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1 Introduction

1.1 Quantum Mechanical Many-Electron Problem

The material world of everyday experience, as studied by chemistry and con-
densed-matter physics, is built up from electrons and a few (or at most a few
hundred) kinds of nuclei . The basic interaction is electrostatic or Coulombic:
An electron at position r is attracted to a nucleus of charge Z at R by the
potential energy —Z/|r — R|, a pair of electrons at r and r' repel one another
by the potential energy 1/|r —r’|, and two nuclei at R and R’ repel one another
as Z'Z/|R — R/|. The electrons must be described by quantum mechanics, while
the more massive nuclei can sometimes be regarded as classical particles. All
of the electrons in the lighter elements, and the chemically important valence
electrons in most elements, move at speeds much less than the speed of light,
and so are non-relativistic.

In essence, that is the simple story of practically everything. But there is
still a long path from these general principles to theoretical prediction of the
structures and properties of atoms, molecules, and solids , and eventually to
the design of new chemicals or materials. If we restrict our focus to the impor-
tant class of ground-state properties, we can take a shortcut through density
functional theory.

These lectures present an introduction to density functionals for non-relati-
vistic Coulomb systems. The reader is assumed to have a working knowledge
of quantum mechanics at the level of one-particle wavefunctions (r) [1]. The
many-electron wavefunction ¥(ry,rs,...,ry) [2] is briefly introduced here, and
then replaced as basic variable by the electron density n(r). Various terms of
the total energy are defined as functionals of the electron density, and some for-
mal properties of these functionals are discussed. The most widely-used density
functionals - the local spin density and generalized gradient approximations -
are then introduced and discussed. At the end, the reader should be prepared
to approach the broad literature of quantum chemistry and condensed-matter
physics in which these density functionals are applied to predict diverse proper-
ties: the shapes and sizes of molecules, the crystal structures of solids, binding
or atomization energies, ionization energies and electron affinities, the heights of
energy barriers to various processes, static response functions, vibrational fre-
quencies of nuclei, etc. Moreover, the reader’s approach will be an informed and
discerning one, based upon an understanding of where these functionals come
from, why they work, and how they work.

These lectures are intended to teach at the introductory level, and not to
serve as a comprehensive treatise. The reader who wants more can go to several
excellent general sources [3, 4, 5] or to the original literature. Atomic units (in
which all electromagnetic equations are written in cgs form, and the fundamental
constants h, e?, and m are set to unity) have been used throughout.
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1.2 Summary of Kohn-Sham Spin-Density Functional Theory

This introduction closes with a brief presentation of the Kohn-Sham [6] spin-
density functional method , the most widely-used method of electronic-structure
calculation in condensed-matter physics and one of the most widely-used meth-
ods in quantum chemistry. We seek the ground-state total energy E and spin
densities n4(r), ny(r) for a collection of N electrons interacting with one an-
other and with an external potential v(r) (due to the nuclei in most practical
cases). These are found by the selfconsistent solution of an auxiliary (fictitious)
one-electron Schrodinger equation:

(=577 + o)+ ulalin) + o2 g mlin) ) Yo (0) = antbon 0) + (1)
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Here o =7 or | is the z-component of spin, and « stands for the set of remain-
ing one-electron quantum numbers. The effective potential includes a classical

Hartree potential
n(r')
u(lse) = [t 2L g

n(r) = nq4(r) +ny(r) , (4)

and a multiplicative  spin-dependent  exchange-correlation potential
vZ.([nt,my];r), which is a functional of the spin densities. The step function
O(u — ca0) in Eq. (2) ensures that all Kohn-Sham spin orbitals with €., < u are
singly occupied, and those with €., > p are empty. The chemical potential u is
chosen to satisfy

/d3rn(r) =N . (5)

Because Egs. (1) and (2) are interlinked, they can only be solved by iteration to
selfconsistency.
The total energy is

E =Tiny,ny) + /d37‘n(r)v(r) + Uln] + Exc[ny,ny] (6)

where

nTani] Z 20 Eaa' wa0'| - _v2|wa0'> (7)

is the non-interacting kinetic energy , a functional of the spin densities because
(as we shall see) the external potential v(r) and hence the Kohn-Sham orbitals
are functionals of the spin densities. In our notation,

(B Oltbas) = /dw;;a(r)(iww(r) . ®)
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The second term of Eq. (6) is the interaction of the electrons with the external
potential. The third term of Eq. (6) is the Hartree electrostatic self-repulsion of
the electron density

Uln] = %/d%/d%'% . 9)

The last term of Eq. (6) is the exchange-correlation energy , whose functional
derivative (as explained later) yields the exchange-correlation potential

0E
el mlim) = £ (10)
Not displayed in Eq. (6), but needed for a system of electrons and nuclei, is the
electrostatic repulsion among the nuclei. . is defined to include everything else
omitted from the first three terms of Eq. (6).

If the exact dependence of Ey. upon nt and n; were known, these equa-
tions would predict the exact ground-state energy and spin-densities of a many-
electron system. The forces on the nuclei , and their equilibrium positions, could
then be found from —%.

In practice, the exchange-correlation energy functional must be approxi-
mated. The local spin density [6, 7] (LSD) approximation has long been popular

in solid state physics:

BP0 ny] = /di*‘rn(r)exc(m(r),nur)) , (11)

where exc(n+,n) is the known [8, 9, 10] exchange-correlation energy per particle
for an electron gas of uniform spin densities n4, n;. More recently, generalized
gradient approximations (GGA’s) [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] have
become popular in quantum chemistry:

ESSAny n)] :/d3rf(nT,n¢,VnT,Vn¢) . (12)

The input exc(n4,ny) to LSD is in principle unique, since there is a possible
system in which ny and n) are constant and for which LSD is exact. At least in
this sense, there is no unique input f(n4,ny, Vng, Vny) to GGA. These lectures
will stress a conservative “philosophy of approximation” [20, 21], in which we
construct a nearly-unique GGA with all the known correct formal features of
LSD, plus others.

The equations presented here are really all that we need to do a practical
calculation for a many-electron system. They allow us to draw upon the intuition
and experience we have developed for one-particle systems. The many-body ef-
fects are in Uln] (trivially) and Eyc[ns,ny] (less trivially), but we shall also
develop an intuitive appreciation for FEy..

While E. is often a relatively small fraction of the total energy of an atom,
molecule, or solid (minus the work needed to break up the system into separated
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electrons and nuclei), the contribution from FE. is typically about 100 % or
more of the chemical bonding or atomization energy (the work needed to break
up the system into separated neutral atoms). Ey. is a kind of “glue”, without
which atoms would bond weakly if at all. Thus, accurate approximations to
E. are essential to the whole enterprise of density functional theory. Table 1
shows the typical relative errors we find from selfconsistent calculations within
the LSD or GGA approximations of Egs. (11) and (12). Table 2 shows the mean
absolute errors in the atomization energies of 20 molecules when calculated by
LSD, by GGA, and in the Hartree-Fock approximation . Hartree-Fock treats
exchange exactly, but neglects correlation completely. While the Hartree-Fock
total energy is an upper bound to the true ground-state total energy, the LSD
and GGA energies are not.

Table 1. Typical errors for atoms, molecules, and solids from selfconsistent Kohn-Sham
calculations within the LSD and GGA approximations of Eqgs. (11) and (12). Note that
there is typically some cancellation of errors between the exchange (Ex) and correlation
(E.) contributions to Ex.. The “energy barrier” is the barrier to a chemical reaction
that arises at a highly-bonded intermediate state.

Property LSD GGA

E. 5 % (not negative enough) 0.5 %

E. 100 % (too negative) 5 %

bond length 1 % (too short) 1 % (too long)
structure overly favors close packing more correct
energy barrier 100 % (too low) 30 % (too low)

Table 2. Mean absolute error of the atomization energies for 20 molecules, evaluated
by various approximations. (1 hartree = 27.21 eV) (From Ref. [20].)

Approximation Mean absolute error (eV)
Unrestricted Hartree-Fock 3.1 (underbinding)

LSD 1.3 (overbinding)

GGA 0.3 (mostly overbinding)
Desired “chemical accuracy” 0.05

In most cases we are only interested in small total-energy changes associated
with re-arrangements of the outer or valence electrons , to which the inner or
core electrons of the atoms do not contribute. In these cases, we can replace each
core by the pseudopotential [22] it presents to the valence electrons, and then
expand the valence-electron orbitals in an economical and convenient basis of
plane waves. Pseudopotentials are routinely combined with density functionals.
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Although the most realistic pseudopotentials are nonlocal operators and not
simply local or multiplication operators, and although density functional theory
in principle requires a local external potential, this inconsistency does not seem
to cause any practical difficulties.

There are empirical versions of LSD and GGA, but these lectures will only
discuss non-empirical versions. If every electronic-structure calculation were done
at least twice, once with nonempirical LSD and once with nonempirical GGA,
the results would be useful not only to those interested in the systems under
consideration but also to those interested in the development and understanding
of density functionals.

2 Wavefunction Theory

2.1 Wavefunctions and Their Interpretation

We begin with a brief review of one-particle quantum mechanics [1]. An electron

has spin s = % and z-component of spin o = +% (1) or —% ({). The Hamiltonian
or energy operator for one electron in the presence of an external potential v(r)

18
h = —%W +o(r) . (13)

The energy eigenstates ¥, (r,o) and eigenvalues €, are solutions of the time-
independent Schrodinger equation

}A“/)oz(ra U) = go/‘/}a(r; U) ) (14)

and [, (r,0)|?d®r is the probability to find the electron with spin o in volume
element d®r at r, given that it is in energy eigenstate 1. Thus

S [ riawol = i) =1 15

Since h commutes with 5., we can choose the 1, to be eigenstates of §., i.e., we
can choose o =1 or | as a one-electron quantum number.

The Hamiltonian for NV electrons in the presence of an external potential v(r)
is [2]

=y e LY
e 2t Yy ey -y
i= 1= )
= T + f)vext + ‘/};e . (16)

The electron-electron repulsion Vee sums over distinct paigs of different electrons.
The states of well-defined energy are the eigenstates of H:

H(r101,...,tyoN) = EpOy(ri0o0,...,tyoN) (17)
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where k is a complete set of many-electron quantum numbers; we shall be inter-
ested mainly in the ground state or state of lowest energy, the zero-temperature
equilibrium state for the electrons.

Because electrons are fermions, the only physical solutions of Eq. (17) are
those wavefunctions that are antisymmetric [2] under exchange of two electron
labels 7 and j:

U(ri01,...,5i04,...,Tj05,...,ENON) =

—W(I‘lo'l,...,I‘J‘Uj,...,l‘iai,...,I‘NUN) . (18)

There are N! distinct permutations of the labels 1,2, ..., N, which by Eq. (18) all
have the same |?|2. Thus N!|¥(r101,...,rxon)|?d®ry ... d3ry is the probability
to find any electron with spin o; in volume element d®r;, etc., and

1
~ > /d37‘1.../d37‘NN!|W(r101,...,rNUN)|2:/|LD|2 =(Pw)=1.
01...0N

(19)

We define the electron spin density n, (r) so that n,(r)d®r is the probability

to find an electron with spin ¢ in volume element d3r at r. We find n,(r) by
integrating over the coordinates and spins of the (IV — 1) other electrons, i.e.,

1
ne(r) = m Z /d37“2.../d3TNN!|Sp(I‘O',I'20'2,...,I‘NO'N)|2

=N Z /d3r2.../d3rN|W(ra,r202,...,rNUN)|2 . (20)
02...0N
Equations (19) and (20) yield

Z/d3rn,,(r) =N . (21)

Based on the probability interpretation of n,(r), we might have expected the
right-hand side of Eq. (21) to be 1, but that is wrong; the sum of probabilities
of all mutually-exclusive events equals 1, but finding an electron at r does not
exclude the possibility of finding one at r’, except in a one-electron system.
Eq. (21) shows that n,(r)d®r is the average number of electrons of spin o in
volume element d3r. Moreover, the expectation value of the external potential
is

R N
(Vext) = (lev(ri)lw = /dBTn(r)v(r) ; (22)

with the electron density n(r) given by Eq. (4).
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2.2 Wavefunctions for Non-Interacting Electrons

As an important special case, consider the Hamiltonian for N non-interacting

electrons:
N

- 1
Hnon = __v2 7 . 23
> (v ) (23)
The eigenfunctions of the one-electron problem of Egs. (13) and (14) are spin
orbitals which can be used to construct the antisymmetric eigenfunctions ¢ of
Hnon:
I{nondS = l;nondS . (24)

Let ¢ stand for r;,0; and construct the Slater determinant or antisymmetrized
product [2]

\/— Y (1) ay (P ey (P2) ... ay (PN) (25)
where the quantum label a; now includes the spin quantum number o. Here P

is any permutation of the labels 1,2,..., N, and (=1)¥ equals +1 for an even
permutation and —1 for an odd permutation. The total energy is

Euon = €ay + €as + -+ Can (26)

and the density is given by the sum of |, (r)|%. If any «; equals any «; in
Eq. (25), we find ¢ = 0, which is not a normalizable wavefunction. This is the
Pauli exclusion principle : two or more non-interacting electrons may not occupy
the same spin orbital.

As an example, consider the ground state for the non-interacting helium atom
(N = 2). The occupied spin orbitals are

Yi(r,0) = Pis(r)dos (27)
Pa(r, 0) = P1s(r)ds, (28)

and the 2-electron Slater determinant is

_ 1 hi(rr,00) ha(re, 00)
21,2 = \/ﬁ Y1 (r2, 02) Pa(rs, 02)

1
= ¢1S (1‘1)1/)15 (1‘2)75 (601,T602,i - 60’27T60'1,~L) ) (29)

which is symmetric in space but antisymmetric in spin (whence the total spin is
S =0).

If several different Slater determinants yield the same non-interacting energy
Enon, then a linear combination of them will be another antisymmetric eigenstate
of Hnon More generally, the Slater-determinant eigenstates of Hnon define a
complete orthonormal basis for expansion of the antisymmetric eigenstates of
H, the interacting Hamiltonian of Eq. (16).
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2.3 Wavefunction Variational Principle

The Schrédinger equation (17) is equivalent to a wavefunction variational prin-
ciple [2]: Extremize (¥|H|¥) subject to the constraint (¥|¥) = 1, i.e., set the
following first variation to zero:

o { (@) /@w)} =0 . (30)

The ground state energy and wavefunction are found by minimizing the expres-
sion in curly brackets.

The Rayleigh-Ritz method finds the extrema or the minimum in a restricted
space of wavefunctions. For example, the Hartree-Fock approximation to the
ground-state wavefunction is the single Slater determinant & that minimizes
(®|H|®)/($|®). The configuration-interaction ground-state wavefunction [23] is
an energy-minimizing linear combination of Slater determinants, restricted to
certain kinds of excitations out of a reference determinant. The Quantum Monte
Carlo method typically employs a trial wavefunction which is a single Slater de-
terminant times a Jastrow pair-correlation factor [24]. Those widely-used many-
electron wavefunction methods are both approximate and computationally de-
manding, especially for large systems where density functional methods are dis-
tinctly more efficient.

The unrestricted solution of Eq. (30) is equivalent by the method of Lagrange
multipliers to the unconstrained solution of

5 {(mmw) - E(W|!I/>} =0, (31)

ie.,

(6W|(H — E)|w) =0 . (32)

Since 0¥ is an arbitrary variation, we recover the Schrédinger equation (17).
Every eigenstate of H is an extremum of (¥|H|¥)/(¥|¥) and vice versa.

The wavefunction variational principle implies the Hellmann-Feynman and
virial theorems below and also implies the Hohenberg-Kohn [25] density func-
tional variational principle to be presented later.

2.4 Hellmann-Feynman Theorem

Often the Hamiltonian H, depends upon a parameter A, and we want to know
how the energy E\ depends upon this parameter. For any normalized variational
solution ¥, (including in particular any eigenstate of H)), we define

Ey = (U\|H\|¥y) . (33)

Then

dE d . OH
NN + (0| =2

™ v L T (34)
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The first term of Eq. (34) vanishes by the variational principle, and we find the
Hellmann-Feynman theorem [26]

dEy

dh

Eq. (35) will be useful later for our understanding of Ey.. For now, we shall
use Eq. (35) to derive the electrostatic force theorem[26]. Let r; be the position

of the i-th electron, and Ry the position of the (static) nucleus I with atomic
number Z;. The Hamiltonian

Z v2+22|r—R1|+ ;Zh_u ZZIRIZI—ZEWI

OH\

= (T[S 2 1) (35)

i=1 I J#I
(36)
depends parametrically upon the position Ry, so the force on nucleus I is
OE OH
—— = (V|- |V
o= (v -] o)
Z[(I‘—R[) Z[Z](R[_R])
= [d®rn(r)=———Z22 + _ 37
[t ZRE S A (37)

J£T

just as classical electrostatics would predict. Eq. (37) can be used to find the
equilibrium geometries of a molecule or solid by varying all the R; until the
energy is a minimum and —90E/0R; = 0. Eq. (37) also forms the basis for
a possible density functional molecular dynamics , in which the nuclei move
under these forces by Newton’s second law. In principle, all we need for either
application is an accurate electron density for each set of nuclear positions.

2.5 Virial Theorem

The density scaling relations to be presented in section 4, which constitute impor-
tant constraints on the density functionals, are rooted in the same wavefunction
scaling that will be used here to derive the virial theorem [26].

Let ¥(ry,...,ry) be any extremum of (¥|H|¥) over normalized wavefunc-
tions, i.e., any eigenstate or optimized restricted trial wavefunction (where ir-
relevant spin variables have been suppressed). For any scale parameter v > 0,
define the uniformly-scaled wavefunction

!p'y(rla"'arN) = ’)/3N/2W(’}/I‘1,...,’)/I'N) (38)

and observe that
(O, |0,) = () =1 . (39)

The density corresponding to the scaled wavefunction is the scaled density

ny(r) =¥°n(yr) , (40)
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which clearly conserves the electron number:

/d3rn7(r) - /d3rn(r) N (41)

~ > 1 leads to densities n.(r) that are higher (on average) and more contracted
than n(r), while ¥ < 1 produces densities that are lower and more expanded.

Now consider what happens to (H) = (T + V') under scaling. By definition
of ¥,

d N N
— (&, |T + V|& =0 42
BT V) (42)
But T is homogeneous of degree -2 in r, so
(@, |T|2,) = +*(@|T|P) | (43)
and Eq. (42) becomes
d
2W|TW) + (0, [V]0)| =0, (44)
dy y=1
or
N A
. Vv
2T) = (Y i 50) =0 (45)
=1 !
If the potential energy V is homogeneous of degree n, i.e., if
Viyri,...,yen) =" V(rs,...,rN) (46)
then
(@ V| &) =y (@ V]2) (47)

and Eq. (44) becomes simply
20|T|@) — n(@|V|F) =0 . (48)

For example, n = —1 for the Hamiltonian of Eq. (36) in the presence of a single
nucleus, or more generally when the Hellmann-Feynman forces of Eq. (37) vanish
for the state ¥.
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3 Definitions of Density Functionals

3.1 Introduction to Density Functionals

The many-electron wavefunction ¥(ri01,...,ryoy) contains a great deal of
information - all we could ever have, but more than we usually want. Because it
is a function of many variables, it is not easy to calculate, store, apply or even
think about. Often we want no more than the total energy E (and its changes),
or perhaps also the spin densities n4(r) and n (r), for the ground state. As we
shall see, we can formally replace ¥ by the observables n+ and nj as the basic
variational objects.

While a function is a rule which assigns a number f(z) to a number z, a
functional is a rule which assigns a number F[f] to a function f. For example,
h[¥] = (W|H|¥) is a functional of the trial wavefunction ¥, given the Hamiltonian
H. Uln] of Eq. (9) is a functional of the density n(r), as is the local density
approximation for the exchange energy:

ELXPAR] = A, [BPro(r)?/? . (49)

The functional derivative §F/én(r) tells us how the functional F[n] changes
under a small variation én(r):

oF = /d% (52€«)> on(r) . (50)

For example,

SELPA — Ax/d3r {[n(r) +6n(r)]4/3 _ n(r)4/3}

4
= Ax/d3r§n(r)1/35n(r) )
S0
(SE'LDA 4
—X = A- /3 51
5n(0) 37(r) (51)
Similarly,
oU[n]

= ; 52
Sni) = u(lrkin) (52)
where the right hand side is given by Eq. (3). Functional derivatives of various
orders can be linked through the translational and rotational symmetries of
empty space [27].
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3.2 Density Variational Principle

We seek a density functional analog of Eq. (30). Instead of the original derivation
of Hohenberg, Kohn and Sham [25, 6] , which was based upon “reductio ad
absurdum”, we follow the “constrained search” approach of Levy [28], which is
in some respects simpler and more constructive.

Eq. (30) tells us that the ground state energy can be found by minimizing
(|H|®) over all normalized, antisymmetric N-particle wavefunctions:

E = mspin(W|ﬁ|W) : (53)

We now separate the minimization of Eq. (53) into two steps. First we consider
all wavefunctions ¥ which yield a given density n(r), and minimize over those
wavefunctions:

min (¥ |H|W) = min(!l7|T+f/ee|W)+/d3rv(r)n(r) : (54)

V—n v—n

where we have exploited the fact that all wavefunctions that yield the same n(r)
also yield the same (¥|Vex|?). Then we define the universal functional

Fln] = min (|7 + Vee | 0) = (0T + Ve #77") (55)
—n
where ¥t is that wavefunction which delivers the minimum for a given n.
Finally we minimize over all N-electron densities n(r):

E = min B, [1]
_ m&n{F[n] + /d3rv(r)n(r)} , (56)

where of course v(r) is held fixed during the minimization. The minimizing
density is then the ground-state density.

The constraint of fixed N can be handled formally through introduction of
a Lagrange multiplier u:

) {F[n] + /d37‘v(r)n(r) - u/d3rn(r)} =0, (57)

which is equivalent to the Euler equation

OF
on(r)

+o(r)=p . (58)

u is to be adjusted until Eq. (5) is satisfied. Eq. (58) shows that the external
potential v(r) is uniquely determined by the ground state density (or by any one
of them, if the ground state is degenerate).

The functional F[n] is defined via Eq. (55) for all densities n(r) which are
“N-representable”, i.e., come from an antisymmetric N-electron wavefunction.
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We shall discuss the extension from wavefunctions to ensembles in section 4.5.
The functional derivative § F'/dn(r) is defined via Eq. (58) for all densities which
are “v-representable”, i.e., come from antisymmetric N-electron ground-state
wavefunctions for some choice of external potential v(r).

This formal development requires only the total density of Eq. (4), and not
the separate spin densities n4(r) and ny(r). However, it is clear how to get to a
spin-density functional theory: just replace the constraint of fixed n in Eq. (54)
and subsequent equations by that of fixed ny and ny. There are two practical
reasons to do so: (1) This extension is required when the external potential is
spin-dependent, i.e., v(r) — v,(r), as when an external magnetic field couples
to the z-component of electron spin. (If this field also couples to the current
density j(r), then we must resort to a current-density functional theory.) (2)
Even when v(r) is spin-independent, we may be interested in the physical spin
magnetization (e.g., in magnetic materials). (3) Even when neither (1) nor (2)
applies, our local and semi-local approximations (Egs. (11) and (12)) typically
work better when we use n4 and n| instead of n.

3.3 Kohn-Sham Non-Interacting System

For a system of non-interacting electrons, Ve, of Eq. (16) vanishes so F[n] of
Eq. (55) reduces to

Tuln) = pin (@ |12) = (@3 T|8") (59)
Although we can search over all antisymmetric N-electron wavefunctions in
Eq. (59), the minimizing wavefunction ™" for a given density will be a non-
interacting wavefunction (a single Slater determinant or a linear combination of
a few) for some external potential V; such that

0T,
on(r)

as in Eq. (58). In Eq. (60), the Kohn-Sham potential vs(r) is a functional of
n(r). If there were any difference between u and ps, the chemical potentials for
interacting and non-interacting systems of the same density, it could be absorbed
into vs(r). We have assumed that n(r) is both interacting and non-interacting
v-representable.

Now we define the exchange-correlation energy Fy.[n] by

+vs(r) =p , (60)

Fln] = Ts[n] + Uln] + Exc[n] , (61)
where U[n] is given by Eq. (9). The Euler equations (58) and (60) are consistent

with one another if and only if

oU[n] . 0E.
on(r)  on(r) °

Thus we have derived the Kohn-Sham method [6] of section 1.2.

vs(r) = v(r) + (62)
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The Kohn-Sham method treats Ti[n] exactly, leaving only Ey.[n] to be ap-
proximated. This makes good sense, for several reasons: (1) Ty is typically a
very large part of the energy, while Ey. is a smaller part. (2) Ty is largely re-
sponsible for density oscillations of the shell structure and Friedel types, which
are accurately described by the Kohn-Sham method. (3) E is somewhat better
suited to the local and semi-local approximations than is Ty[n], for reasons to
be discussed later. The price to be paid for these benefits is the appearance of
orbitals. If we had a very accurate approximation for T directly in terms of n,
we could dispense with the orbitals and solve the Euler equation (60) directly
for n(r).

The total energy of Eq. (6) may also be written as

E=XFW—%ﬁm—UM—/fmwwM%ﬂ+EMM, (63)

where the second and third terms on the right-hand-side simply remove contri-
butions to the first term which do not belong in the total energy. The first term
on the right of Eq. (63), the non-interacting energy Epon, is the only term that
appears in the semi-empirical Hiickel theory [26]. This first term includes most
of the electronic shell structure effects which arise when Ti[n] is treated exactly
(but not when Ty[n] is treated in a continuum model like the Thomas-Fermi
approximation or the gradient expansion).

3.4 Exchange Energy and Correlation Energy
Ey.[n] is the sum of distinct exchange and correlation terms:
Eyc[n] = Ex[n] + Ec[n] , (64)
where [29] o '
Ex[n] = (@3 |[Vee|23"") = Uln] (65)

When ™" is a single Slater determinant, Eq. (65) is just the usual Fock integral
applied to the Kohn-Sham orbitals, i.e., it differs from the Hartree-Fock exchange
energy only to the extent that the Kohn-Sham orbitals differ from the Hartree-
Fock orbitals for a given system or density (in the same way that T[n] differs
from the Hartree-Fock kinetic energy). We note that

(BT + Voo 83") = Tu[n] + Uln] + Ex[n] (66)

A

and that, in the one-electron (Vee = 0) limit [9],
Bnl= U]  (N=1) . (67)
The correlation energy is
Ec[n] = Fln] - {Ti[n] + U[n] + Ex[n]}
= (T + Vee o) = (B0 T + Vee | 2,") (68)

n
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Since ¥ is that wavefunction which yields density n and minimizes (T + V;e),
Eq. (68) shows that
Ecn] <0 . (69)
Since #™* is that wavefunction which yields density n and minimizes (T),
Eq. (68) shows that E.[n] is the sum of a positive kinetic energy piece and a
negative potential energy piece. These pieces of E. contribute respectively to
the first and second terms of the virial theorem, Eq. (45). Clearly for any one-
electron system [9]
E.n]=0 (N=1). (70)
Egs. (67) and (70) show that the exchange-correlation energy of a one-elec-
tron system simply cancels the spurious self-interaction U[n]. In the same way,
the exchange-correlation potential cancels the spurious self-interaction in the
Kohn-Sham potential [9]

6EX = —ul{{n|;r =
Sn(r) ([n];r) (N=1), (71)
0E. .
=0 V=D (72)
Thus
6Exc _ _1 —
s = s W=D (73)

The extension of these one-electron results to spin-density functional theory is
straightforward, since a one-electron system is fully spin-polarized.

3.5 Coupling-Constant Integration

The definitions (65) and (68) are formal ones, and do not provide much intuitive
or physical insight into the exchange and correlation energies, or much guidance
for the approximation of their density functionals. These insights are provided
by the coupling-constant integration [30, 31, 32, 33| to be derived below.

Let us define ¥™™?* as that normalized, antisymmetric wavefunction which
yields density n(r) and minimizes the expectation value of 7'+ AVe., where we
have introduced a non-negative coupling constant A. When \ = 1, @minA jg grmin
the interacting ground-state wavefunction for density n. When A = 0, g™ jg
#™in the non-interacting or Kohn-Sham wavefunction for density n. Varying A
at fixed n(r) amounts to varying the external potential vy (r): At A = 1, vx(r)
is the true external potential, while at A = 0 it is the Kohn-Sham effective
potential vs(r). We normally assume a smooth, “adiabatic connection” between
the interacting and non-interacting ground states as A is reduced from 1 to 0.

Now we write Egs. (64), (65) and (68) as

Ey.[n]

— <Wmin7)\|i—v+)\‘>;e|wmin,>\> _ <Wmin7)\|fv+)\‘>;e|wmin,)\> _ U[n]

1
= / AL (@i T AT o) — U] (74)
o dx
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The Hellmann-Feynman theorem of section 2.4 allows us to simplify Eq. (74) to
1
Bulnl = [ @R Vo) - U] (75)
0

Eq. (75) “looks like” a potential energy; the kinetic energy contribution to Ex.
has been subsumed by the coupling-constant integration. We should remember,
of course, that only A = 1 is real or physical. The Kohn-Sham system at A =0,
and all the intermediate values of A, are convenient mathematical fictions.

To make further progress, we need to know how to evaluate the N-electron
expectation value of a sum of one-body operators like T, or a sum of two-body
operators like Vee. For this purpose, we introduce one-electron (p;) and two-
electron (p2) reduced density matrices [34] :

pi(r'o,ro) =N Z
2.

/d37“2.../d3rNW*(r'a,r202,...,rNaN)W(ra,rgag,...,rNUN) ,  (76)

p2(t,r) =N(N -1) Y /d37‘3.../d3rN|W(r'01,r02,...,rNUN)|2 . (77)
01...0N

From Eq. (20),
no(r) = py(x0,x0) (78)

Clearly also

10 0
= Z/d3r— > am(r'U,I‘U) ) (79)

/d3 /d3 ’inrﬂ) . (80)

We interpret the positive number po(r’,r)d®r’'d3r as the joint probability of
finding an electron in volume element d3r’ at r’, and an electron in d®r at r. By
standard probability theory, this is the product of the probability of finding an
electron in d3r (n(r)d3r) and the conditional probability of finding an electron
in d3r', given that there is one at r (ny(r,r’)d3r’):

p2(r',r) = n(r)nay(r,r') . (81)

By arguments similar to those used in section 2.1, we interpret na(r,r') as the
average density of electrons at r’, given that there is an electron at r. Clearly
then

/d3r'n2(r,r’) =N-1. (82)
For the wavefunction ¥™inA | we write

n2(r7 rl) = n(rl) + ni\c(l‘, rl) ) (83)
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an equation which defines n)_(r,r'), the density at r’ of the exchange-correlation
hole [33] about an electron at r. Egs. (5) and (83) imply that

/d%'ni‘c(r,r') =-1, (84)

which says that, if an electron is definitely at r, it is missing from the rest of the
system.

Because the Coulomb interaction 1/u is singular as v = |r — r/| — 0, the
exchange-correlation hole density has a cusp [35, 34] around u = 0:

E/dgunA (r,r+u)

du | “ar = A[n(r) + ng(r,0)] (85)

u=0

where [ df2,/(4n) is an angular average. This cusp vanishes when A\ = 0, and
also in the fully-spin-polarized and low-density limits, in which all other electrons
are excluded from the position of a given electron: n)_(r,r) = —n(r).

We can now rewrite Eq. (75) as [33]

nxcrr

1
ﬁxc(r,r'):/ dn.(r,r") (87)
0

is the coupling-constant averaged hole density. The exchange-correlation energy
is just the electrostatic interaction between each electron and the coupling-
constant-averaged exchange-correlation hole which surrounds it. The hole is
created by three effects: (1) self-interaction correction, a classical effect which
guarantees that an electron cannot interact with itself, (2) the Pauli exclusion
principle, which tends to keep two electrons with parallel spins apart in space,
and (3) the Coulomb repulsion, which tends to keep any two electrons apart
in space. Effects (1) and (2) are responsible for the exchange energy, which is
present even at A = 0, while effect (3) is responsible for the correlation energy,
and arises only for A # 0.

If wminA=0 ig 5 single Slater determinant, as it typically is, then the one- and
two-electron density matrices at A = 0 can be constructed explicitly from the
Kohn-Sham spin orbitals 1), (r):

pi\ 0 I‘ g, I'U 20 Ea[,— (rl)¢av (I‘) » (88)

where

pa="(x',r) = n(r)n(r') + n(r)ny(r,x') (89)
where

ny(r,r') = nd70( Z |p1 o, ra)| (90)

XcC
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is the exact exchange-hole density. Eq. (90) shows that

nx(r,r') S 0 ’ (91)

/d3 /d3 r)ns(r, 1) (92)
Ce-r]

is also negative, and can be written as the sum of up-spin and down-spin con-
tributions:

so the exact exchange energy

E.=El+E! <0 . (93)

Eq. (84) provides a sum rule for the exchange hole:

/d3r'nx(r,r') =-1. (94)
Egs. (90) and (78) show that the “on-top” exchange hole density is [36]

ni(r) + ni(r)

nx(rar) = n(r) )

(95)

which is determined by just the local spin densities at position r - suggesting
a reason why local spin density approximations work better than local density
approximations.

The correlation hole density is defined by

Axe (v, ') = ny (v, v") + A (r, 1)) | (96)

and satisfies the sum rule
/d3r'ﬁc(r,r') —0 | (97)

which says that Coulomb repulsion changes the shape of the hole but not its
integral. In fact, this repulsion typically makes the hole deeper but more short-
ranged, with a negative on-top correlation hole density:

fie(r,r) <0 . (98)
The positivity of Eq. (77) is equivalent via Egs. (81) and (83) to the inequality
7_1)(C(r7rl) Z _n(rl) ’ (99)

which asserts that the hole cannot take away electrons that weren’t there initially.
By the sum rule (97), the correlation hole density 7i.(r,r') must have positive
as well as negative contributions. Moreover, unlike the exchange hole density
n.(r,r'), the exchange-correlation hole density n,.(r,r’) can be positive.
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To better understand Fy., we can simplify Eq. (86) to the “real-space ana-
lysis” [37]

Eycln] = % /000 du 47ru2<ﬁLu(u)> , (100)

where
(Pige(u)) = %/d:"rn(r) / %ﬁxc(r,er u) (101)

is the system- and spherical-average of the coupling-constant-averaged hole den-
sity. The sum rule of Eq. (84) becomes

/OOO du 4mu (Age(u)) = —1 . (102)

As u increases from 0, (ny(u)) rises analytically like (ny(0)) + O(u?), while
(fic(u)) rises like (f.(0)) + O(Ju|) as a consequence of the cusp of Eq. (85).
Because of the constraint of Eq. (102) and because of the factor 1/u in Eq. (100),
E,. typically becomes more negative as the on-top hole density (fix.(u)) gets
more negative.

4 Formal Properties of Functionals

4.1 Uniform Coordinate Scaling

The more we know of the exact properties of the density functionals E,.[n] and
Ti[n], the better we shall understand and be able to approximate these function-
als. We start with the behavior of the functionals under a uniform coordinate
scaling of the density, Eq. (40).

The Hartree electrostatic self-repulsion of the electrons is known exactly
(Eq. (9)), and has a simple coordinate scaling:

Uln,) = § [@m) fa2(ory 202208

v —r'|
1 n(ry)n(r
= 7§/d3r1/d37"1 7|211)_i,11|) =+U[n] , (103)

where ry = yr and r} = yr'.

Next consider the non-interacting kinetic energy of Eq. (59). Scaling all the
wavefunctions ¥ in the constrained search as in Eq. (38) will scale the density as
in Eq. (40) and scale each kinetic energy expectation value as in Eq. (43). Thus
the constrained search for the unscaled density maps into the constrained search
for the scaled density, and [38]

Ti[n,] =" Ti[n] . (104)
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We turn now to the exchange energy of Eq. (65). By the argument of the last
paragraph, @‘T?j“ is the scaled version of #™i", Since also

A A~

V;?e(’yrla"'vrer):rY_l ‘/;e(rly---er) ) (105)
and with the help of Eq. (103), we find [38]
Ey[ny] = vEx[n] . (106)

In the high-density (y — oo) limit, Ts[n,] dominates U[n.] and Ey[n,]. An
example would be an ion with a fixed number of electrons N and a nuclear
charge Z which tends to infinity; in this limit, the density and energy become
essentially hydrogenic, and the effects of U and E, become relatively negligible.
In the low-density (y — 0) limit, U[n,] and Ex[n,] dominate Ts[n,].

We can use coordinate scaling relations to fix the form of a local density
approximation

Fln] = /d3rf(n(r)) . (107)

If F[ny] = APF[n], then

)\_3/d3()\r)f (Pn(Ar)) = )\”/d3rf(n(r)) , (108)
or f(A3n) = AP*3 f(n), whence
f(n) =ntte/3 (109)

For the exchange energy of Eq. (106), p = 1 so Eqgs. (107) and (109) imply
Eq. (49). For the non-interacting kinetic energy of Eq. (104), p = 2 so Egs. (107)
and (109) imply the Thomas-Fermi approximation

Toln] = As/d3rn5/3(r) . (110)

Uln] of Eq. (9) is too strongly nonlocal for any local approximation.

While Ti[n], Uln] and Ex[n] have simple scalings, E.[n] of Eq. (68) does
not. This is because !P,’Z_‘Yi“, the wavefunction which via Eq. (55) yields the scaled
density n.(r) and minimizes the expectation value of T+ ‘A/;e, is not the scaled
wavefunction v3V/2@™in (yry ... yry). The scaled wavefunction yields n.(r)
but minimizes the expectation value of T—l—vf/;e, and it is this latter expectation
value which scales like v2 under wavefunction scaling. Thus [39]

Ecn,) =v*E/"[n] (111)

where Er I [n] is the density functional for the correlation energy in a system for
which the electron-electron interaction is not Vee but v~ V,e.
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To understand these results, let us assume that the Kohn-Sham non-inter-
acting Hamiltonian has a non-degenerate ground state. In the high-density limit
(v = 00), Wmm minimizes just (7)) and reduces to stm Now we treat

i (53[1 521(31«)) (112)

as a weak perturbation [40, 41] on the Kohn-Sham non-interacting Hamiltonian,
and find

|(n] A0} nIAIO |2
B.=Y ———— = (113)
n#0

where the |n) are the eigenfunctions of the Kohn-Sham non-interacting Hamil-
tonian, and |0) is its ground state. Both the numerator and the denominator of
Eq. (113) scale like 42, so [42]

lim E.[n,] = constant . (114)

y—o0

In the low-density limit, !I/m‘“ minimizes just (Vee), and Eq. (68) then shows
that [43]

Edn,) ~ D] (v—0) . (115)
Generally, we have a scaling inequality [38]

En]>vEln]  (r>1) (116)

En]<vEln]  (v<1) . (117)

If we choose a density n, we can plot E.[n,] versus v, and compare the result to
the straight line yE.[n]. These two curves will drop away from zero as -y increases
from zero (with different initial slopes), then cross at v = 1. The convex E.[n-]
will then approach a negative constant as v — oo.

4.2 Local Lower Bounds

Because of the importance of local and semilocal approximations like Eqgs. (11)
and (12), bounds on the exact functionals are especially useful when the bounds
are themselves local functionals.

Lieb and Thirring [44] have conjectured that T[n] is bounded from below by
the Thomas-Fermi functional

Ti[n] > Toln] , (118)

where Ty[n] is given by Eqs. (110) with

Ay = — (3n2)%/3 . (119)
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We have already established that
Ey[n] > Ey[n] > EX7'n] (120)

where the final term of Eq. (120) is the integrand E2.[n] of the coupling-constant
integration of Eq. (75) ,

Ege[n] = (@ Vee [ Y) = Uln] (121)
evaluated at the upper limit A = 1. Lieb and Oxford [45] have proved that
E'[n) > 2.273ELPA(n] | (122)

where ELPA[n] is the local density approximation for the exchange energy,
Eq. (49), with
3

Ax=-1 (3w2)L/3 (123)

4.3 Spin Scaling Relations

Spin scaling relations can be used to convert density functionals into spin-density
functionals.

For example, the non-interacting kinetic energy is the sum of the separate
kinetic energies of the spin-up and spin-down electrons:

Ts[nT,nJ’] = TS[TLT,O] + TS[O,n‘L] . (124)

The corresponding density functional, appropriate to a spin-unpolarized system,
is [46]
Ts[n] = Ts[n/Za n/2] = ZTS[n/Za 0] ) (125)

whence Ti[n/2,0] = $Ti[n] and Eq. (124) becomes
1 1
Ts[nT,ni] = §Ts[2nT] + ETS[ZnJ,] . (126)
Similarly, Eq. (93) implies [46]
1 1
EX[nT,ni] = 5EX[2”T] + §EX[2’I7¢] . (127)

For example, we can start with the local density approximations (110) and (49),
then apply (126) and (127) to generate the corresponding local spin density
approximations.

Because two electrons of anti-parallel spin repel one another Coulombically,
making an important contribution to the correlation energy, there is no simple
spin scaling relation for E..
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4.4 Size Consistency

Common sense tells us that the total energy E and density n(r) for a sys-
tem, comprised of two well-separated subsystems with energies £; and E» and
densities n1(r) and ns(r), must be E = E; + E> and n(r) = nq(r) + na(r).
Approximations which satisfy this expectation, such as the LSD of Eq. (11) or
the GGA of Eq. (12), are properly size consistent [47]. Size consistency is not
only a principle of physics, it is almost a principle of epistemology: How could
we analyze or understand complex systems, if they could not be separated into
simpler components?

Density functionals which are not size consistent are to be avoided. An ex-
ample is the Fermi-Amaldi [48] approximation for the exchange energy,

EFn] = ~Un/N] (128)

where N is given by Eq. (5), which was constructed to satisfy Eq. (67).

4.5 Derivative Discontinuity

In section 3, our density functionals were defined as constrained searches over
wavefunctions. Because all wavefunctions searched have the same electron num-
ber, there is no way to make a number-nonconserving density variation dn(r).
The functional derivatives are defined only up to an arbitrary constant, which
has no effect on Eq. (50) when [d3rén(r) = 0.

To complete the definition of the functional derivatives and of the chemical
potential u, we extend the constrained search from wavefunctions to ensembles
[49, 50] . An ensemble or mixed state is a set of wavefunctions or pure states and
their respective probabilities. By including wavefunctions with different electron
numbers in the same ensemble, we can develop a density functional theory for
non-integer particle number . Fractional particle numbers can arise in an open
system that shares electrons with its environment, and in which the electron
number fluctuates between integers.

The upshot is that the ground-state energy E(N) varies linearly between
two adjacent integers, and has a derivative discontinuity at each integer. This
discontinuity arises in part from the exchange-correlation energy (and entirely
so in cases for which the integer does not fall on the boundary of an electronic
shell or subshell, e.g., for N = 6 in the carbon atom but not for N = 10 in the
neon atom).

By Janak’s theorem [51], the highest partly-occupied Kohn-Sham eigenvalue
ego equals OE/ON = p, and so changes discontinuously [49, 50] at an integer
Z:

-I; (Z-1<N<Z
EHO:{—AZEZ<N<Z+1§ ) (129)
where Iy is the first ionization energy of the Z-electron system (i.e., the least

energy needed to remove an electron from this system), and Ay is the electron
affinity of the Z-electron system (i.e., Az = Iz41). If Z does not fall on the
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boundary of an electronic shell or subshell, all of the difference between —I, and
— Az must arise from a discontinous jump in the exchange-correlation potential
0Ey./0n(r) as the electron number N crosses the integer Z.

Since the asymptotic decay of the density of a finite system with Z electrons
is controlled by Iz, we can show that the exchange-correlation potential tends
to zero as |r| — oo [52]:

0Ex.
=0 (Z-1<N<Z 130
\r|1—r>noo 6’!7,(1‘) ( < < ) ’ ( )
or more precisely
0Ex. 1
i =—- Z-1<N<2Z). 131
\r|1—I>noo on(r) T ( <N<2) (131)

As N increases through the integer Z, 0 Ey./dn(r) jumps up by a positive additive
constant. With further increases in N above Z, this “constant” vanishes, first at
very large |r| and then at smaller and smaller |r|, until it is all gone in the limit
where N approaches the integer Z + 1 from below.

Simple continuum approximations to Ey.[n+,ny], such as the LSD of Eq. (11)
or the GGA of Eq. (12), miss much or all the derivative discontinuity, and can
at best average over it. For example, the highest occupied orbital energy for
a neutral atom becomes approximately —%(IZ + Ayz), the average of Eq. (129)
from the electron-deficient and electron-rich sides of neutrality. We must never
forget, when we make these approximations, that we are fitting a round peg into
a square hole. The areas (integrated properties) of a circle and a square can be
matched, but their perimeters (differential properties) will remain stubbornly
different.

5 Uniform Electron Gas

5.1 Kinetic Energy

Simple systems play an important paradigmatic role in science. For example,
the hydrogen atom is a paradigm for all of atomic physics. In the same way,
the uniform electron gas [24] is a paradigm for solid-state physics, and also for
density functional theory. In this system, the electron density n(r) is uniform
or constant over space, and thus the electron number is infinite. The negative
charge of the electrons is neutralized by a rigid uniform positive background. We
could imagine creating such a system by starting with a simple metal, regarded
as a perfect crystal of valence electrons and ions, and then smearing out the ions
to make the uniform background of positive charge. In fact, the simple metal
sodium is physically very much like a uniform electron gas.

We begin by evaluating the non-interacting kinetic energy (this section) and
exchange energy (next section) per electron for a spin-unpolarized electron gas
of uniform density n. The corresponding energies for the spin-polarized case can
then be found from Egs. (126) and (127).
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By symmetry, the Kohn-Sham potential vs(r) must be uniform or constant,
and we take it to be zero. We impose boundary conditions within a cube of
volume V — o0, i.e., we require that the orbitals repeat from one face of the
cube to its opposite face. (Presumably any choice of boundary conditions would
give the same answer as V — 00.) The Kohn-Sham orbitals are then plane waves
exp(ik - r)/v/V, with momenta or wavevectors k and energies k?/2. The number
of orbitals of both spins in a volume d3k of wavevector space is 2[V/(2m)3]d3k,
by an elementary geometrical argument [53].

Let N =n)V be the number of electrons in volume V. These electrons occupy
the N lowest Kohn-Sham spin orbitals, i.e., those with &k < kp:

N =23 O(ke — k) = 2 dek4 kQ—Vk% 132

=25 bl - =2 [ ke =vaE )

where kp is called the Fermi wavevector. The Fermi wavelength 27 /kp is the

shortest de Broglie wavelength for the non-interacting electrons. Clearly
.

"Tar T dmr3 (133)
where we have introduced the Seitz radius 75 - the radius of a sphere which on
average contains one electron.

The kinetic energy of an orbital is k?/2, and the average kinetic energy per
electron is

2 k2 2y ke k> 3k
(n) = = AN 4k = 2 F 134
ts(n) Nzkje(kp k) N ), dk 4mk? = = =%, (134)
or 3/5 of the Fermi energy. In other notation,
4)2/3
ts(n) = 3(3F2n)2/3 - 3 (Om/4)7" (135)

10 10 72

All of this kinetic energy follows from the Pauli exclusion principle, i.e., from
the fermion character of the electron.

5.2 Exchange Energy

To evaluate the exchange energy, we need the Kohn-Sham one-matrix for elec-
trons of spin o, as defined in Eq. (88):

(=tk - (r +u) exp(ik - r)
vV vV

= (r + uo,ro) = Z O(kr — k) &b
Kk

1 [ A
= dnk? [ == —ik -
@7 s dk 4rk / - exp(—ik - u)
_ 1 he Ak k2 sin(ku)
272 J, ku

_ ki sin(kpu) — kpu cos(kru)
= om (bru)?

(136)
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The exchange hole density at distance u from an electron is, by Eq. (90),

00 + uoro)
n

nx(u) = ; (137)
which ranges from —n/2 at u = 0 (where all other electrons of the same spin
are excluded by the Pauli principle) to 0 (like 1/u*) as u — oco. The exchange
energy per electron is

3

ex(n) = /000 du 2runy(u) = _EkF . (138)

In other notation,

s _ 3 (0m/9

139
47 Ts ( )

3
ex(n) = —E(3w2n)
Since the self-interaction correction vanishes for the diffuse orbitals of the uni-
form gas, all of this exchange energy is due to the Pauli exclusion principle.

5.3 Correlation Energy

Exact analytic expressions for e.(n), the correlation energy per electron of the
uniform gas, are known only in extreme limits. The high-density (rs — 0) limit
is also the weak-coupling limit, in which

ec(n)=colury —cy +corslnrg —cgrs +... (rs = 0) (140)

from many-body perturbation theory [54]. The positive constants ¢y = 0.031091
[54] and ¢; = 0.046644 [55] are known. Eq. (140) does not quite tend to a constant
when ry — 0, as Eq. (114) would suggest, because the excited states of the non-
interacting system lie arbitrarily close in energy to the ground state.

The low-density (rs — 00) limit is also the strong coupling limit in which the
uniform fluid phase is unstable against the formation of a close-packed Wigner
lattice of localized electrons. Because the energies of these two phases remain
nearly degenerate as ry — 0o, they have the same kind of dependence upon r
[56]:

ec(n)%—@+£—l—... (rs = 00) . (141)
T's

The constants dy and d; in Eq. (141) can be estimated from the Madelung
electrostatic and zero-point vibrational energies of the Wigner crystal, respec-

tively. The estimate
9

10
can be found from the electrostatic energy of a neutral spherical cell: just add

the electrostatic self-repulsion 3/575 of a sphere of uniform positive background
(with radius 75) to the interaction —3/2rs between this background and the

do ~ (142)
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electron at its center. The origin of the 7"5_3/2 term in Eq. (141) is also simple:
Think of the potential energy of the electron at small distance u from the center
of the sphere as —3/2rs+ %kuQ, where k is a spring constant. Since this potential
energy must vanish for u ~ ry, we find that k& ~ r2 and thus the zero-point
vibrational energy is 3w/2 = 1.5/k/m ~ r?,

An expression which encompasses both limits (140)and (141) is [§]

1
ec(n) = —2co(l+ ayrs)In |1+ , (143)
200 (Burs’® + Pore + Bari!® + Bar?)
where 1 .
1
= — -—— 144
/31 200 eXp( 260) ’ ( )
B = 2cof3] (145)

The coefficients a; = 0.21370, B3 = 1.6382, and [y = 0.49294 are found by
fitting to accurate Quantum Monte Carlo correlation energies [57] for ry =2, 5,
10, 20, 50, and 100.
The uniform electron gas is in equilibrium when the density n minimizes the
total energy per electron, i.e., when
0
on
This condition is met at s = 4.1, close to the observed valence electron density
of sodium. At any rs, we have

[ts(n) + ex(n) +e.(n)] =0 . (146)

s = o] = 5k (147)
0F 0 1
5n(0) =5 [nex(n)] = —;kF . (148)

Eq. (143) with the parameters listed above provides a representation of
ec(ng,ny) for ny = ny = n/2; other accurate representations are also available
[9, 10]. Eq. (143) with different parameters (co = 0.015545, ¢; = 0.025599, o =
0.20548, B3 = 3.3662, B4 = 0.62517) can represent ec(nt,ny) for ny = n and
n, = 0, the correlation energy per electron for a fully spin-polarized uniform
gas. But we shall need e.(n+,n,) for arbitrary relative spin polarization

_ (ny —mny)
<= (ny +ny) (149)

which ranges from 0 for an unpolarized system to +1 for a fully-spin-polarized
system. A useful interpolation formula, based upon a study of the random phase
approximation, is [10]

Q) I
777(0) (1 =)+ [ec(n,0) (M]f ()¢

= ec(n) + ac(n)¢* + O(¢") (150)

eC(nT7n¢) = eC(n) + ac(n)
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where ; ;
[(A+ QY2+ (1= —2]
= . 151

In Eq. (150), a.(n) is the correlation contribution to the spin stiffness. Roughly
ac(n) = e.(n,0) — e.(n), but more precisely —a.(n) can be parametrized in
the form of Eq. (143) (with co = 0.016887, ¢; = 0.035475, a; = 0.11125, B3 =
0.88026, 34 = 0.49671).

For completeness, we note that the spin-scaling relations (126) and (127)
imply that

[(1+ Q2 + (1= O**]

ex(n,ny) = ex(n) 5 , (152)
5/3 _ ~M\5/3
b(nrny) = ta(n) [(1+¢) —; (1—¢)°/?] (153)

The exchange-hole density of Eq. (137) can also be spin scaled. Expressions for
the exchange and correlation holes for arbitrary rs and ¢ are given in Ref. [58].

5.4 Linear Response

We now discuss the linear response of the spin-unpolarized uniform electron gas
to a weak, static, external potential dv(r). This is a well-studied problem [59],
and a practical one for the local-pseudopotential description of a simple metal
[60].

Because the unperturbed system is homogeneous, we find that, to first order
in dv(r), the electron density response is

on(r) = /d3r'x(|r —r'|)dv(r) (154)
where y is a linear response function. If

dv(r) = dv(q) exp(iq - ) (155)

is a wave of wavevector q and small amplitude dv(q), then Eq. (154) becomes
on(r) = on(q) exp(iq - r), where

dn(q) = x(q)dv(q) , (156)

and
x(@) = /d%exp(—iq-x)xuxn (157)

is the Fourier transform of x(|r—r'|) with respect to x = r—r'. (In Eq. (155), the
real part of the complex exponential exp(ia) = cos(a) + i sin(«) is understood.)
By the Kohn-Sham theorem, we also have

6”((1) = Xs(q)&us (q) ) (158)
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where dvs(q) is the change in the Kohn-Sham effective one-electron potential of
Eq. (62), and
kp
Xs(a) = ——5 F(a/2kr) (159)

is the density response function for the non-interacting uniform electron gas.
The Lindhard function

1 1—2z2
F(z) = =
(@) =35+

1+
1—2x

In ‘ (160)

equals 1 — 2%2/3 — z*/15 as * — 0, 1/2 at x = 1, and 1/(3z?%) + 1/(152%) as
x — oo. dF'/dz diverges logarithmically as z — 1.
Besides dv(r), the other contributions to duvs(r) of Eq. (62) are

U\ 3,0 on(r')
(o) = e (on
OB\ _ [ 8B o
6<6n(r)> _/d 6n(r)6n(r’)6 (=) - (162)
In other words,
dus(a) = (@) + 0n(a) — e bn(a) (163)

where the coefficient of the first 0n(q) is the Fourier transform of the Coulomb
interaction 1/|r — r'|, and the coefficient of the second dn(q) is the Fourier
transform of §2 Ex./dn(r)on(r').

We re-write Eq. (163) as

47
dvs(q) = dv(q) + Z [1 — Gxc(@)]on(q) , (164)
where )
q
XC = Txc a1 1
Grcla) = 25:0) (5 (165)
is the so-called local-field factor. Then we insert Eq. (158) into Eq. (164) and
find 5o(q)
v\q
dvs(q) = 166
(@ e(q) (166)
where
47
&(q) =1— Z [1 - Gxe(@)]xs(q) - (167)

In other words, the density response function of the interacting uniform electron
gas is

(168)
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These results are particularly simple in the long-wavelength (¢ — 0) limit,
in which 7x.(¢) tends to a constant and

 xelg=0) K
mkp q?

1/2 1/2 1/6
oo () (4) o\ 1 -
T T 4 ri/?

is the inverse of the Thomas-Fermi screening length - the characteristic distance
over which an external perturbation is screened out. Eqs. (166) and (167) show
that a slowly-varying external perturbation dv(q) is strongly “screened out” by
the uniform electron gas, leaving only a very weak Kohn-Sham potential dvs(q).
Eq. (168) shows that the response function x(¢) is weaker than x;(¢) by a factor
(q/ks)? in the limit ¢ — 0.

In Eq. (166), €5(q) is a kind of dielectric function , but it is not the standard
dielectric function e(q) which predicts the response of the electrostatic potential
alone:

€(q) — 1 (q—0), (169)

where

4 ov(q)
dv(q) + —dn(q) = . 171
(a) 7 (a) @ (171)
By inserting Eq. (156) into Eq. (171), we find
1 4
— =14+ . 172
5 = 1+ @) (72)

It is only when we neglect exchange and correlation that we find the simple

Lindhard result
4
€(q) = e(q) = en(q) =1~ q—st(q) (Vxe = 0) . (173)

Neglecting correlation, 7y is a numerically-tabulated function of (q/2kp) with
the small-q expansion [61]

vx(q)=1+g (ﬁ)ﬁ% <ﬁ>4 (g —0) . (174)

When correlation is included, x.(¢g) depends upon rs as well as (¢/2ky), in a way
that is known from Quantum Monte Carlo studies [62] of the weakly-perturbed
uniform gas.

The second-order change JF in the total energy may be found from the
Hellmann-Feynman theorem of Sect. 2.4. Replace dv(r) by va(r) = Adv(r) and
on(r) by Aon(r), to find

0FE = /01 d)\/d3rn>\(r)di>\v>\(r)
- /0 " / &1l + Aon(r)]ov(r)
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L[
= §/d ron(r)dv(r)

1

F0n(=a)ov(a) . (175)

5.5 Clumping and Adiabatic Connection

The uniform electron gas for rg < 30 provides a nice example of the adiabatic
connection discussed in Sect. 3.5. As the coupling constant A turns on from 0
to 1, the ground state wavefunction evolves continuously from the Kohn-Sham
determinant of plane waves to the ground state of interacting electrons in the
presence of the external potential, while the density remains fixed. (One should
of course regard the infinite system as the infinite-volume limit of a finite chunk
of uniform background neutralized by electrons.)

The adiabatic connection between non-interacting and interacting uniform-
density ground states could be destroyed by any tendency of the density to
clump. A fictitious attractive interaction between electrons would yield such a
tendency. Even in the absence of attractive interactions, clumping appears in
the very-low-density electron gas as a charge density wave or Wigner crystalliza-
tion [56, 59]. Then there is probably no external potential which will hold the
interacting system in a uniform-density ground state, but one can still find the
energy of the uniform state by imposing density uniformity as a constraint on a
trial interacting wavefunction.

The uniform phase becomes unstable against a charge density wave of wave-
vector q and infinitesimal amplitude when €(q) of Eq. (167) vanishes [59]. This
instability for ¢ &~ 2kp arises at low density as a consequence of exchange and
correlation.

6 Local and Semi-Local Approximations

6.1 Local Spin Density Approximation

The local spin density approximation (LSD) for the exchange-correlation energy,
Eq. (11), was proposed in the original work of Kohn and Sham [6], and has proved
to be remarkably accurate, useful, and hard to improve upon. The generalized
gradient approximation (GGA) of Eq. (12), a kind of simple extension of LSD, is
now more widely used in quantum chemistry, but LSD remains the most popular
way to do electronic-structure calculations in solid state physics. Tables 1 and
2 provide a summary of typical errors for LSD and GGA, while Tables 3 and
4 make this comparison for a few specific atoms and molecules. The LSD is
parametrized as in Sect. 5, while the GGA is the non-empirical one of Perdew,
Burke, and Ernzerhof [20], to be presented later.
The LSD approximation to any energy component G is

Gl = [d¥rm()glng(0),m,w) | (176)
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Table 3. Exchange-correlation energies of atoms, in hartree.

Atom LSD GGA Exact

H -0.29 -0.31 -0.31
He -1.00 -1.06 -1.09
Li -1.69 -1.81 -1.83
Be -2.54 -2.72 -2.76
N -6.32 -6.73 -6.78
Ne -11.78  -12.42  -12.50

Table 4. Atomization energies of molecules, in eV. (1 hartree = 27.21 V). From Ref.
[20].

Molecule LSD GGA Exact

Ho 4.9 4.6 4.7
CH4 20.0 18.2 18.2
NH3 14.6 13.1 12.9
H>O 11.6 10.1 10.1
CcO 13.0 11.7 11.2
02 7.6 6.2 5.2

where g(nq,n;) is that energy component per particle in an electron gas with
uniform spin densities ny and n|, and n(r)d®r is the average number of electrons
in volume element d3r. Sections 5.1-5.3 provide the ingredients for T*SP = Ty,
ELSP and EYSP. The functional derivative of Eq. (176) is

LSD
o = o L+ gl arn)

By construction, LSD is exact for a uniform density, or more generally for
a density that varies slowly over space [6]. More precisely, LSD should be valid
when the length scale of the density variation is large in comparison with length
scales set by the local density, such as the Fermi wavelength 27 /kp or the screen-
ing length 1/ks. This condition is rarely satisfied in real electronic systems, so
we must look elsewhere to understand why LSD works.

We need to understand why LSD works, for three reasons: to justify LSD cal-
culations, to understand the physics, and to develop improved density functional
approximations. Thus we will start with the good news about LSD, proceed to
the mixed good/bad news, and close with the bad news.

LSD has many correct formal features. It is exact for uniform densities and
nearly-exact for slowly-varying ones, a feature that makes LSD well suited at
least to the description of the crystalline simple metals. It satisfies the inequal-
ities Ex < 0 (Eq. (93)) and E. < 0 (Eq. (69)), the correct uniform coordinate
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scaling of Ey (Eq. (106)), the correct spin scaling of Ey (Eq. (127)), the correct
coordinate scaling for E. (Egs. (111), (116), (117)), the correct low-density be-
havior of E. (Eq. (115)), and the correct Lieb-Oxford bound on Ey. (Egs. (120)
and (122)). LSD is properly size-consistent (Sect. 4.4).

LSD provides a surprisingly good account of the linear response of the spin-
unpolarized uniform electron gas (Sect. 5.4). Since

02 B 1 O [nexe(n)]
on(r)dn(r’) o(r—r) on? ’ (178)
where §(r — r') is the Dirac delta function, we find
k& o°
LSD P
= 1 - T 7 o c ) 1
A 0) =1 T e () (179)

a constant independent of ¢, which must be the exact ¢ — 0 or slowly-varying
limit of vxc(q). Figure 1 of Ref. [20] shows that the “exact” vx.(¢) from a Quan-
tum Monte Carlo calculation [62] for ry = 4 is remarkably close to the LSD
prediction for ¢ X 2kp. The same is true over the whole valence-electron density
range 2 Sy S 5, and results from a strong cancellation between the nonlocali-
ties of exchange and correlation. Indeed the exact result for exchange (neglecting
correlation), Eq. (174), is strongly ¢-dependent or nonlocal. The displayed terms
of Eq. (174) suffice for ¢ ~ 2kp.

Powerful reasons for the success of LSD are provided by the coupling con-
stant integration of Sect. 3.5. Comparison of Eqgs. (86) and (11) reveals that the
LSD approximations for the exchange and correlation holes of an inhomogeneous
system are

nYSP (e v') = n (ny (r),n (x); [r — 1)) (180)
e3P (r,x') = ne™ (ng (r), ny (v); fr = ') (181)
where n%f(n4, n;u) is the hole in an electron gas with uniform spin densities

nt and ny. Since the uniform gas is a possible physical system, Eqs. (180) and
(181) obey the exact constraints of Eqs. (91) (negativity of ny), (94) (sum rule
on ny), (95), (97) (sum rule on @), (98), and (85) (cusp condition).

By Eq. (95), the LSD on-top exchange hole n%SP(r, r) is exact, at least when
the Kohn-Sham wavefunction is a single Slater determinant. The LSD on-top
correlation hole nSP(r,r) is not exact [63] (except in the high-density, low-
density, fully spin-polarized, or slowly-varying limit), but it is often quite realistic
[64]. By Eq. (85), its cusp is then also realistic.

Because it satisfies all these constraints, the LSD model for the system-,

spherically-, and coupling-constant-averaged hole of Eq. (101),
1 )
(ne® () = ~ [ Ern@nit (ne(r),ny ();u) (182)

can be very physical. Moreover, the system average in Eq. (182) “unweights”
regions of space where LSD is expected to be least reliable, such as near a
nucleus or in the evanescent tail of the electron density [65, 64].
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Since correlation makes (7ix.(u = 0)) deeper, and thus by Eq. (102) makes
(fixe(u)) more short-ranged, Ey. can be “more local” than either Ey or E.. In
other words, LSD often benefits from a cancellation of errors between exchange
and correlation.

Mixed good and bad news about LSD is the fact that selfconsistent LSD
calculations can break exact spin symmetries. As an example, consider “stretched
H,”, the hydrogen molecule (N = 2) with a very large separation between the
two nuclei. The exact ground state is a spin singlet (S = 0), with n(r) = ny(r) =
n(r)/2. But the LSD ground state localizes all of the spin-up density on one of
the nuclei, and all of the spin-down density on the other. Although (or rather
because) the LSD spin densities are wrong, the LSD total energy is correctly the
sum of the energies of two isolated hydrogen atoms, so this symmetry breaking
is by no means entirely a bad thing [66, 67]. The selfconsistent LSD on-top hole
density (7ixc(0)) = —(n) is also right: Heitler-London correlation ensues that two
electrons are never found near one another, or on the same nucleus at the same
time.

Finally, we present the bad news about LSD: (1) LSD does not incorporate
known inhomogeneity or gradient corrections to the exchange-correlation hole
near the electron (Sect. 6.2) (2) It does not satisfy the high-density correla-
tion scaling requirement of Eq. (114), but shows a In+y divergence associated
with the Inrs term of Eq. (140). (3) LSD is not exact in the one-electron limit,
i.e., does not satisfy Eqgs. (67), and (70)- (73). Although the “self-interaction
error” is small for the exchange-correlation energy, it is more substantial for
the exchange-correlation potential and orbital eigenvalues. (4) As a “continuum
approximation”, based as it is on the uniform electron gas and its continuous
one-electron energy spectrum, LSD misses the derivative discontinuity of Sect.
4.5. Effectively, LSD averages over the discontinuity, so its highest occupied or-
bital energy for a Z-electron system is not Eq. (129) but e° ~ —(I7 + Az)/2.
A second consequence is that LSD predicts an incorrect dissociation of a hetero-
nuclear molecule or solid to fractionally charged fragments. (In LSD calculations
of atomization energies, the dissociation products are constrained to be neutral
atoms, and not these unphysical fragments.) (5) LSD does not guarantee satis-
faction of Eq. (99), an inherently nonlocal constraint.

The GGA to be derived in Sect. 6.4 will preserve all the good or mixed
features of LSD listed above, while eliminating bad features (1) and (2) but
not (3) - (5). Elimination of (3) - (5) will probably require the construction of
Exc[n¢,ny] from the Kohn-Sham orbitals (which are themselves highly-nonlocal
functionals of the density). For example, the self-interaction correction [9, 68]
to LSD eliminates most of the bad features (3) and (4), but not in an entirely
satisfactory way.

6.2 Gradient Expansion

Gradient expansions [6, 69], which offer systematic corrections to LSD for elec-
tron densities that vary slowly over space, might appear to be the natural next
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step beyond LSD. As we shall see, they are not; understanding why not will light
the path to the generalized gradient approximations of Sect. 6.3.
As a first measure of inhomogeneity, we define the reduced density gradient

_|Vn| |Vn| 3/4 1/3
= Sken ~ 2@m) A 2 \or) VRl (183)

which measures how fast and how much the density varies on the scale of the
local Fermi wavelength 27 /kp. For the energy of an atom, molecule, or solid, the

range 0 SsS1is very important. The range 1 < s X 3 is somewhat important,
more so in atoms than in solids, while s > 3 (as in the exponential tail of the
density) is unimportant [70, 71].

Other measures of density inhomogeneity, such as p = V2n/(2kr)?n, are also
possible. Note that s and p are small not only for a slow density variation but also
for a density variation of small amplitude (as in Sect. 5.4). The slowly-varying
limit is one in which p/s is also small [6].

Under the uniform density scaling of Eq. (40), s(r) — sy(r) = s(yr). The
functionals Ti[n] and Ey[n] must scale as in Egs. (104) and (106), so their gra-
dient expansions are

Ti[n] = Ay [d®rn®P[1+as® +..] , (184)

En] = Ay [PrafPl1+ps? +..] , (185)

Because there is no special direction in the uniform electron gas, there can be
no term linear in Vn. Moreover, terms linear in V2n can be recast as s2 terms,

since
/d3rf(n)V2n _ —/d% (%) Vn? (186)

via integration by parts. Neglecting the dotted terms in Eqs. (184) and (185),
which are fourth or higher-order in V, amounts to the second-order gradient
expansion, which we call the gradient expansion approximation (GEA).

Correlation introduces a second length scale, the screening length 1/ks, and
thus another reduced density gradient

V| N2 (97 e g
t=oen = (1) (T 7 (187)

In the high-density (rs — 0) limit, the screening length (1/ks ~ r51/2) is the only
important length scale for the correlation hole. The gradient expansion of the
correlation energy is

E.[n] = /d3rn [ec(n) + B(n)t2 +...] . (188)

While e.(n) does not quite approach a constant as n — oo, G(n) does [69].
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While the form of the gradient expansion is easy to guess, the coefficients can
only be calculated by hard work. Start with the uniform electron gas, in either
its non-interacting (Ts,Ey) or interacting (E.) ground state, and apply a weak
external perturbation dvs(q)exp(iq - r) or dv(q)exp(iq - r), respectively. Find
the linear response dn(q) of the density, and the second-order response 0G of
the energy component G of interest. Use the linear response of the density (as
in Egs. (157) or (156)) to express 0G entirely in terms of dn(q). Finally, expand
dG in powers of ¢%, observing that |Vn|? ~ ¢%|dn(q)|?, and extract the gradient
coefficient.

In this way, Kirzhnits [72] found the gradient coefficient for Ty,

5

O{Z2—7

(189)

(which respects the conjectured bound of Eq. (118)), Sham [73] found the coef-
ficient of Ey,

7
am — S ) 1
HSh ] (190)
and Ma and Brueckner [69] found the high-density limit of 3(n):
Bup = 0.066725 . (191)

The weak density dependence of 5(n) is also known [74], as is its spin-dependence
[75]. Neglecting small V{ contributions, the gradient coefficients (coefficients of
|Vn|?/n?/?) for both exchange and correlation at arbitrary relative spin polar-
ization ¢ are found from those for ¢ = 0 through multiplication by [76]

50 =3 [a+r o ra-07] . (192)

For exchange, this is easily verified by applying the spin-scaling relation of
Eq. (127) to Egs. (185) and (183).

There is another interesting similarity between the gradient coefficients for
exchange and correlation. Generalize the definition of ¢ (Eq. (187)) to

o IVl _ (5)1/2 (%)UGL , (193)

-~ 2¢ken 4 ori/?
Then
Bupd®nt® = uCypn*/3s* | (194)
where
71'2
p= ﬂMBE =0.21951 . (195)

Sham’s derivation [73] of Eq. (190) starts with a screened Coulomb interac-
tion (1/u)exp(—ku), and takes the limit k — 0 at the end of the calculation.
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Antoniewicz and Kleinman [77] showed that the correct gradient coefficient for
the unscreened Coulomb interaction is not puspam but

10

a1 (196)

HAK =

It is believed [78] that a similar order-of limits problem exists for 3, in such a way
that the combination of Sham’s exchange coefficient with the Ma-Brueckner [69]
correlation coefficient yields the correct gradient expansion of Ey. in the slowly-
varying high-density limit.

Numerical tests of these gradient expansions for atoms show that the second-
order gradient term provides a useful correction to the Thomas-Fermi or local
density approximation for Ty, and a modestly useful correction to the local den-
sity approximation for Fy, but seriously worsens the local spin density results for
E. and FEy.. In fact, the GEA correlation energies are positive! The latter fact
was pointed out in the original work of Ma and Brueckner [69], who suggested
the first generalized gradient approximation as a remedy.

The local spin density approximation to Fy., which is the leading term of
the gradient expansion, provides rather realistic results for atoms, molecules,
and solids. But the second-order term, which is the next systematic correction
for slowly-varying densities, makes Ey. worse.

There are two answers to the seeming paradox of the previous paragraph. The
first is that realistic electron densities are not very close to the slowly-varying
limit (s € 1, p/s € 1, t € 1, etc.). The second is this: The LSD approximation
to the exchange-correlation hole is the hole of a possible physical system, the
uniform electron gas, and so satisfies many exact constraints, as discussed in
Sect. 6.1. The second-order gradient expansion or GEA approximation to the
hole is not, and does not.

The second-order gradient expansion or GEA models are known for both the
exchange hole [12, 13] ny(r,r+u) and the correlation hole 7i.(r,r+u) [79]. They
appear to be more realistic than the corresponding LSD models at small u, but
far less realistic at large u, where several spurious features appear: ny (r, r+u)gea
has an undamped cos(2kpu) oscillation which violates the negativity constraint
of Eq. (91), and integrates to -1 (Eq. (94)) only with the help of a convergence
factor exp(—ku) (k — 0). fc(r,r + u)gra has a positive u™* tail, and integrates
not to zero (Eq. (97)) but to a positive number ~ s?. These spurious large-u
behaviors are sampled by the long range of the Coulomb interaction 1/u, leading
to unsatisfactory energies for real systems.

The gradient expansion for the exchange hole density is known [80] to third
order in V, and suggests the following interpretation of the gradient expan-
sion: When the density does not vary too rapidly over space (e.g., in the weak-
pseudopotential description of a simple metal), the addition of each successive
order of the gradient expansion improves the description of the hole at small u
while worsening it at large u. The bad large-u behavior thwarts our expectation
that the hole will remain normalized to each order in V.
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The non-interacting kinetic energy Ty does not sample the spurious large-u
part of the gradient expansion, so its gradient expansion (Eqgs. (184) and (189))
works reasonably well even for realistic electron densities. In fact, we can use
Eq. (79) to show that

10 0 ,_
L= Y [ar =55 son =W oro) (197)

r'=r

samples only the small-u part of the gradient expansion of the Kohn-Sham one-
electron reduced density matrix, while Ey[n] of Egs. (90) and (92) also samples
large values of u. The GEA for T[n] is, in a sense, its own GGA [81]. Moreover,
the sixth-order gradient expansion of 7y is also known: it diverges for finite
systems, but provides accurate monovacancy formation energies for jellium [82].

The GEA form of Eqgs. (184), (185), and (188) is a special case of the GGA
form of Eq. (12). To find the functional derivative, note that

OF = /d3r5f(nT,n¢, Vng, Vny)

= Z /d3r {anijzr) one(r) + %{(r) -Ving(r)

;3 OF
= zﬂ:/d r&na(r) ong(r) . (198)

Integration by parts gives

OF  Of
ong(r)  Ong(r)

of

-V OVn,(r)

(199)

For example, the functional derivative of the gradient term in the spin-unpola-
rized high-density limit is

) 3 |Vn(r))? . 4|Vn(r)? V3n
on(r) /d rOxeam - = O g s T | o (200)

which involves second as well as first derivatives of the density.
The GEA for the linear response function vx.(q) of Eq. (163) is found by
inserting n(r) = n + dn(q) exp(iq - r) into Eq. (199) and linearizing in dn(q):

2
q
YEEA (¢) = AESP _ 247(372) /3 e <%> . (201)

For example, the Antoniewicz-Kleinman gradient coeflicient [77] for exchange of
Eq. (196), inserted into Eqs. (200) and (201), yields the ¢* term of Eq. (174).
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6.3 History of Several Generalized Gradient Approximations

In 1968, Ma and Brueckner [69] derived the second-order gradient expansion
for the correlation energy in the high-density limit, Egs. (188) and (191). In
numerical tests, they found that it led to improperly positive correlation energies
for atoms, because of the large size of the positive gradient term. As a remedy,
they proposed the first GGA,

(202)

EMB[n] = /d3rnec(n) {1 - M} N ,

vnec(n)

where v ~ 0.32 was fitted to known correlation energies. Eq. (202) reduces to
Eqgs. (188) and (191) in the slowly-varying (¢ — 0) limit, but provides a strictly
negative “energy density” which tends to zero as ¢ — oo. In this respect, it
is strikingly like the nonempirical GGA’s that were developed in 1991 or later,
differing from them mainly in the presence of an empirical parameter, the absence
of a spin-density generalization, and a less satisfactory high-density limit.

Under the uniform scaling of Eq. (40), n(r) — n.(r), we find r5(r) —
iy (91), C(r) = C(3x), 5(r) = s(r), and t(r) = y1/2¢(yr). Thus EMB[n,]
tends to EgSD[n,Y] as v — 00, and not to a negative constant as required by
Eq. (114).

In 1980, Langreth and Perdew [83] explained the failure of the second-order
gradient expansion (GEA) for E.. They made a complete wavevector analysis of
Ey., i.e., they replaced the Coulomb interaction 1/u in Eq. (100) by its Fourier
transform and found

Bl = /0 h dk%mm(k»‘;—i , (203)
where - in (ku)
(ixe(k)) = /0 du 47ru2(ﬁxc(u))smkuu (204)

is the Fourier transform of the system- and spherically-averaged exchange-corre-
lation hole. In Eq. (203), Ey. is decomposed into contributions from dynamic
density fluctuations of various wavevectors k.

The sum rule of Eq. (102) should emerge from Eq. (204) in the k¥ — 0 limit
(since sin(z)/z — 1 as © — 0), and does so for the exchange energy at the
GEA level. But the & — 0 limit of aGFA (k) turns out to be a positive number
proportional to t?, and not zero. The reason seems to be that the GEA correlation
hole is only a truncated expansion, and not the exact hole for any physical
system, so it can and does violate the sum rule.

Langreth and Mehl [11] (1983) proposed a GGA based upon the wavevector
analysis of Eq. (203). They introduced a sharp cutoff of the spurious small-k
contributions to ESFA: all contributions were set to zero for k < k. = f|Vn/n|,
where f ~ 0.15 is only semi-empirical since f ~ 1/6 was estimated theoretically.
Extension of the Langreth-Mehl ES%A beyond the random phase approximation
was made by Perdew [14] in 1986.
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The errors of the GEA for the exchange energy are best revealed in real space
(Eq. (100)), not in wavevector space (Eq. (203)). In 1985, Perdew [12] showed
that the GEA for the exchange hole density ny(r,r 4+ u) contains a spurious un-
damped cos(2kru) oscillation as u — oo, which violates the negativity constraint
of Eq. (91) and respects the sum rule of Eq. (94) only with the help of a conver-
gence factor (e.g., exp(—ku) as k — 0). This suggested that the required cutoffs
should be done in real space, not in wavevector space. The GEA hole density
nSGPA (r, r+u) was replaced by zero for all u where n¢F4 was positive, and for all
u > ux(r) where the cutoff radius uy(r) was chosen to recover Eq. (94). Eq. (92)
then provided a numerically-defined GGA for Ey, which turned out to be more
accurate than either LSD or GEA. In 1986, Perdew and Wang [13] simplified this
GGA in two ways: (1) They replaced nGFA(r,r + u), which depends upon both
first and second derivatives of n(r), by a$FA(r,r 4+ u), an equivalent expression
found through integration by parts, which depends only upon Vn(r). (2) The
resulting numerical GGA has the form

ESCA[] = A, /d3rn4/3Fx(s) , (205)

which scales properly as in Eq. (106). The function Fi(s) was plotted and fitted
by an analytic form. The spin-scaling relation (127) was used to generate a spin-
density generalization. Perdew and Wang [13] also coined the term “generalized
gradient approximation”.

A parallel but more empirical line of GGA development arose in quantum
chemistry around 1986. Becke [15, 16] showed that a GGA for E, could be
constructed with the help of one or two parameters fitted to exchange energies of
atoms, and demonstrated numerically that these functionals could greatly reduce
the LSD overestimate of atomization energies of molecules. Lee, Yang, and Parr
[17] transformed the Colle-Salvetti [84] expression for the correlation energy from
a functional of the Kohn-Sham one-particle density matrix into a functional of
the density. This functional contains one empirical parameter and works well in
conjunction with Becke [16] exchange for many atoms and molecules, although
it underestimates the correlation energy of the uniform electron gas by about a
factor of two at valence-electron densities.

The real-space cutoff of the GEA hole provides a powerful nonempirical way
to construct GGA’s. Since exchange and correlation should be treated in a bal-
anced way, there was a need to extend the 1986 real-space cutoff construction
[13] from exchange to correlation with the help of a second cutoff radius wu.(r)
chosen to satisfy Eq. (97). Without accurate formulas for the correlation hole of
the uniform electron gas, this extension had to wait until 1991, when it led to the
Perdew-Wang 1991 (PW91) [18, 79] GGA for E,.. For most practical purposes,
PW91 is equivalent to the Perdew-Burke-Ernzerhof [20, 21] (PBE) “GGA made
simple”, which will be derived, presented, and discussed in the next two sections.
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6.4 Construction of a “GGA Made Simple”

The PW91 GGA and its construction [18, 79] are simple in principle, but com-
plicated in practice by a mass of detail. In 1996, Perdew, Burke and Ernzerhof
[20, 21] (PBE) showed how to construct essentially the same GGA in a much
simpler form and with a much simpler derivation.

Ideally, an approximate density functional Exc[n4,n;] should have all of the
following features: (1) a non-empirical derivation, since the principles of quan-
tum mechanics are well-known and sufficient; (2) universality, since in principle
one functional should work for diverse systems (atoms, molecules, solids) with
different bonding characters (covalent, ionic, metallic, hydrogen, and van der
Waals); (3) simplicity, since this is our only hope for intuitive understanding
and our best hope for practical calculation; and (4) accuracy enough to be use-
ful in calculations for real systems.

The LSD of Eq. (11) and the non-empirical GGA of Eq. (12) nicely balance
these desiderata. Both are exact only for the electron gas of uniform density, and
represent controlled extrapolations away from the slowly-varying limit (unlike
the GEA of Sect. 6.2, which is an uncontrolled extrapolation). LSD is a controlled
extrapolation because, even when applied to a density that varies rapidly over
space, it preserves many features of the exact Fy., as discussed in Sect. 6.1. LSD
has worked well in solid state applications for thirty years.

Our conservative philosophy of GGA construction is to try to retain all the
correct, features of LSD, while adding others. In particular, we retain the cor-
rect uniform-gas limit, for two reasons: (1) This is the only limit in which the
restricted GGA form can be exact. (2) Nature’s data set includes the crystalline
simple metals like Na and Al. The success of the stabilized jellium model [85]
reaffirms that the valence electrons in these systems are correlated very much as
in a uniform gas. Among the welter of possible conditions which could be im-
posed to construct a GGA, the most natural and important are those respected
by LSD or by the real-space cutoff construction of PW91, and these are the
conditions chosen in the PBE derivation [20] below. The resulting GGA is one
in which all parameters (other than those in LSD) are fundamental constants.

We start by writing the correlation energy in the form

ESGA [TLT, nl] = /d3rn[ec (rs, Q) + H(rs, (1)) (206)

where the local density parameters r, and { are defined in Egs. (133) and (149),
and the reduced density gradient ¢ in Eq. (193). The small-t behavior of nH
should be given by the left-hand side of Eq. (194), which emerges naturally
from the real-space cutoff construction of PW91 [79]. In the opposite or ¢ — oo
limit, we expect that H — —e.(rs, (), the correlation energy per electron of the
uniform gas, as it does in the PW91 construction or in the Ma-Brueckner GGA
of Eq. (202). Finally, under the uniform scaling of Eq. (40) to the high-density
(v = o0) limit, Eq. (206) should tend to a negative constant, as in Eq. (114)
or in the numerically-constructed PW91. This means that H must cancel the
logarithmic singularity of e. (Eq. (140)) in this limit.
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A simple function which meets these expectations is

ﬁMB 2 1+At2
H=cyd’In<1 t 207
cod n{ Rl Epryveanyerrd I G (207)

where ¢ is given by Eq. (192) and

_ Bus 1
A= co exp[—ec(rs,()/cod®] =1 ° (208)

We now check the required limits:

t—0: H—)coqb?’ln{l-i—ﬁM—BtQ}

Co
— Bupdt? . (209)
. 3 ﬁMB
t—so00: H—=cp’Indl +——
CoA
31 _ec(rsac)
— ¢cp¢” In {exp [ e
— _ec(rs><) . (210)
re = 0 at fixed s:  H — cp¢®Int? = —cod’Inrg . (211)

To a good approximation, Eq. (140) can be generalized to

ec(rs,¢) = ¢*[colnrg — e +...] (212)

which cancels the log singularity of Eq. (211).
Under uniform density scaling to the high-density limit, we find

1
xs? /9% + (xs?/4?)?

(where s is defined by Eq. (183)), a negative constant as required by Eq. (114),
with

y—=o00: ES%n,]— —co/d3rn¢3 In {1 + (213)

32 2/3

X = (E) /32/1_0B exp(—ci/co) - (214)
For a two-electron ion of nuclear charge Z in the limit Z — oo, Eq. (213) is
—0.0479 hartree and the exact value is —0.0467. Realistic results from Eq. (213)
in the Z — oo limit have also be found [86] for ions with 3, 9, 10, and 11
electrons.

Now we turn to the construction of a GGA for the exchange energy. Because
of the spin-scaling relation (127), we only need to construct ESSA[n], which
must be of the form of Eq. (205). To recover the good LSD description of the
linear response of the uniform gas (Sect. 5.4), we choose the gradient coefficient
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for exchange to cancel that for correlation, i.e., we take advantage of Eq. (194)
to write

s —=0: Fe(s)=1+pus* . (215)

Then the gradient coefficients for exchange and correlation will cancel for all rg
and (, apart from small V( contributions to ES%A as discussed in the next
section.

The value of p of Eq. (195) is 1.78 times bigger than uak of Eq. (196), the
proper gradient coefficient for exchange in the slowly-varying limit. But this
choice can be justified in two other ways as well: (a) It provides a decent fit
to the results of the real-space cutoff construction [79] of the PW91 exchange
energy, which does not recover puax in the slowly-varying limit. (b) It provides a
reasonable emulation of the exact-exchange linear response function of Eq. (174)
over the important range of 0 < ¢/2kr 1 (but not of course in the limit ¢ — 0,
where pak is needed).

Finally, we want to satisfy the Lieb-Oxford bound of Egs. (120) and (122),
which LSD respects. We can achieve this, and also recover the limit of Eq. (215),
with the simple form

K

FX(S) =14+kKk-— —(1 +u82/li) )

(216)
where & is a constant less than or equal to 0.804. Taking x = 0.804 gives a GGA
which is virtually identical to PW91 over the range of densities and reduced den-
sity gradients important in most real systems. We shall complete the discussion
of this paragraph in the next section.

6.5 GGA Nonlocality: Its Character, Origins, and Effects

A useful way to visualize and think about gradient-corrected nonlocality, or to
compare one GGA with another, is to write [19, 87]

ESCGA[nT,n” ~ /d3rn ( > Fio(rs,¢,8) (217)

¢

T's
where ¢ = (3/4m)(97/4)"/% and —c/r, = ex(rs,¢ = 0) is the exchange energy
per electron of a spin-unpolarized uniform electron gas. The enhancement factor
Fio(rs,¢, s) shows the effects of correlation (through its ry dependence), spin
polarization (¢), and inhomogeneity or nonlocality (s). Fx. is the analog of 3a;/2
in Slater’s X« method [88], so its variation is bounded and plottable. Figure 1
shows Fy.(rs,{ = 0,s), the enhancement factor for a spin-unpolarized system.
Figure 2 shows Fy.(rs,{ = 1,s) — Fy(rs,( = 0,s), the enhancement factor
for the spin polarization energy. (Roughly, Fi.(rs,(,s) = Fye(rs,{ = 0,8) +
C?[Fye(rs, ¢ =1, 8) — Fxe(rs,¢ = 0, 5)]). The nonlocality is the s-dependence, and

F)%CSD(rsagas) = FXC(TS7C78 = 0) (218)
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Fre(rs,( =0,5)

Fig. 1. The enhancment factor Fy. of Eq. (217) for the GGA of Perdew, Burke, and
Ernzerhof [20], as a function of the reduced density gradient s of Eq. (183), for { = 0.
The local density parameter rs and the relative spin polarization ( are defined in
Eqgs. (133) and (149), respectively.

is visualized as a set of horizontal straight lines coinciding with the GGA curves
in the limit s — 0.

Clearly, the correlation energy of Eq. (206) can be written in the form of
Eq. (217). To get the exchange energy into this form, apply the spin-scaling
relation (127) to Eq. (205), then drop small Vs contributions to find

[a—y

Fu(G,9) = 51+ OB (5/(+ OY*) + 20— O F, (s/(1- )

% [(1 +OYP4+(1- ()4/3] + ugps® + ... (219)
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Fig. 2. Same as Fig. 1, but for the difference between the fully spin-polarized (¢ = 1)
and unpolarized (¢ = 0) enhancement factors.

Now
Fxc(rs,Cas) = FX(C,S) +FC(r57<78) ’ (220)

where
Tl:glo F.(rs,(,s) =0 (221)

by Egs. (106) and (114). Thus the r¢ = 0 or high-density-limit curve in each
figure is the exchange-only enhancement factor. Clearly Fy, > 0, F. > 0, and
F(¢( =0,s=0) =1 by definition.
The Lieb-Oxford bound of Eq. (122) will be satisfied for all densities n(r) if
and only if
Feo(ry, C,8) > 2.273 . (222)

For the PBE GGA of Egs. (206) and (216), this requires that
23R (s)2%) < 2.273 (223)

or
Kk <2273/2'/% -1 =0.804 , (224)
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as stated in Sect. 6.4.

There is much to be seen and explained [21] in Eq. (217) and Figs. 1 and
2. However, the main qualitative features are simply stated: When we make a
density variation in which ry decreases, ( increases, or s increases everywhere,
we find that |Ey| increases and |E./Ex| decreases.

To understand this pattern [21], we note that the second-order gradient ex-
pansion for the non-interacting kinetic energy Ts[n4,ny], which is arguably its
own GGA [81], can be written as

9 2/3
T g, ny Z/d3m1%%G(C,S) : (225)
G(G9) =5 [1+ 07 + (1= 0] + s | (226)

using approximate spin scaling (Eq. (126) plus neglect of V{ contributions).
Eqgs. (225) and (226) respect Eq. (104) and confirm our intuition based upon the
Pauli exclusion and uncertainty principles: Under a density variation in which rg
decreases, ( increases, or s increases everywhere, we find that Ty[n+,n,] increases.

The first effect of such an increase in T is an increase in |Ey|. Ty and |Exy]|
are “conjoint” [89], in the sense that both can be constructed from the occupied
Kohn-Sham orbitals (Egs. (7), (88), (90) and (92)). With more kinetic energy,
these occupied orbitals will have shorter de Broglie wavelengths. By the uncer-
tainty principle, they can then dig a more short-ranged and deeper exchange
hole with a more negative exchange energy. Thus exchange turns on when we
decrease r, increase (, or increase s.

The second effect of such an increase in 75 is to strengthen the Kohn-Sham
Hamiltonian which holds non-interacting electrons at the spin densities n4(r) and
ny(r). This makes the electron-electron repulsion of Eq. (112) a relatively weaker
perturbation on the Kohn-Sham problem, and so reduces the ratio | E./Ex|. Thus
correlation turns off relative to exchange when we decrease rs, increase (, or
increase s.

We note in particular that Fy(rs,(,s) increases while F.(rs,(,s) decreases
with increasing s. The nonlocalities of exchange and correlation are opposite,
and tend to cancel for valence-electron densities (1 S S 10) in the range

0 = s X 1. The same remarkable cancellation occurs [62, 21] in the linear response
function for the uniform gas of Eq. (163), i.e., 7xc(q) = 7P (q) = 7xc(g = 0) for
0 < q/2kp S 1.

The core electrons in any system, and the valence electrons in solids, sample
primarily the range 0 S s S 1. The high-density core electrons see a strong,
exchange-like nonlocality of E. which provides an important correction to the
LSD total energy. But the valence electrons in solids see an almost-complete
cancellation between the nonlocalities of exchange and correlation. This helps
to explain why LSD has been so successful in solid state physics, and why the
small residue of GGA nonlocality in solids does not provide a universally-better
description than LSD.
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The valence electrons in atoms and molecules see 0 < s < 00, when s diverges
in the exponential tail of the density, but the energetically-important range is
0~ s < 3[70, 71]. Figs. 1 and 2 show that GGA nonlocality s important in this
range, so GGA is almost-always better than LSD for atoms and molecules.

For ry ~ 10, the residual GGA nonlocality is exchange-like, i.e., exchange
and correlation together turn on stronger with increasing inhomogeneity. It can
then be seen from Eq. (217) that gradient corrections will favor greater density
inhomogeneity and higher density [70]. Defining average density parameters (r),
(¢), and (s) as in Ref. [70], we find that gradient corrections favor changes
d(s) > 0 and d{rs) < 0. Gradient corrections tend to drive a process forward
when [70]

Afs)  dirs)

(s) = (rs)

In a typical process (bond stretching, transition to a more open structure,
fragmentation, or atomization), one has d(s) > 0 and d(rs) > 0. Thus, by
Eq. (227), these effects compete - another reason why LSD has met with some
success. In most such cases, the left-hand side of Eq. (227) is bigger than the
right, so typically gradient corrections favor larger bond lengths or lattice con-
stants (and thus softer vibration frequencies), more open structures, fragmen-
tation of a highly-bonded transition state, or atomization of a molecule. In the
case of bond stretching in Hs, however, the right hand side of Eq. (227) exceeds
the left, so gradient corrections actually and correctly shrink the equilibrium
bond length relative to LSD.

There have been many interesting tests and applications of GGA to a wide
range of atoms, molecules, and solids. Some references will be found in Refs.
[19, 90, 79, 21].

We close by discussing those situations in which LSD or GGA can fail badly.
They seem to be of two types: (1) When the Kohn-Sham non-interacting wave-
function is not a single Slater determinant, or when the non-interacting energies
are nearly degenerate, the LSD and GGA exchange-correlation holes can be
unrealistic even very close to or on top of the electron [36, 91, 66]. (2) In an
extended system, the exact hole may display a diffuse long-range tail which is
not properly captured by either LSD or GGA. To a limited extent, this effect
could be mimicked by reducing the parameter k£ in Eq. (216). An example of a
diffuse hole arises in the calculation of the surface energy of a metal [19, 32]:
When an electron wanders out into the vacuum region, the exchange-correlation
hole around it can extend significantly backward into the interior of the metal.
A more extreme example is “stretched Hj”, the ground state of one electron
in the presence of two protons at very large separation: Half of the exact hole
is localized on each proton, a situation which has no analog in the electron gas
of uniform or slowly-varying density, and for which LSD and GGA make large
self-interaction errors [9, 92, 68].

“Stretched H;”’ and related systems are of course unusual. In most systems,
the exact exchange-correlation hole is reasonably localized around its electron,

(227)
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as it is in LSD or GGA - and that fact is one of the reasons [93] why LSD and
GGA work as well as they do.
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