifications RA

uV
and RA

dV
for iron (A = 56, ∆ = 4)

are shown as functions of x at a fixed scale Q2 = 20.5 GeV2. The average
valence quark modification RA

V is from the EKS98-parametrization [43, 44]. The
coefficients in eq. (5.17) are C1 = 1.13 and C1 = 0.7070.
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Figure 5.3: As fig. 5.2 but in this case the shown valence quark modifications
would explain about third of the large value of xW reported by NuTeV.
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5.2.3 Consequences in RDY and RF2

So far so good. We have shown that having RA
uV

6= RA
dV

affects the observed
ratio R− but we have not yet discussed the other consequences it may cause.
Most importantly, we should check how largely it affects the ratios RF2

and
RDY that are the basis for determining the nPDFs.

To make this as transparent as possible, we calculate the ratios RF2
and

RDY for iron in two ways. First, using the EKS98 values RA
uV

= RA
dV

= RA
V

and then with the ’extreme’ modifications of fig. (5.2). The differences between
these two quantities turn out to be very tiny as can be seen from fig. 5.4 where
we have also added some experimental data for an iron nucleus to illustrate how
small the difference resulting from having RA

uV
6= RA

dV
really is compared to the

typical experimental uncertainties.
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Figure 5.4: The nuclear modification ratios RA
F2

and RDY(Q
2 = 20.5GeV2) for

iron A = 56 with neutron excess ∆ = 4 at fixed Q2 = 20.5GeV2. The solid
lines are obtained with the EKS98 modification and the dashed one results from
’extreme’ modifications of eq. 5.17 and fig. 5.2. In the case of Drell-Yan ratio
RDY the variable x refers to the target(iron) momentum fraction. The data
shown are from FNAL-772 [29] and SLAC [47] experiments.

The NuTeV group has argued that all nuclear effects are correctly taken
into account by their analysis since it incorporates the nPDFs that are obtained
with the very same target as the one which was used in the sin2 θW experiment.
We have, however, just shown that even the global analysis of nPDFs is not
able to unfold the possible difference between the nuclear effects of valence-u
and valence-d quarks. This indicates that if such a difference exists, the NuTeV
group cannot have taken such an effect into account, either!
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5.3 Conclusion an outlook

The NuTeV collaboration has measured the value of Weinberg weak mixing
angle sin2 θW using deep inelastic neutrino scattering off an iron target. The
extraction was made through the Paschos-Wolfenstein ratio R− which strips
away most part of the detailed parton structure effects of the iron nucleus.
However, the imprint is not completely lost: iron is a non-isoscalar nucleus and
R− gets contribution from the valence distributions of up and down quarks.

The global analysis of Drell-Yan and DIS data together with sum rules,
provides currently the most precise knowledge of the nuclear effects in PDFs
compared to the free proton. However, even the global perturbatice QCD anal-
ysis cannot determine the nuclear corrections for the valence-d and valence-u
distributions separately and without better knowledge or further constraints one
usually assumes the average modification

RA
V (x,Q

2) ≡
uVp/A(x,Q

2) + dVp/A(x,Q
2)

uVp (x,Q
2) + dVp (x,Q

2)
,

which is quite well constrained, to apply for both: RA
uV

≈ RA
dV

≈ RA
V .

We have pointed out that the extraction of sin2 θW via Paschos-Wolfenstein
ratio R− is affected by this approximation and taking RA

uV
6= RA

dV
6= RA

V we
have been able to show that changes of the order of only 20-40% can lead to
modification of R−(Q2 = 20.5GeV2) which is as large as would be induced
by increasing the sin2 θW to the large value reported by NuTeV! As long as
the modifications are made in such a way that RA

V from the global analysis
is always recovered, the charge, momentum and baryon number of a proton
are also conserved. We have also explicitly demonstrated that the deviations
induced to the measurable ratios RDY of Drell-Yan and RF2

of DIS that provide
the data driven constraints for the nuclear corrections are not on a detectable
level compared to the current experimental data.

Thus, it should be possible to explain the whole anomaly just by introducing
mutually different nuclear corrections for valence-u and valence-d quarks and,
in fact, this anomaly can be seen a as a first hint at least about the direction

of the difference at x ≥ 0.1. In other words, the exciting NuTeV result can be
added to the list of data constraints in the global analysis of the nPDFs. The
results of this thesis will be published soon [16], and to perform such an updated
global analysis will be our future task.

To settle down the NuTeV anomaly, at least two independent experiments
to pin down the Weinberg angle from neutrino experiments exist. The first of
these, the NOMAD experiment in CERN [49], tries to extract the Weinberg
angle from Rν and is already in the stage of data analysis. In the another
one, still under planning, the strategy is to measure the Weinberg angle in a
reactor-based experiment [50]. In any case, this thesis shows that it is far too
early to claim any appearance of beyond Standard Model physics in the NuTeV
anomaly.
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