Discussed Thu 24.1. at 14.00 in FYS5

1. (a) Suppose the Hamiltonian H, for some particular quantum system, is a function of some parameter λ . Let $E_n(\lambda)$ and $\psi_n(\lambda)$ be the eigenvalues and eigenfunctions of $H(\lambda)$. Prove the **Feynman-Hellman theorem**:

$$\frac{\partial E_n}{\partial \lambda} = \left\langle \psi_n \left| \frac{\partial H}{\partial \lambda} \right| \psi_n \right\rangle.$$

(b) Using the Feynman-Hellman theorem, determine the expectation values of 1/r and $1/r^2$ for hydrogen atom. Recall that the for the radial wave function $u_{n\ell}(r) \equiv$ $rR_{n\ell}(r)$ the effective Hamiltonian is

$$H = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r},$$

and the eigenvalues are

$$E_n = -\frac{me^4}{32\pi^2 \epsilon_0^2 \hbar^2 (N + \ell + 1)^2}.$$

Here N refers to the largest power of the Laguerre polynomial associated with the solution of $u_{n\ell}$ and it's related to the principal quantum n and to the angular momentum quantum number ℓ via $n = N + \ell + 1$.

2. Derive the **Kramer's relation**

$$\frac{s+1}{n^2} \langle r^s \rangle - (2s+1)a \langle r^{s-1} \rangle + \frac{s}{4} \left[(2\ell+1)^2 - s^2 \right] a^2 \langle r^{s-2} \rangle = 0,$$

where $a\equiv \frac{4\pi\epsilon_0\hbar^2}{me^2}$ is the Bohr radius. This relation relates the three different expectation values of r for an electron in the Hydrogen atom state ψ_{nlm} . What are the formulas for $\langle r^{-1} \rangle$, $\langle r \rangle$, $\langle r^2 \rangle$ and $\langle r^3 \rangle$?

Hint: The radial equation can be written as

$$u'' = \left[\frac{\ell(\ell+1)}{r^2} - \frac{2}{ar} + \frac{1}{n^2 a^2} \right] u.$$

Use it to express $\int dr (ur^s u'')$ in terms of $\langle r^s \rangle$, $\langle r^{s-1} \rangle$ and $\langle r^{s-2} \rangle$. Then integrate by parts to reduce the second derivative. Show that $\int dr (ur^s u') = -(s/2)\langle r^{s-1}\rangle$, and $\int dr (u'r^{s}u') = -[2/(s+1)] \int dr (u''r^{s+1}u').$

3. The nucleus of an hydrogen-like atom is usually treated as a point charge Ze. Using the first order perturbation theory, estimate the error due to this approximation by assuming that the nucleus is a sphere of radius R with a uniform charge distribution. Calculate the numerical result for the ground state of an hydrogen atom taking $R=0.9\times 10^{-15}$ m.

Hint: The potential energy of the electron in the field of homogenous sphere of radius ${\cal R}$ and total charge ${\cal Z}e$ is

$$V(r) = \frac{Ze^2}{4\pi\epsilon_0} \left\{ \begin{array}{c} \frac{1}{2R} \left(\frac{r^2}{R^2} - 3 \right), & r \leq R \\ -\frac{1}{r}, & r \geq R \end{array} \right.$$

Can you derive this, too? It comes out from Maxwell's first equation.

4. Consider a free, non-relativistic particle (in one dimension) with mass m located in x=a at t=0, that is, the particle is described by the wave function

$$\Psi(t=0,x) = \langle x | \Psi(t=0) \rangle = \delta(x-a)$$

in coordinate space. Find the time evolution of Ψ for t>0. In other words, compute $\langle x|\Psi(t)\rangle$. The result is known as the free particle **propagator**.

Hint: Recall that the time evolution of a state $|\Psi\rangle$ is given by $|\Psi(t)\rangle=e^{-\frac{i}{\hbar}\hat{H}t}|\Psi(t=0)\rangle$.