1. The Hamiltonian operator for the harmonic oscillator is given by

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} .
$$

Using the commutation relations between position and momentum operators, write down, and solve the equations of motion

$$
\frac{\mathrm{d} \hat{x}(t)}{\mathrm{d} t}=\frac{i}{\hbar}[\hat{H}, \hat{x}(t)] \quad \frac{\mathrm{d} \hat{p}(t)}{\mathrm{d} t}=\frac{i}{\hbar}[\hat{H}, \hat{p}(t)]
$$

for the Heisenberg picture operators $\hat{x}(t)$ and $\hat{p}(t)$ in terms of Schrdinger picture operators $\hat{x}=\hat{x}(t=0)$ and $\hat{p}=\hat{p}(t=0)$.
2. (a) Show that the Lippman-Schwinger equation

$$
\left|\Psi_{a}\right\rangle=\left|\Phi_{a}\right\rangle+\frac{1}{E_{a}-\hat{H}_{0}+i \epsilon} \hat{V}_{S}\left|\Psi_{a}\right\rangle
$$

is equivalent to the coordinate space integral equation, encountered in the context of potential scattering,

$$
\Psi_{\mathbf{k}}(\mathbf{r})=\Phi_{\mathbf{k}}(\mathbf{r})+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} G_{\mathbf{k}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) \Psi_{\mathbf{k}}\left(\mathbf{r}^{\prime}\right)
$$

where $G_{\mathbf{k}}(\mathbf{r})$ is the Green's function

$$
G_{\mathbf{k}}(\mathbf{r})=-\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{e^{i \mathbf{q} \cdot \mathbf{r}}}{\mathbf{q}^{2}-\mathbf{k}^{2}-i \epsilon}
$$

In particular, show that

$$
\langle\mathbf{r}| \frac{1}{E_{a}-\hat{H}_{0}+i \varepsilon}\left|\mathbf{r}^{\prime}\right\rangle=\frac{2 \mu}{\hbar^{2}} G_{\mathbf{k}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) .
$$

(b) As suggested in the lecture notes p. 130, prove that the scattering amplitude is obtained from the transition matrix elements $T_{f i}$ as

$$
f_{\mathbf{k}}(\Omega)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}} T_{f i} .
$$

3. (a) Let's consider a simple two-level system with energy eigenstates $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$, which is perturbed by a potential oscillating with angular frequency ω :

$$
V(t)=\left(\begin{array}{cc}
0 & V_{12} \\
V_{21} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \gamma e^{i \omega t} \\
\gamma e^{-i \omega t} & 0
\end{array}\right)
$$

where $\gamma \in \mathbb{R}$. Let the system be initially at state $|\Psi(t=0)\rangle=\left|\phi_{1}\right\rangle$. Solve the timeevolution of the system exactly and show that the probability of finding the system at later times t in a state $\left|\phi_{2}\right\rangle$ is given by the Rabi formula

$$
P_{2}=\frac{\gamma^{2} / \hbar^{2}}{\gamma^{2} / \hbar^{2}+(\omega-\delta \omega)^{2} / 4} \sin ^{2}\left(t \sqrt{\gamma^{2} / \hbar^{2}+(\omega-\delta \omega)^{2} / 4}\right)
$$

where $\delta \omega \equiv\left(E_{2}-E_{1}\right) / \hbar$.
(b) Compute the corresponding transition probabilities using first order time-dependent perturbation theory and compare the results by expanding the exact result in powers of γ, when $\gamma^{2} \ll \hbar^{2}(\omega-\delta \omega)^{2} / 4$. What happens at resonance frequency $\omega=\delta \omega$?
4. If two operators do not commute, they cannot be freely moved across each other as ordinary numbers, but there is an extra term from the commutator: $\hat{A} \hat{B}=\hat{B} \hat{A}-[\hat{B}, \hat{A}]$. The situation is similar, but more tricky, in the case of exponentials of operators.
(a) Let \hat{A} and \hat{B} be operators. Consider a function $F(\lambda)$ defined by

$$
F(\lambda)=e^{\lambda \hat{A}} \hat{B} e^{-\lambda \hat{A}},
$$

where λ is a parameter. Show that $F(\lambda)$ obeys

$$
\frac{\mathrm{d} F(\lambda)}{\mathrm{d} \lambda}=[\hat{A}, F(\lambda)]
$$

and then derive the expression

$$
F(\lambda)=B+\frac{\lambda}{1!}[\hat{A}, \hat{B}]+\frac{\lambda^{2}}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\cdots
$$

(b) Assume now that operators \hat{A} and \hat{B} commute with their commutator: $[A,[A, B]]=$ $[B,[A, B]]=0$, which would be the case if \hat{A} and \hat{B} were, for example, momentum and position operators. Write down the differential equation obeyed by the operator $\hat{G}(\lambda)$ defined by

$$
e^{\lambda \hat{A}} e^{\lambda \hat{B}}=\hat{G}(\lambda) e^{\lambda \hat{B}} e^{\lambda \hat{A}}
$$

and derive the identity:

$$
e^{\hat{A}} e^{\hat{B}}=e^{[\hat{A}, \hat{B}]} e^{\hat{B}} e^{\hat{A}} .
$$

Under the same assumptions, show that

$$
e^{\hat{A}+\hat{B}}=e^{-\frac{1}{2}[\hat{A}, \hat{B}]} e^{\hat{A}} e^{\hat{B}} .
$$

