1. Show that the Lagrangian

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi-V_{I}\left(\phi^{*} \phi\right)
$$

gives the equations of motion boxed on page 233 in the lecture notes for the complex field $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$ and it's conjugate field ϕ^{*}. In addition derive the corresponding equations of motion for the component fields ϕ_{1} and ϕ_{2} also boxed on page 233.
2. Starting from the definition of Maxwell's field tensor $F^{\mu \nu} \equiv \partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$, convince yourself that the matrix representation of $F^{\mu \nu}$ given on page 234 in the lecture notes is correct. Show also that Maxwell's equations (i) and (iv) can be written as $\partial_{\mu} F^{\mu \nu}=j^{\nu}$. For the four-current j^{ν} show that $\partial_{\nu} j^{\nu}=0$.
3. Show that the equations of motion given by the Lagrangian

$$
\mathcal{L}_{E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-j_{\mu} A^{\mu}
$$

are $\partial_{\mu} F^{\mu \nu}=j^{\nu}$ i.e. the Maxwell equations (i) and (iv).
4. Verify that the 2-dimensional rotation matrices

$$
O(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

form a group. This group is called $S O(2)$. Show that the rotation matrices $O(\theta)$ can be written in the form $e^{\theta \tau}$, where

$$
\tau=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

(Hint: Series expansion.) Determine the generators and the dimension of this group.
5. (a) Show that unitary $N \times N$-matrices form a group i.e. they satisfy the conditions (i-iv) on page 240 in the lecture notes. This group is called $U(N)$. Show that the complex phase factors $e^{i \alpha}$, where α is real form the group $U(1)$.
(b) Show that unitary $N \times N$-matrices with determinant 1 also form a group. This group is called $S U(N)$ and is a subgroup of $U(N)$.

