LECTURE 2 28.3.2006

FINITE DIFFERENCE METHODS AND MD ALGORITHMS

EULER AND ODHO

The simplest method: Euler, time step h, advance positions and velocities from one instant of time t to $t+h$ as

$$
\begin{aligned}
& x(t+h)=x(t)+h \dot{x}(t) \\
& v(t+h)=v(t)+h \dot{v}(t)
\end{aligned}
$$

A simple model system: one-dimensional harmonic oscillator (ODHO)

$$
V(x)=\frac{1}{2} k x^{2} ; \quad F(x)=-\frac{d}{d x} V(x)=-k x
$$

Euler equations for ODHO

$$
\begin{aligned}
& x(t+h)=x(t)+h v(t) \\
& v(t+h)=v(t)-h \omega^{2} x(t) ; \omega^{2}=k / m
\end{aligned}
$$

Define the initial state: $\{x(0), v(0)\}$, apply algorithm \rightarrow an (approximate) discretized trajectory $\{x(t), v(t)\}$ by increments of time by h

NUMERICAL ERRORS

A. Truncation error (algorithm)

Taylor series

$$
x(t+h)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n}}{d x^{n}} x(t)
$$

has to be truncated at some $\mathrm{n} \rightarrow$ truncation error $\mathrm{O}\left(\mathrm{h}^{\mathrm{n+1}}\right)$, convention: algorithmic order = \mathbf{n} (e.g. 1 for Euler)

B. Round-off error

Originates from the application of the algorithm in computer. It is affected by many factors such as the chosen computational accuracy (single, double precision), order of the statements in the code (\leftarrow optimization of code by the compiler,...), approximations made by the computer in evaluating mathematical functions (e.g. trigonometric functions from their series),...
C. Local and global errors

Local error is generated during a single time step. Global error is accumulated during the full length of the simulation. It is easy to show (by using the mean-value theorem, Haile p. 152) that the global error is always of the order ($\mathrm{n}-1$) if the local error is of the order (n).

ALGORITHMIC STABILITY AND STABILITY ANALYSIS

An unstable algorithm accumulates errors from single time steps such that after a certain period, the trajectory cannot be reliably calculated any more.

A stable algorithm does not accumulate errors.
Most MD algorithms are conditionally stable, i.e. stable for all $h<\boldsymbol{h}_{\text {critical }}$
Example: take ODHO and Euler's algorithm
Let

$$
x^{\prime}(t) \text { ja } x(t) ; v^{\prime}(t) \text { ja } v(t)
$$

be the calculated and "real" positions and velocities at time t.
Define errors in the same way:

$$
e_{x}(t)=x^{\prime}(t)-x(t) ; e_{v}(t)=v^{\prime}(t)-v(t)
$$

The errors will accumulate through the Euler algorithm:

$$
\begin{aligned}
& e_{x}(t+h)=e_{x}(t)+h e_{v}(t) \\
& e_{v}(t+h)=e_{v}(t)-h \omega^{2} e_{x}(t)
\end{aligned}
$$

Define a stability matrix

$$
\begin{aligned}
& e(t+h)=A e(t) ; e=\left(e_{x}, e_{v}\right)^{T} \\
& A=\left(\begin{array}{cc}
1 & h \\
-\omega^{2} h & 1
\end{array}\right)
\end{aligned}
$$

If matrix A has an eigenvalue λ such that $|\lambda|>1$, the algorithm is unstable.

Now

$$
|A-\lambda I|=0 \rightarrow \lambda=1 \pm h \sqrt{-\omega^{2}}
$$

So, Euler algorithm is ALWAYS unstable for ODHO independent of \mathbf{h} !! A simple modification to Euler's algorithm makes it conditionally stable: (for positions, sum up 1. order Taylor backwards in time!)

$$
\begin{aligned}
& x(t+h)=x(t)+[v(t)+h \dot{v}(t)] h \\
& v(t+h)=v(t)+h \dot{v}(t)
\end{aligned}
$$

The stability matrix is now

$$
A=\left(\begin{array}{cc}
1-\omega^{2} h^{2} & h \\
-\omega^{2} h^{2} & 1
\end{array}\right)
$$

which has $|\lambda|<1$ when
$|\omega h|<2$

VERLET AND "VELOCITY-VERLET" ALGORITHMS

Good practical, stable choices for MD
For positions, sum up Taylor series for $\mathbf{x}(\mathrm{t}+\mathrm{h})+\mathbf{x}(\mathrm{t}-\mathrm{h})$ up to $3^{\text {rd }}$ order

$$
x(t+h)=2 x(t)-x(t-h)+h^{2} \ddot{x}(t)
$$

+ Effectively third order algorithm (${ }^{\text {rd }}$ order Taylor terms cancel out)
- Multi-step algorithm (no self-starting)
- No explicit term for velocities, they may be estimated by

$$
v(t) \approx \frac{x(t+h)-x(t-h)}{2 h}
$$

A recommended version is the so-called velocity form:

$$
\begin{aligned}
& x(t+h)=x(t)+h v(t)+\frac{1}{2} h^{2} a(t) \\
& v(t+h)=v(t)+\frac{1}{2} h[a(t)+a(t+h)]
\end{aligned}
$$

Identical with the original algorithm (check by reducing velocities)

+ One-step algorithm (self-starting)
+ Positions and velocities known at the same instant of time.
Practical application in a predictor-corrector way:

1. define $x(0), v(0), a(0)$
2. advance x to $x(h)$
3. calculate "half-step velocity" (or "predicted velocity")

$$
v_{\text {pred }}=v(0)+h * a(0) / 2
$$

4. calculate potential and forces by using $x(h) ; a(h)=F(x(h)) / m$
5. calculate the corrected velocity $v(h)=v_{\text {pred }}+h * a(h) / 2$
6. return to 2 . Advance x to $x(2 h)$ and so on...

In the sample code below, steps 2 and 3 are done in VERLET in the first call, step 5 in the second call.

```
(real*8 RX(N), RY(N), RZ(N), etc... )
    DO MDSTEP = 1, NSTEPS
        CALL VERLET(1,DT,N,K,RX,RY,RZ,VX,VY,VZ,AX,AY,AZ)
        CALL LJONES(BOX,RCUT,V,VC,W,N,RX,RY,RZ,FX,FY,FZ)
        AX(:) = FX(:) / MASS
        AY(:) = FY(:) / MASS
        AZ(:) = FZ(:) / MASS
        CALL VERLET(2,DT,N,K,RX,RY,RZ,VX,VY,VZ,AX,AY,AZ)
            ...other code... calculation of desired properties at this time
            step... periodic output of data and trajectory...
    ENDDO
```

