
LECTURE 2 28.3.2006

FINITE DIFFERENCE METHODS AND MD ALGORITHMS

EULER AND ODHO

The simplest method: Euler, time step h, advance positions and velocities
from one instant of time t to t+h as

)()()(
)()()(

tvhtvhtv
txhtxhtx

&

&

+=+
+=+

A simple model system: one-dimensional harmonic oscillator (ODHO)

kxxV
dx
dxFkxxV −=−==)()(;

2
1)(2

Euler equations for ODHO

mktxhtvhtv
thvtxhtx

/ ;)()()(
)()()(

22 =−=+

+=+

ωω

Define the initial state: {x(0),v(0)}, apply algorithm an (approximate)
discretized trajectory {x(t),v(t)} by increments of time by h

NUMERICAL ERRORS

A. Truncation error (algorithm)

Taylor series

)(
!

1)(
0

tx
dx
d

n
htx n

n

n
∑
∞

=

=+

 1

has to be truncated at some n truncation error O(hn+1), convention:
algorithmic order = n (e.g. 1 for Euler)

B. Round-off error

Originates from the application of the algorithm in computer. It is affected
by many factors such as the chosen computational accuracy (single,
double precision), order of the statements in the code (optimization of
code by the compiler,…), approximations made by the computer in
evaluating mathematical functions (e.g. trigonometric functions from their
series),…

C. Local and global errors

Local error is generated during a single time step.
Global error is accumulated during the full length of the simulation.
It is easy to show (by using the mean-value theorem, Haile p. 152) that the
global error is always of the order (n-1) if the local error is of the order (n).

ALGORITHMIC STABILITY AND STABILITY ANALYSIS

An unstable algorithm accumulates errors from single time steps such that
after a certain period, the trajectory cannot be reliably calculated any more.

A stable algorithm does not accumulate errors.

Most MD algorithms are conditionally stable, i.e. stable for all h < hcritical

Example: take ODHO and Euler’s algorithm

Let

)(ja)(');(ja)(' tvtvtxtx

be the calculated and “real” positions and velocities at time t.

Define errors in the same way:

)()(')();()(')(tvtvtetxtxte vx −=−=

 2

The errors will accumulate through the Euler algorithm:

)()()(

)()()(
2 tehtehte

thetehte

xvv

vxx

ω−=+

+=+

Define a stability matrix

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

==+

1
1

),(;)()(

2h
h

A

eeetAehte T
vx

ω

If matrix A has an eigenvalue λ such that | λ | > 1 , the algorithm is
unstable.
 21 ωλ −±= hNow | A – λI | = 0

So, Euler algorithm is ALWAYS unstable for ODHO independent of h !!

A simple modification to Euler’s algorithm makes it conditionally stable:

(for positions, sum up 1. order Taylor backwards in time!)

)()()(
)]()([)()(

tvhtvhtv
htvhtvtxhtx

&

&

+=+
++=+

The stability matrix is now

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=
1

1
22

22

h
hh

A
ω
ω

2<hωwhich has | λ | < 1 when

 3

VERLET AND “VELOCITY-VERLET” ALGORITHMS

Good practical, stable choices for MD

For positions, sum up Taylor series for x(t+h) + x(t-h) up to 3rd order

)()()(2)(2 txhhtxtxhtx &&+−−=+

 + Effectively third order algorithm (3rd order Taylor terms cancel out)

 - Multi-step algorithm (no self-starting)

 - No explicit term for velocities, they may be estimated by

h
htxhtxtv

2
)()()(−−+

≈

A recommended version is the so-called velocity form:

[])()(
2
1)()(

)(
2
1)()()(2

htatahtvhtv

tahthvtxhtx

+++=+

++=+

Identical with the original algorithm (check by reducing velocities)

 + One-step algorithm (self-starting)

 + Positions and velocities known at the same instant of time.

Practical application in a predictor-corrector way:

1. define x(0), v(0), a(0)
2. advance x to x(h)
3. calculate “half-step velocity” (or “predicted velocity”)
 vpred = v(0) + h * a(0) / 2
4. calculate potential and forces by using x(h); a(h) = F(x(h)) / m
5. calculate the corrected velocity v(h) = vpred + h * a(h) / 2
6. return to 2. Advance x to x(2h) and so on…

 4

In the sample code below, steps 2 and 3 are done in VERLET in the first call,
step 5 in the second call.

 (real*8 RX(N), RY(N), RZ(N), etc…)

 DO MDSTEP = 1, NSTEPS
 CALL VERLET(1,DT,N,K,RX,RY,RZ,VX,VY,VZ,AX,AY,AZ)
 CALL LJONES(BOX,RCUT,V,VC,W,N,RX,RY,RZ,FX,FY,FZ)
 AX(:) = FX(:) / MASS
 AY(:) = FY(:) / MASS
 AZ(:) = FZ(:) / MASS
 CALL VERLET(2,DT,N,K,RX,RY,RZ,VX,VY,VZ,AX,AY,AZ)

…other code… calculation of desired properties at this time
tep… periodic output of data and trajectory… s

 ENDDO

 5

