SIMPLE TESTS FOR MD PROGRAM

Units: LJ units, unit for energy = €; unit of length = o; unit of mass = particle mass (= 1)
Volume of fcc cubic unit cell = a* , volume per atom = a° / 4, density =4 / a°.

You can do the following simple tests to make sure your MD code is working.

1. Set the density of your fcc lattice (lattice parameter a) equal to sqrt(2)*ro (ro =
2"® corresponds to the bottom of LJ potential well where the energy = 1¢) and
impose a short cutoff of potential between 1* and 2nd neighbours in fcc lattice (e.g.
a cutoff value of 1.26). (What is then the scaled density (in units of 6°)?) With
this setup you should be going just over the nearest neighbour pairs in the
potential calculation loop and the potential energy per atom in a perfect fcc lattice
with periodic boundary conditions is = (1/2) * 12 € =-6 €. (Note that the short
cutoff'is only for testing the potential calculation for a static fcc lattice, you
cannot do reliable MD runs with this cutoff since the large discontinuity of forces
messes up the dynamics. I recommend a cutoff value of 2.5 o for real dynamics.)

2. Check visually (VMD) that your fcc lattice looks OK. A handy way (and one
quantity to analyze structure changes of your system in dynamic runs) is to
implement an order parameter calculation. Let’s define an order parameter for
fce lattice:

Sk = (1/N) >j=inexp(ik.rj) where k= (2n/a) (1,-1,1)

is one of the possible vectors in the reciprocal lattice of fcc and a is the lattice
parameter corresponding the density of your system. If your fcc lattice is correct,
| Sk|=1. (Hint: write exp-function with cosine and sine.)

3. Set the potential cutoff to 2.56. This means you have to create an fcc lattice of at
least 256 atoms. ( 4 unit cells per side). Run a short MD simulation with a time
step of 0.001 to 0.004. Your system should start to evolve in a constant total
energy surface, and the value of the total energy is set by your initial velocities
(kinetic energy). Print out the total energy as a function of time step and plot it.
The graphs on the next page show results for a simulation for 256 atoms, initial
density = 1.2 6 , initial velocities corresponding to temperature of 0.95 ¢, time
step = 0.002.



T T T T T T T T
'U:\Teaching\FY SM350\md-devel\out256_rho1.2_t0.95ts0.002.dat' us ($1):($5) ———
'U:\Teaching\FY SM350\md-devel\out256_rho1.2_t0.95ts0.002.dat’ us ($1):($2)
-6.2 -
6.4 4
N\
-6.6 / \ i
/ \
/ \
/ \
-6.8 — )
" \\
\ ~__ //// T -
-7 ~ 4
72+ i
7.4 / i
-7.6 / 4
-7.8
0 20 40 60 80 100 120 140 160 180 200

x-axis: time in time steps, y-axis, total energy per atom (green), potential energy per
atom (red)
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4. (this test maybe become slow for MATLAB users, if it is prohibitively slow you
can skip) The theoretical limit of the potential energy per atom in a static infinite
fcc lattice (lattice parameter a = sqrt(2)*1.09 = 1.54149.., density = 1.092032...) with
Lennard-Jones interactions is -8.606863... &. (For a related discussion see e.g. Ashcroft-
Mermin, Chapter 20, p. 401). See how close to this value you can get by increasing the
cutoff stepwise and re-calculating the potential energy of a static fcc lattice as a function
of the cutoff radius (remember that you have to always make sure that the length of your
simulation cell is at least twice the potential cutoff).



