
LECTURE 2   28.3.2006  
 
FINITE DIFFERENCE METHODS AND MD ALGORITHMS 
 
 
 
EULER AND ODHO 
 
The simplest method: Euler, time step h, advance positions and velocities 
from one instant of time t to t+h as  
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A simple model system: one-dimensional harmonic oscillator (ODHO) 
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Euler equations for ODHO 
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Define the initial state:  {x(0),v(0)}, apply algorithm  an (approximate) 
discretized trajectory {x(t),v(t)} by increments of time by h 
 
 
 
NUMERICAL ERRORS 
 
A. Truncation error (algorithm) 
 
Taylor series 
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has to be truncated at some n   truncation error  O(hn+1), convention: 
algorithmic order = n  (e.g. 1 for Euler) 
 
 
B. Round-off error 
 
Originates from the application of the algorithm in computer. It is affected 
by many factors such as the chosen computational accuracy (single, 
double precision), order of the statements in the code (  optimization of 
code by the compiler,…), approximations made by the computer in 
evaluating mathematical functions (e.g. trigonometric functions from their 
series),… 
 
C. Local and global errors 
 
Local error is generated during a single time step. 
Global error is accumulated during the full length of the simulation. 
It is easy to show (by using the mean-value theorem, Haile p. 152) that the 
global error is always of the order (n-1) if the local error is of the order (n). 
 
 
 
ALGORITHMIC STABILITY AND STABILITY ANALYSIS 
 
An unstable algorithm accumulates errors from single time steps such that 
after a certain period, the trajectory cannot be reliably calculated any more. 
 
A stable algorithm does not accumulate errors. 
 
Most MD algorithms are conditionally stable, i.e. stable for all h < hcritical  
 
Example: take ODHO and Euler’s algorithm 
 
Let  
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be the calculated and “real” positions and velocities at time t. 
 
Define errors in the same way: 
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The errors will accumulate through the Euler algorithm: 
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Define a stability matrix  
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If matrix A has an eigenvalue   λ such that  | λ | > 1 , the algorithm is 
unstable. 
 21 ωλ −±= hNow          | A – λI  | = 0     
 
So, Euler algorithm is ALWAYS unstable for ODHO independent of h !! 
 
A simple modification to Euler’s algorithm makes it conditionally stable: 
 
(for positions, sum up 1. order Taylor backwards in time!)  
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The stability matrix is now  
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2<hωwhich has    | λ | < 1  when  
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VERLET AND “VELOCITY-VERLET” ALGORITHMS 
 
Good practical, stable choices for MD 
 
For positions, sum up Taylor series for x(t+h) + x(t-h) up to 3rd order 
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  +  Effectively third order algorithm (3rd order Taylor terms cancel out) 
  
   -  Multi-step algorithm (no self-starting) 
 
   -  No explicit term for velocities, they may be estimated by  
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A recommended version is the so-called velocity form: 
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Identical with the original algorithm (check by reducing velocities) 
  
   +  One-step algorithm (self-starting) 
 
   +  Positions and velocities known at the same instant of time. 
 
Practical application in a predictor-corrector way: 
 

1. define x(0), v(0), a(0) 
2. advance x to x(h) 
3. calculate “half-step velocity” (or “predicted velocity”) 
                       vpred =  v(0) + h * a(0) / 2 
4. calculate potential and forces by using x(h);  a(h) = F(x(h)) / m 
5. calculate the corrected velocity   v(h) = vpred + h * a(h) / 2 
6. return to 2. Advance x to x(2h) and so on… 
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In the sample code below, steps 2 and 3 are done in VERLET in the first call, 
step 5 in the second call. 
 
 
 (real*8 RX(N), RY(N), RZ(N), etc… ) 
     
        DO MDSTEP = 1, NSTEPS 
           CALL VERLET(1,DT,N,K,RX,RY,RZ,VX,VY,VZ,AX,AY,AZ) 
           CALL LJONES(BOX,RCUT,V,VC,W,N,RX,RY,RZ,FX,FY,FZ) 
           AX(:) = FX(:) / MASS 
           AY(:) = FY(:) / MASS     
           AZ(:) = FZ(:) / MASS 
           CALL VERLET(2,DT,N,K,RX,RY,RZ,VX,VY,VZ,AX,AY,AZ) 

…other code… calculation of desired properties at this time 
tep… periodic output of data and trajectory… s

   ENDDO 
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