Particle Physics, Part 2

Heikki Mäntysaari

University of Jyväskylä, Department of Physics

2019

Recall from Wednesday

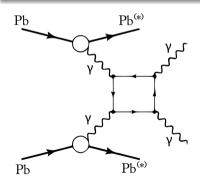
- Classical \Rightarrow quantum field theory: 2nd quantizations, fields \rightarrow operators
- Interaction terms in Lagrangian \to basic vertices of the theory. E.g. $\lambda/4!\phi^4=4$ point interaction $\sim\lambda$
- Peturbation theory: expansion on couplings (e.g. λ)
- Lagrangian ⇒ Feynman diagrams
- ullet QED: Require invariance in *local U(1)* transforms $\psi o e^{ilpha({\sf x})}\psi$
- ullet Requires new field A^{μ} , which is the gauge field of classical ED, now photon field
- Basic vertex: electron-electron-photon

Quiz

At the LHC, the process $\gamma\gamma\to\gamma\gamma$ (light-by-light scattering) is recently observed (CMS, arXiv:1810.04602, Phys. Lett. B797, 134826). Draw the most likely diagram that contributes to this process. How does the cross section scale with QED coupling constant α ?

Quiz

At the LHC, the process $\gamma\gamma\to\gamma\gamma$ (light-by-light scattering) is recently observed (CMS, arXiv:1810.04602, Phys. Lett. B797, 134826). Draw the most likely diagram that contributes to this process. How does the cross section scale with QED coupling constant α ?



- Photon-electron vertex $\sim e$
- ullet Graph (amplitude) $\sim e^4$
- Cross section $\sim \text{graph}^2 \sim \text{e}^8 \sim \alpha^4 \sim \frac{1}{137^4} \sim 10^{-9}.$
- Note: classically forbidden!

(Nuclei emit photons, let's not consider that part here. Momentum arrows missing)

Using the Feynman rules, write down the invariant amplitude $-i\mathcal{M}_{fi}$ for the process $e^+(p_a)e^-(p_b) \to \mu^+(p_c)\mu^-(p_d)$ (leading order contribution, first draw the diagram).

Using the Feynman rules, write down the invariant amplitude $-i\mathcal{M}_{fi}$ for the process $e^+(p_a)e^-(p_b) \to \mu^+(p_c)\mu^-(p_d)$ (leading order contribution, first draw the diagram).

$$-i\mathcal{M}_{fi}(e^{+}(p_{a})e^{-}(p_{b}) \to \mu^{+}(p_{c})\mu^{-}(p_{d}))$$

$$= \bar{u}(p_{d})(-ie\gamma_{\mu})v(p_{c})\frac{-ig^{\mu\nu}}{(p_{a}+p_{b})^{2}}\bar{v}(p_{a})(-ie\gamma_{\nu})u(p_{b})$$

Note $q = p_a + p_b = p_c + p_d$

Recall from Monday

- Basic QED interactions from $ee\gamma$ vertex
- Full QED Lagrangian, with electron, muon, tau + quarks
- QED tests, excellent agreement with collider + low E (e.g. magnetic moment) tests
- Derivation of Feynman rules in a specific case (time dependent perturbation theory)
 - Start from the end of a fermion line
 - Outgoing particle: $\bar{u}(p)$
 - Incoming particle u(p)
 - Outgoing antiparticle v(p)
 - Incoming antipartile $\bar{v}(p)$
 - Photon propagator $-ig^{\mu\nu}/g^2$

 - Vertex $-ie\gamma_{\mu}$.

We just computed the leptonic tensors in the massless case. Let's prepare for the next exercises (Ex. 10, prob. 1): Calculate the contributions proportional to the muon mass m (or m^2) from the Leptonic tensor

$$L_{\text{muon}}^{\mu\nu} = \frac{1}{2} \text{Tr}[(\not p_d + m) \gamma^{\mu} (\not p_b + m) \gamma^{\nu}]$$

We just computed the leptonic tensors in the massless case. Let's prepare for the next exercises (Ex. 10, prob. 1): Calculate the contributions proportional to the muon mass m (or m^2) from the Leptonic tensor

$$L_{\text{muon}}^{\mu\nu} = \frac{1}{2} \text{Tr}[(\not p_d + m) \gamma^{\mu} (\not p_b + m) \gamma^{\nu}]$$

As a trace of odd number of gamma matices vanishes, ${\rm Tr}[p_d\gamma^\mu m\gamma^\nu]={\rm Tr}\ [m\gamma^\mu p_d\gamma^\nu]=0.$ Thus we only get

$$\frac{1}{2}\mathrm{Tr}\left[m\gamma^{\mu}m\gamma^{\nu}\right] = \frac{m^2}{2}\mathrm{Tr}[\gamma^{\mu}\gamma^{\nu}] = 2m^2g^{\mu\nu}.$$

Quiz

Verify the transformation for the gauge field components shown on p. 312. Let's only consider the term $UA_{\mu}U^{-1}$ (the term $\sim (\partial_{\mu}U)U^{-1}$ will give $\partial_{\mu}\alpha$ term). Using an infinitesimal transformation $U(x)=e^{i\alpha^a(x)t^a}=1+\alpha^a(x)t^a+\mathcal{O}(\alpha^2)$ verify (recall: $A_{\mu}=A_{\mu}^at^a$)

$$UA_{\mu}U^{-1} = A_{\mu}^{a}t^{a} - f^{abc}t^{a}\alpha^{b}A_{\mu}^{c}$$

Quiz

Verify the transformation for the gauge field components shown on p. 312. Let's only consider the term $UA_{\mu}U^{-1}$ (the term $\sim (\partial_{\mu}U)U^{-1}$ will give $\partial_{\mu}\alpha$ term). Using an infinitesimal transformation $U(x)=e^{i\alpha^a(x)t^a}=1+\alpha^a(x)t^a+\mathcal{O}(\alpha^2)$ verify (recall: $A_{\mu}=A_{\mu}^at^a$)

$$UA_{\mu}U^{-1} = A_{\mu}^{a}t^{a} - f^{abc}t^{a}\alpha^{b}A_{\mu}^{c}$$

Neglecting terms $\sim \mathcal{O}(\alpha^2)$ we get

$$\begin{split} UA_{\mu}U^{-1} &= (1 + i\alpha^{b}t^{b})A_{\mu}^{a}t^{a}(1 - i\alpha^{c}t^{c}) = A_{\mu}^{a}t^{a} + iA_{\mu}^{a}\alpha^{b}t^{b}t^{a} - iA_{\mu}^{a}\alpha^{c}t^{a}t^{c} \\ &= A_{\mu}^{a}t^{a} + iA_{\mu}^{a}\alpha^{b}t^{b}t^{a} - iA_{\mu}^{a}\alpha^{b}t^{a}t^{b} = A_{\mu}^{a}t^{a} + iA_{\mu}^{a}\alpha^{b}[t^{b}, t^{a}] \\ &= A_{\mu}^{a}t^{a} + iA_{\mu}^{a}\alpha^{b}if^{bac}t^{c} = (A_{\mu}^{a} - f^{bca}t^{a}\alpha^{b}A_{\mu}^{c})t^{a} \end{split}$$

Where, to get the laste quation, we exchanged $c \leftrightarrow a$ in the last term. The final result is obtained by noticing that $f^{bca} = -f^{bac} = f^{abc}$.

6/6