- 1. The spherical harmonic functions Y_{lm} are eigenfuctions of parity with eigenvalues $P_a(-1)^l$. Show, using the definition for Y_{lm} , that the reflection $\vec{x} \to -\vec{x}$ results in $Y_{lm}(\pi \theta, \varphi + \pi) = (-1)^l Y_{lm}(\theta, \varphi)$.
- 2. Let's practise the addition of angular momenta.
 - a) Using the Clebsch-Gordan table at http://pdg.lbl.gov/2009/reviews/rpp2009-rev-clebsch-gordan-coefs.pdf form the states $|J_1 J_2 J M\rangle_c$ in the coupled basis, when
 - i) $j_1 = j_2 = \frac{1}{2}$ ii) $j_1 = j_2 = 1$.
 - b) Let's couple three angular momenta $J_1 = J_2 = J_3 = \frac{1}{2}$. Find all possible states in the coupled basis $|J_1 J_2 (J_{12}) J_3; J M\rangle_c$, where you have first coupled J_1 and J_2 . Verify the dimensional decomposition $2 \otimes 2 \otimes 2 = 4 \oplus 2 \oplus 2$ given on page 140(iii) in the lectures.
- 3. The $p\bar{p}$ annihilation happens at rest through the S-states. Explain using parity why the process $p\bar{p} \to \pi^0\pi^0$ cannot happen through the strong interaction.
- 4. The $\eta(547)$ meson is a spin-0 particle which decays through the electromagnetic (or strong) interaction to three pions:

$$\eta \to \pi^0 + \pi^0 + \pi^0$$

$$\eta \to \pi^+ + \pi^- + \pi^0$$
.

Figure out the parity P_{η} of the η and explain why the decay processes

$$\eta \to \pi^+ + \pi^-$$

$$\eta \to \pi^0 + \pi^0$$

are not observed.

- 5. a) If a meson M decays via the strong interaction to two pions $\pi^+\pi^-$, show that then the relation $P_M = C_M = (-1)^{J_M}$ holds.
 - b) The mesons $\rho^0(770)$ and $f_2^0(1275)$ decay through the strong interaction to a pion pair $\pi^+\pi^-$. The ρ has spin $J_{\rho}=1$ and the f_2 has spin $J_{f_2}=2$. Are the decays $\rho^0 \to \pi^0 \gamma$ and $f_2^0 \to \pi^0 \gamma$ possible through the electromagnetic interaction? Are the decays $\rho^0 \to \pi^0 \pi^0$ and $f_2^0 \to \pi^0 \pi^0$ possible through any interaction?