1. (a) Show that the Fock space 1-particle operator, $F^{(1)}=\sum_{\mu, \nu}\langle\mu| \hat{f}|\nu\rangle a_{\mu}^{\dagger} a_{\nu}$, acts as

$$
F^{(1)}\left|1_{\nu_{1}} 1_{\nu_{2}} \cdots 1_{\nu_{N}}\right\rangle=\sum_{\mu} \sum_{i=1}^{N}\langle\mu| \hat{f}\left|\nu_{i}\right\rangle\left|1_{\nu_{1}} 1_{\nu_{2}} \cdots 0_{\nu_{i}} 1_{\mu} \cdots 1_{\nu_{N}}\right\rangle .
$$

in a system of N fermions.
(b) Taking the ansatz

$$
F^{(2)}=K \sum_{\mu \mu^{\prime} \nu \nu^{\prime}}\left\langle\mu \mu^{\prime}\right| \hat{g}\left|\nu \nu^{\prime}\right\rangle a_{\mu}^{\dagger} a_{\mu^{\prime}}^{\dagger} a_{\nu} a_{\nu^{\prime}}
$$

for the Fock space 2-particle operator, and requiring that

$$
F^{(2)}\left|1_{\nu_{1}} 1_{\nu_{2}}\right\rangle=\sum_{\mu_{1} \mu_{2}}\left\langle\mu_{1} \mu_{2}\right| \hat{g}\left|\nu_{1} \nu_{2}\right\rangle\left|1_{\mu_{1}} 1_{\mu_{2}}\right\rangle,
$$

show that $K=-\frac{1}{2}$.
2. The fermionic pair distribution function $g_{\sigma \sigma^{\prime}}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ for the ground state $|F\rangle$ of the Fermi gas is defined as

$$
\left(\frac{n}{2}\right)^{2} g_{\sigma \sigma^{\prime}}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \equiv\langle F| \Psi^{\dagger}(\mathbf{x}, \sigma) \Psi^{\dagger}\left(\mathbf{x}^{\prime}, \sigma^{\prime}\right) \Psi\left(\mathbf{x}^{\prime}, \sigma^{\prime}\right) \Psi(\mathbf{x}, \sigma)|F\rangle
$$

where $\Psi(\mathrm{x}, \sigma) \mathrm{s}$ are fermionic field operators. Show that
(a) If $\sigma \neq \sigma^{\prime}$, then

$$
g_{\sigma \sigma^{\prime}}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=1 .
$$

(b) If $\sigma=\sigma^{\prime}$, then

$$
g_{\sigma \sigma^{\prime}}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=1-\left[G_{\sigma}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]^{2},
$$

where $G_{\sigma}\left(\mathbf{x}-\mathrm{x}^{\prime}\right)$ is the single-particle correlator

$$
G_{\sigma}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \equiv \frac{2}{n}\langle F| \Psi^{\dagger}(\mathbf{x}, \sigma) \Psi\left(\mathbf{x}^{\prime}, \sigma\right)|F\rangle .
$$

3. Consider a system of N identical bosons, spin- 0 , enclosed to a box with volume V, in the state

$$
|\phi\rangle=\left|n_{\mathbf{p}_{0}} n_{\mathbf{p}_{1}} n_{\mathbf{p}_{2}}, \ldots\right\rangle \quad n_{\mathbf{p}_{i}}=0,1,2,3, \ldots
$$

(a) Show that

$$
\langle\phi| \Psi^{\dagger}(\mathbf{x}) \Psi(\mathbf{x})|\phi\rangle=\frac{N}{V} \equiv n .
$$

(b) Show that the pair distribution function is $(\mathbf{k} \equiv \mathbf{p} / \hbar)$

$$
\begin{aligned}
n^{2} g\left(\mathbf{x}-\mathbf{x}^{\prime}\right) & \equiv\langle\phi| \Psi^{\dagger}(\mathbf{x}) \Psi^{\dagger}\left(\mathbf{x}^{\prime}\right) \Psi\left(\mathbf{x}^{\prime}\right) \Psi(\mathbf{x})|\phi\rangle \\
& =n^{2}+\left|\frac{1}{V} \sum_{k} e^{-i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} n_{\mathbf{k}}\right|^{2}-\frac{1}{V^{2}} \sum_{k} n_{\mathbf{k}}\left(n_{\mathbf{k}}+1\right) .
\end{aligned}
$$

(c) Consider two examples of $g\left(\mathrm{x}-\mathrm{x}^{\prime}\right)$:
(i) Suppose all the bosons occupy the same state, $n_{\mathbf{p}_{0}}=N$. Show that

$$
n^{2} g\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\frac{N(N-1)}{V^{2}}
$$

(ii) Suppose the particles are distributed over many momentum values with Gaussian distribution

$$
n_{\mathbf{p}}=\frac{(2 \pi)^{3} n}{(\sqrt{\pi} \Delta)^{3}} e^{-\left(\mathbf{k}-\mathbf{k}_{0}\right)^{2} / \Delta^{2}}
$$

Show that if the density of particles n, and the width Δ of the momentum distribution are held fixed, then, in the limit of large volume V, the pair distribution function is given by

$$
n^{2} g\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=n^{2}\left(1+e^{-\frac{\Delta^{2}}{2}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}}\right)
$$

Sketch the behaviour of $g\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ as a function of $\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$. Can you see the bosonic nature of the particles showing up in $g\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$?
4. Suppose the Hamilton operator for system of N fermions (in a box with volume V) is of the form

$$
H=\sum_{i=1}^{N} \frac{\hat{\mathbf{p}}_{i}^{2}}{2 m}+\sum_{i<j} V_{2}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right),
$$

which is invariant in translations. Show that in this case the plane-waves

$$
\varphi_{\mathbf{k}, s}(\mathbf{x}, \sigma)=\frac{1}{\sqrt{V}} e^{i \mathbf{x} \cdot \mathbf{k}} \delta_{\sigma s}
$$

are solutions for the Hartree-Fock equations. Compute the single-particle energies in terms of Fouries components $V_{\mathbf{q}}$ of V_{2} :

$$
V_{2}(\mathbf{x})=\sum_{q} e^{i \mathbf{q} \cdot \mathbf{k}} V_{\mathbf{q}} .
$$

Compute also the total energy in terms of spins and momenta of the occupied states.

