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� Introduction

��� Quantum Mechanical Many�Electron Problem

The material world of everyday experience� as studied by chemistry and con�
densed�matter physics� is built up from electrons and a few �or at most a few
hundred� kinds of nuclei � The basic interaction is electrostatic or Coulombic

An electron at position r is attracted to a nucleus of charge Z at R by the
potential energy �Z�jr �Rj� a pair of electrons at r and r� repel one another
by the potential energy ��jr� r�j� and two nuclei at R and R� repel one another
as Z �Z�jR�R�j� The electrons must be described by quantum mechanics� while
the more massive nuclei can sometimes be regarded as classical particles� All
of the electrons in the lighter elements� and the chemically important valence
electrons in most elements� move at speeds much less than the speed of light�
and so are non�relativistic�

In essence� that is the simple story of practically everything� But there is
still a long path from these general principles to theoretical prediction of the
structures and properties of atoms� molecules� and solids � and eventually to
the design of new chemicals or materials� If we restrict our focus to the impor�
tant class of ground�state properties� we can take a shortcut through density
functional theory�

These lectures present an introduction to density functionals for non�relati�
vistic Coulomb systems� The reader is assumed to have a working knowledge
of quantum mechanics at the level of one�particle wavefunctions ��r� ���� The
many�electron wavefunction ��r�� r�� � � � � rN � ��� is brie�y introduced here� and
then replaced as basic variable by the electron density n�r�� Various terms of
the total energy are de	ned as functionals of the electron density� and some for�
mal properties of these functionals are discussed� The most widely�used density
functionals � the local spin density and generalized gradient approximations �
are then introduced and discussed� At the end� the reader should be prepared
to approach the broad literature of quantum chemistry and condensed�matter
physics in which these density functionals are applied to predict diverse proper�
ties
 the shapes and sizes of molecules� the crystal structures of solids� binding
or atomization energies� ionization energies and electron a�nities� the heights of
energy barriers to various processes� static response functions� vibrational fre�
quencies of nuclei� etc� Moreover� the reader�s approach will be an informed and
discerning one� based upon an understanding of where these functionals come
from� why they work� and how they work�

These lectures are intended to teach at the introductory level� and not to
serve as a comprehensive treatise� The reader who wants more can go to several
excellent general sources ��� �� �� or to the original literature� Atomic units �in
which all electromagnetic equations are written in cgs form� and the fundamental
constants �h� e�� and m are set to unity� have been used throughout�
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��� Summary of Kohn�Sham Spin�Density Functional Theory

This introduction closes with a brief presentation of the Kohn�Sham �
� spin�
density functional method � the most widely�used method of electronic�structure
calculation in condensed�matter physics and one of the most widely�used meth�
ods in quantum chemistry� We seek the ground�state total energy E and spin
densities n��r�� n��r� for a collection of N electrons interacting with one an�
other and with an external potential v�r� �due to the nuclei in most practical
cases�� These are found by the selfconsistent solution of an auxiliary �	ctitious�
one�electron Schr�odinger equation
�

��

�
r� � v�r� � u��n�� r� � v�xc��n�� n��� r�

�
����r� � �������r� � ���

n��r� �
X
�

��	� ����j����r�j� � ���

Here 
 �� or � is the z�component of spin� and � stands for the set of remain�
ing one�electron quantum numbers� The e�ective potential includes a classical
Hartree potential

u��n�� r� �

Z
d�r�

n�r��

jr� r�j � ���

n�r� � n��r� � n��r� � ���

and a multiplicative spin�dependent exchange�correlation potential
v�xc��n�� n��� r�� which is a functional of the spin densities� The step function
��	� ���� in Eq� ��� ensures that all Kohn�Sham spin orbitals with ��� � 	 are
singly occupied� and those with ��� 
 	 are empty� The chemical potential 	 is
chosen to satisfy Z

d�rn�r� � N � ���

Because Eqs� ��� and ��� are interlinked� they can only be solved by iteration to
selfconsistency�

The total energy is

E � Ts�n�� n�� �

Z
d�rn�r�v�r� � U �n� �Exc�n�� n�� � �
�

where

Ts�n�� n�� �
X
�

X
�

��	� ����h��� j � �

�
r�j���i ���

is the non�interacting kinetic energy � a functional of the spin densities because
�as we shall see� the external potential v�r� and hence the Kohn�Sham orbitals
are functionals of the spin densities� In our notation�

h��� j �Oj���i �
Z
d�r�����r�

�O����r� � ���
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The second term of Eq� �
� is the interaction of the electrons with the external
potential� The third term of Eq� �
� is the Hartree electrostatic self�repulsion of
the electron density

U �n� �
�

�

Z
d�r

Z
d�r�

n�r�n�r��

jr� r�j � ���

The last term of Eq� �
� is the exchange�correlation energy � whose functional
derivative �as explained later� yields the exchange�correlation potential

v�xc��n�� n��� r� �
�Exc

�n��r�
� �� �

Not displayed in Eq� �
�� but needed for a system of electrons and nuclei� is the
electrostatic repulsion among the nuclei� Exc is de	ned to include everything else
omitted from the 	rst three terms of Eq� �
��

If the exact dependence of Exc upon n� and n� were known� these equa�
tions would predict the exact ground�state energy and spin�densities of a many�
electron system� The forces on the nuclei � and their equilibrium positions� could
then be found from � �E

�R �
In practice� the exchange�correlation energy functional must be approxi�

mated� The local spin density �
� �� �LSD� approximation has long been popular
in solid state physics


ELSD
xc �n�� n�� �

Z
d�rn�r�exc�n��r�� n��r�� � ����

where exc�n�� n�� is the known ��� �� � � exchange�correlation energy per particle
for an electron gas of uniform spin densities n�� n�� More recently� generalized
gradient approximations �GGA�s� ���� ��� ��� ��� ��� �
� ��� ��� ��� � � ��� have
become popular in quantum chemistry


EGGA
xc �n�� n�� �

Z
d�rf�n�� n��rn��rn�� � ����

The input exc�n�� n�� to LSD is in principle unique� since there is a possible
system in which n� and n� are constant and for which LSD is exact� At least in
this sense� there is no unique input f�n�� n��rn��rn�� to GGA� These lectures
will stress a conservative �philosophy of approximation� �� � ���� in which we
construct a nearly�unique GGA with all the known correct formal features of
LSD� plus others�

The equations presented here are really all that we need to do a practical
calculation for a many�electron system� They allow us to draw upon the intuition
and experience we have developed for one�particle systems� The many�body ef�
fects are in U �n� �trivially� and Exc�n�� n�� �less trivially�� but we shall also
develop an intuitive appreciation for Exc�

While Exc is often a relatively small fraction of the total energy of an atom�
molecule� or solid �minus the work needed to break up the system into separated
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electrons and nuclei�� the contribution from Exc is typically about �  ! or
more of the chemical bonding or atomization energy �the work needed to break
up the system into separated neutral atoms�� Exc is a kind of �glue�� without
which atoms would bond weakly if at all� Thus� accurate approximations to
Exc are essential to the whole enterprise of density functional theory� Table �
shows the typical relative errors we 	nd from selfconsistent calculations within
the LSD or GGA approximations of Eqs� ���� and ����� Table � shows the mean
absolute errors in the atomization energies of � molecules when calculated by
LSD� by GGA� and in the Hartree�Fock approximation � Hartree�Fock treats
exchange exactly� but neglects correlation completely� While the Hartree�Fock
total energy is an upper bound to the true ground�state total energy� the LSD
and GGA energies are not�

Table �� Typical errors for atoms� molecules� and solids from selfconsistent Kohn	Sham
calculations within the LSD and GGA approximations of Eqs� 
��� and 
���� Note that
there is typically some cancellation of errors between the exchange 
Ex� and correlation

Ec� contributions to Exc� The �energy barrier� is the barrier to a chemical reaction
that arises at a highly	bonded intermediate state�

Property LSD GGA

Ex � � 
not negative enough� ��� �
Ec ��� � 
too negative� � �
bond length � � 
too short� � � 
too long�
structure overly favors close packing more correct
energy barrier ��� � 
too low� 
� � 
too low�

Table �� Mean absolute error of the atomization energies for �� molecules� evaluated
by various approximations� 
� hartree � ����� eV� 
From Ref� ������

Approximation Mean absolute error 
eV�

Unrestricted Hartree	Fock 
�� 
underbinding�
LSD ��
 
overbinding�
GGA ��
 
mostly overbinding�
Desired �chemical accuracy� ����

In most cases we are only interested in small total�energy changes associated
with re�arrangements of the outer or valence electrons � to which the inner or
core electrons of the atoms do not contribute� In these cases� we can replace each
core by the pseudopotential ���� it presents to the valence electrons� and then
expand the valence�electron orbitals in an economical and convenient basis of
plane waves� Pseudopotentials are routinely combined with density functionals�
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Although the most realistic pseudopotentials are nonlocal operators and not
simply local or multiplication operators� and although density functional theory
in principle requires a local external potential� this inconsistency does not seem
to cause any practical di�culties�

There are empirical versions of LSD and GGA� but these lectures will only
discuss non�empirical versions� If every electronic�structure calculation were done
at least twice� once with nonempirical LSD and once with nonempirical GGA�
the results would be useful not only to those interested in the systems under
consideration but also to those interested in the development and understanding
of density functionals�

� Wavefunction Theory

��� Wavefunctions and Their Interpretation

We begin with a brief review of one�particle quantum mechanics ���� An electron
has spin s � �

�
and z�component of spin 
 � � �

�
��� or � �

�
���� The Hamiltonian

or energy operator for one electron in the presence of an external potential v�r�
is

�h � ��

�
r� � v�r� � ����

The energy eigenstates ���r� 
� and eigenvalues �� are solutions of the time�
independent Schr�odinger equation

�h���r� 
� � �����r� 
� � ����

and j���r� 
�j�d�r is the probability to 	nd the electron with spin 
 in volume
element d�r at r� given that it is in energy eigenstate ��� ThusX

�

Z
d�rj���r� 
�j� � h�j�i � � � ����

Since �h commutes with �sz� we can choose the �� to be eigenstates of �sz� i�e�� we
can choose 
 �� or � as a one�electron quantum number�

The Hamiltonian for N electrons in the presence of an external potential v�r�
is ���

�H �

NX
i��

��

�
r�
i �

NX
i��

v�ri� �
�

�

X
i

X
j ��i

�

jri � rj j
� �T � �Vext � �Vee � ��
�

The electron�electron repulsion �Vee sums over distinct pairs of di�erent electrons�
The states of well�de	ned energy are the eigenstates of �H 


�H�k�r�
�� � � � � rN
N � � Ek�k�r�
�� � � � � rN
N � � ����
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where k is a complete set of many�electron quantum numbers� we shall be inter�
ested mainly in the ground state or state of lowest energy� the zero�temperature
equilibrium state for the electrons�

Because electrons are fermions� the only physical solutions of Eq� ���� are
those wavefunctions that are antisymmetric ��� under exchange of two electron
labels i and j


��r�
�� � � � � ri
i� � � � � rj
j � � � � � rN
N � �

� ��r�
�� � � � � rj
j � � � � � ri
i� � � � � rN
N � � ����

There areN " distinct permutations of the labels �� �� � � � � N� which by Eq� ���� all
have the same j� j�� Thus N "j��r�
�� � � � � rN
N �j�d�r� � � � d�rN is the probability
to 	nd any electron with spin 
� in volume element d�r�� etc�� and

�

N "

X
������N

Z
d�r� � � �

Z
d�rNN "j��r�
�� � � � � rN
N �j� �

Z
j� j� � h� j�i � � �

����

We de	ne the electron spin density n��r� so that n��r�d
�r is the probability

to 	nd an electron with spin 
 in volume element d�r at r� We 	nd n��r� by
integrating over the coordinates and spins of the �N � �� other electrons� i�e��

n��r� �
�

�N � ��"

X
������N

Z
d�r� � � �

Z
d�rNN "j��r
� r�
�� � � � � rN
N �j�

� N
X

������N

Z
d�r� � � �

Z
d�rN j��r
� r�
�� � � � � rN
N �j� � �� �

Equations ���� and �� � yield

X
�

Z
d�rn��r� � N � ����

Based on the probability interpretation of n��r�� we might have expected the
right�hand side of Eq� ���� to be �� but that is wrong� the sum of probabilities
of all mutually�exclusive events equals �� but 	nding an electron at r does not

exclude the possibility of 	nding one at r�� except in a one�electron system�
Eq� ���� shows that n��r�d

�r is the average number of electrons of spin 
 in
volume element d�r� Moreover� the expectation value of the external potential
is

h �Vexti � h� j
NX
i��

v�ri�j�i �
Z
d�rn�r�v�r� � ����

with the electron density n�r� given by Eq� ����
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��� Wavefunctions for Non�Interacting Electrons

As an important special case� consider the Hamiltonian for N non�interacting
electrons


�Hnon �

NX
i��

�
��

�
r�
i � v�ri�

�
� ����

The eigenfunctions of the one�electron problem of Eqs� ���� and ���� are spin
orbitals which can be used to construct the antisymmetric eigenfunctions � of
�Hnon


�Hnon� � Enon� � ����

Let i stand for ri� 
i and construct the Slater determinant or antisymmetrized
product ���

� �
�p
N "

X
P

����P����P������P�� � � � ��N �PN� � ����

where the quantum label �i now includes the spin quantum number 
� Here P
is any permutation of the labels �� �� � � � � N� and ����P equals �� for an even
permutation and �� for an odd permutation� The total energy is

Enon � ��� � ��� � � � �� ��N � ��
�

and the density is given by the sum of j��i�r�j�� If any �i equals any �j in
Eq� ����� we 	nd � �  � which is not a normalizable wavefunction� This is the
Pauli exclusion principle 
 two or more non�interacting electrons may not occupy
the same spin orbital�

As an example� consider the ground state for the non�interacting helium atom
�N � ��� The occupied spin orbitals are

���r� 
� � ��s�r����� � ����

���r� 
� � ��s�r����� � ����

and the ��electron Slater determinant is

���� �� �
�p
�

�������r�� 
�� ���r�� 
�����r�� 
�� ���r�� 
��

����
� ��s�r����s�r��

�p
�
����������� � ����������� � ����

which is symmetric in space but antisymmetric in spin �whence the total spin is
S �  ��

If several di�erent Slater determinants yield the same non�interacting energy
Enon� then a linear combination of them will be another antisymmetric eigenstate
of �Hnon� More generally� the Slater�determinant eigenstates of �Hnon de	ne a
complete orthonormal basis for expansion of the antisymmetric eigenstates of
�H � the interacting Hamiltonian of Eq� ��
��
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��� Wavefunction Variational Principle

The Schr�odinger equation ���� is equivalent to a wavefunction variational prin�
ciple ���
 Extremize h� j �H j�i subject to the constraint h� j�i � �� i�e�� set the
following 	rst variation to zero


�
n
h� j �H j�i�h� j�i

o
�  � �� �

The ground state energy and wavefunction are found by minimizing the expres�
sion in curly brackets�

The Rayleigh�Ritz method 	nds the extrema or the minimum in a restricted

space of wavefunctions� For example� the Hartree�Fock approximation to the
ground�state wavefunction is the single Slater determinant � that minimizes
h�j �H j�i�h�j�i� The con	guration�interaction ground�state wavefunction ���� is
an energy�minimizing linear combination of Slater determinants� restricted to
certain kinds of excitations out of a reference determinant� The Quantum Monte
Carlo method typically employs a trial wavefunction which is a single Slater de�
terminant times a Jastrow pair�correlation factor ����� Those widely�used many�
electron wavefunction methods are both approximate and computationally de�
manding� especially for large systems where density functional methods are dis�
tinctly more e�cient�

The unrestricted solution of Eq� �� � is equivalent by the method of Lagrange
multipliers to the unconstrained solution of

�
n
h� j �H j�i �Eh� j�i

o
�  � ����

i�e��

h�� j� �H �E�j�i �  � ����

Since �� is an arbitrary variation� we recover the Schr�odinger equation �����
Every eigenstate of �H is an extremum of h� j �H j�i�h� j�i and vice versa�

The wavefunction variational principle implies the Hellmann�Feynman and
virial theorems below and also implies the Hohenberg�Kohn ���� density func�
tional variational principle to be presented later�

��� Hellmann�Feynman Theorem

Often the Hamiltonian �H� depends upon a parameter �� and we want to know
how the energy E� depends upon this parameter� For any normalized variational
solution �� �including in particular any eigenstate of �H��� we de	ne

E� � h��j �H�j��i � ����

Then
dE�

d�
�

d

d��
h��� j �H�j���i

����
����

� h��j�
�H�

��
j��i � ����



�� John P� Perdew and Stefan Kurth

The 	rst term of Eq� ���� vanishes by the variational principle� and we 	nd the
Hellmann�Feynman theorem ��
�

dE�

d�
� h��j�

�H�

��
j��i � ����

Eq� ���� will be useful later for our understanding of Exc� For now� we shall
use Eq� ���� to derive the electrostatic force theorem��
�� Let ri be the position
of the i�th electron� and RI the position of the �static� nucleus I with atomic
number ZI � The Hamiltonian

�H �
NX
i��

��

�
r�
i �

X
i

X
I

�ZI
jri �RI j �

�

�

X
i

X
j ��i

�

jri � rj j �
�

�

X
I

X
J ��I

ZIZJ
jRI �RJ j

��
�
depends parametrically upon the position RI � so the force on nucleus I is

� �E

�RI
�

�
�

������ � �H

�RI

������
�

�

Z
d�rn�r�

ZI�r�RI�

jr�RI j� �
X
J ��I

ZIZJ�RI �RJ�

jRI �RJ j� � ����

just as classical electrostatics would predict� Eq� ���� can be used to 	nd the
equilibrium geometries of a molecule or solid by varying all the RI until the
energy is a minimum and ��E��RI �  � Eq� ���� also forms the basis for
a possible density functional molecular dynamics � in which the nuclei move
under these forces by Newton�s second law� In principle� all we need for either
application is an accurate electron density for each set of nuclear positions�

��� Virial Theorem

The density scaling relations to be presented in section �� which constitute impor�
tant constraints on the density functionals� are rooted in the same wavefunction
scaling that will be used here to derive the virial theorem ��
��

Let ��r�� � � � � rN � be any extremum of h� j �H j�i over normalized wavefunc�
tions� i�e�� any eigenstate or optimized restricted trial wavefunction �where ir�
relevant spin variables have been suppressed�� For any scale parameter � 
  �
de	ne the uniformly�scaled wavefunction

���r�� � � � � rN � � ��N	����r�� � � � � �rN � ����

and observe that
h�� j��i � h� j�i � � � ����

The density corresponding to the scaled wavefunction is the scaled density

n��r� � ��n��r� � �� �
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which clearly conserves the electron number


Z
d�rn��r� �

Z
d�rn�r� � N � ����

� 
 � leads to densities n��r� that are higher �on average� and more contracted
than n�r�� while � � � produces densities that are lower and more expanded�

Now consider what happens to h �Hi � h �T � �V i under scaling� By de	nition
of � �

d

d�
h�� j �T � �V j��i

����
���

�  � ����

But �T is homogeneous of degree �� in r� so

h�� j �T j��i � ��h� j �T j�i � ����

and Eq� ���� becomes

�h� j �T j�i� d

d�
h�� j �V j��i

����
���

�  � ����

or

�h �T i � h
NX
i��

ri � �
�V

�ri
i �  � ����

If the potential energy �V is homogeneous of degree n� i�e�� if

V ��ri� � � � � �rN � � �nV �ri� � � � � rN � � ��
�

then

h�� j �V j��i � ��nh� j �V j�i � ����

and Eq� ���� becomes simply

�h� j �T j�i � nh� j �V j�i �  � ����

For example� n � �� for the Hamiltonian of Eq� ��
� in the presence of a single
nucleus� or more generally when the Hellmann�Feynman forces of Eq� ���� vanish
for the state � �
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� De�nitions of Density Functionals

��� Introduction to Density Functionals

The many�electron wavefunction ��r�
�� � � � � rN
N � contains a great deal of
information � all we could ever have� but more than we usually want� Because it
is a function of many variables� it is not easy to calculate� store� apply or even
think about� Often we want no more than the total energy E �and its changes��
or perhaps also the spin densities n��r� and n��r�� for the ground state� As we
shall see� we can formally replace � by the observables n� and n� as the basic
variational objects�

While a function is a rule which assigns a number f�x� to a number x� a
functional is a rule which assigns a number F �f � to a function f � For example�
h�� � � h� j �H j�i is a functional of the trial wavefunction � � given the Hamiltonian
�H � U �n� of Eq� ��� is a functional of the density n�r�� as is the local density
approximation for the exchange energy


ELDA
x �n� � Ax

Z
d�rn�r��	� � ����

The functional derivative �F��n�r� tells us how the functional F �n� changes
under a small variation �n�r�


�F �

Z
d�r

�
�F

�n�r�

�
�n�r� � �� �

For example�

�ELDA
x � Ax

Z
d�r

n
�n�r� � �n�r���	� � n�r��	�

o
� Ax

Z
d�r

�

�
n�r��	��n�r� �

so

�ELDA
x

�n�r�
� Ax

�

�
n�r��	� � ����

Similarly�

�U �n�

�n�r�
� u��n�� r� � ����

where the right hand side is given by Eq� ���� Functional derivatives of various
orders can be linked through the translational and rotational symmetries of
empty space �����
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��� Density Variational Principle

We seek a density functional analog of Eq� �� �� Instead of the original derivation
of Hohenberg� Kohn and Sham ���� 
� � which was based upon �reductio ad
absurdum�� we follow the �constrained search� approach of Levy ����� which is
in some respects simpler and more constructive�

Eq� �� � tells us that the ground state energy can be found by minimizing
h� j �H j�i over all normalized� antisymmetric N �particle wavefunctions


E � min


h� j �H j�i � ����

We now separate the minimization of Eq� ���� into two steps� First we consider
all wavefunctions � which yield a given density n�r�� and minimize over those
wavefunctions


min

�n

h� j �H j�i � min

�n

h� j �T � �Veej�i�
Z
d�rv�r�n�r� � ����

where we have exploited the fact that all wavefunctions that yield the same n�r�
also yield the same h� j �Vextj�i� Then we de	ne the universal functional

F �n� � min

�n

h� j �T � �Veej�i � h�minn j �T � �Veej�minn i ����

where �minn is that wavefunction which delivers the minimum for a given n�
Finally we minimize over all N �electron densities n�r�


E � min
n

Ev �n�

� min
n

�
F �n� �

Z
d�rv�r�n�r�

�
� ��
�

where of course v�r� is held 	xed during the minimization� The minimizing
density is then the ground�state density�

The constraint of 	xed N can be handled formally through introduction of
a Lagrange multiplier 	


�

�
F �n� �

Z
d�rv�r�n�r� � 	

Z
d�rn�r�

�
�  � ����

which is equivalent to the Euler equation

�F

�n�r�
� v�r� � 	 � ����

	 is to be adjusted until Eq� ��� is satis	ed� Eq� ���� shows that the external
potential v�r� is uniquely determined by the ground state density �or by any one
of them� if the ground state is degenerate��

The functional F �n� is de	ned via Eq� ���� for all densities n�r� which are
�N �representable�� i�e�� come from an antisymmetric N �electron wavefunction�
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We shall discuss the extension from wavefunctions to ensembles in section ����
The functional derivative �F��n�r� is de	ned via Eq� ���� for all densities which
are �v�representable�� i�e�� come from antisymmetric N �electron ground�state
wavefunctions for some choice of external potential v�r��

This formal development requires only the total density of Eq� ���� and not
the separate spin densities n��r� and n��r�� However� it is clear how to get to a
spin�density functional theory
 just replace the constraint of 	xed n in Eq� ����
and subsequent equations by that of 	xed n� and n�� There are two practical
reasons to do so
 ��� This extension is required when the external potential is
spin�dependent� i�e�� v�r� � v��r�� as when an external magnetic 	eld couples
to the z�component of electron spin� �If this 	eld also couples to the current
density j�r�� then we must resort to a current�density functional theory�� ���
Even when v�r� is spin�independent� we may be interested in the physical spin
magnetization �e�g�� in magnetic materials�� ��� Even when neither ��� nor ���
applies� our local and semi�local approximations �Eqs� ���� and ����� typically
work better when we use n� and n� instead of n�

��� Kohn�Sham Non�Interacting System

For a system of non�interacting electrons� �Vee of Eq� ��
� vanishes so F �n� of
Eq� ���� reduces to

Ts�n� � min

�n

h� j �T j�i � h�minn j �T j�minn i � ����

Although we can search over all antisymmetric N �electron wavefunctions in
Eq� ����� the minimizing wavefunction �minn for a given density will be a non�
interacting wavefunction �a single Slater determinant or a linear combination of
a few� for some external potential �Vs such that

�Ts
�n�r�

� vs�r� � 	 � �
 �

as in Eq� ����� In Eq� �
 �� the Kohn�Sham potential vs�r� is a functional of
n�r�� If there were any di�erence between 	 and 	s� the chemical potentials for
interacting and non�interacting systems of the same density� it could be absorbed
into vs�r�� We have assumed that n�r� is both interacting and non�interacting
v�representable�

Now we de�ne the exchange�correlation energy Exc�n� by

F �n� � Ts�n� � U �n� �Exc�n� � �
��

where U �n� is given by Eq� ���� The Euler equations ���� and �
 � are consistent
with one another if and only if

vs�r� � v�r� �
�U �n�

�n�r�
�

�Exc

�n�r�
� �
��

Thus we have derived the Kohn�Sham method �
� of section ����
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The Kohn�Sham method treats Ts�n� exactly� leaving only Exc�n� to be ap�
proximated� This makes good sense� for several reasons
 ��� Ts is typically a
very large part of the energy� while Exc is a smaller part� ��� Ts is largely re�
sponsible for density oscillations of the shell structure and Friedel types� which
are accurately described by the Kohn�Sham method� ��� E is somewhat better
suited to the local and semi�local approximations than is Ts�n�� for reasons to
be discussed later� The price to be paid for these bene	ts is the appearance of
orbitals� If we had a very accurate approximation for Ts directly in terms of n�
we could dispense with the orbitals and solve the Euler equation �
 � directly
for n�r��

The total energy of Eq� �
� may also be written as

E �
X
��

��	� ������� � U �n��
Z
d�rn�r�vxc��n�� r� �Exc�n� � �
��

where the second and third terms on the right�hand�side simply remove contri�
butions to the 	rst term which do not belong in the total energy� The 	rst term
on the right of Eq� �
��� the non�interacting energy Enon� is the only term that
appears in the semi�empirical H�uckel theory ��
�� This 	rst term includes most
of the electronic shell structure e�ects which arise when Ts�n� is treated exactly
�but not when Ts�n� is treated in a continuum model like the Thomas�Fermi
approximation or the gradient expansion��

��� Exchange Energy and Correlation Energy

Exc�n� is the sum of distinct exchange and correlation terms


Exc�n� � Ex�n� �Ec�n� � �
��

where ����
Ex�n� � h�minn j �Veej�minn i � U �n� � �
��

When �minn is a single Slater determinant� Eq� �
�� is just the usual Fock integral
applied to the Kohn�Sham orbitals� i�e�� it di�ers from the Hartree�Fock exchange
energy only to the extent that the Kohn�Sham orbitals di�er from the Hartree�
Fock orbitals for a given system or density �in the same way that Ts�n� di�ers
from the Hartree�Fock kinetic energy�� We note that

h�minn j �T � �Veej�minn i � Ts�n� � U �n� �Ex�n� � �

�

and that� in the one�electron � �Vee �  � limit ����

Ex�n� � �U �n� �N � �� � �
��

The correlation energy is

Ec�n� � F �n�� fTs�n� � U �n� �Ex�n�g
� h�minn j �T � �Veej�minn i � h�minn j �T � �Veej�minn i � �
��
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Since �minn is that wavefunction which yields density n and minimizes h �T � �Veei�
Eq� �
�� shows that

Ec�n� �  � �
��

Since �minn is that wavefunction which yields density n and minimizes h �T i�
Eq� �
�� shows that Ec�n� is the sum of a positive kinetic energy piece and a
negative potential energy piece� These pieces of Ec contribute respectively to
the 	rst and second terms of the virial theorem� Eq� ����� Clearly for any one�
electron system ���

Ec�n� �  �N � �� � �� �

Eqs� �
�� and �� � show that the exchange�correlation energy of a one�elec�
tron system simply cancels the spurious self�interaction U �n�� In the same way�
the exchange�correlation potential cancels the spurious self�interaction in the
Kohn�Sham potential ���

�Ex

�n�r�
� �u��n�� r� �N � �� � ����

�Ec

�n�r�
�  �N � �� � ����

Thus

lim
r��

�Exc

�n�r�
� ��

r
�N � �� � ����

The extension of these one�electron results to spin�density functional theory is
straightforward� since a one�electron system is fully spin�polarized�

��� Coupling�Constant Integration

The de	nitions �
�� and �
�� are formal ones� and do not provide much intuitive
or physical insight into the exchange and correlation energies� or much guidance
for the approximation of their density functionals� These insights are provided
by the coupling�constant integration �� � ��� ��� ��� to be derived below�

Let us de	ne �min��n as that normalized� antisymmetric wavefunction which
yields density n�r� and minimizes the expectation value of �T � � �Vee� where we
have introduced a non�negative coupling constant �� When � � �� �min��n is �minn �
the interacting ground�state wavefunction for density n� When � �  � �min��n is
�minn � the non�interacting or Kohn�Sham wavefunction for density n� Varying �
at 	xed n�r� amounts to varying the external potential v��r�
 At � � �� v��r�
is the true external potential� while at � �  it is the Kohn�Sham e�ective
potential vs�r�� We normally assume a smooth� �adiabatic connection� between
the interacting and non�interacting ground states as � is reduced from � to  �

Now we write Eqs� �
��� �
�� and �
�� as

Exc�n�

� h�min��n j �T � � �Veej�min��n i
���
���

� h�min��n j �T � � �Veej�min��n i
���
���

� U �n�

�

Z �

�

d�
d

d�
h�min��n j �T � � �Veej�min��n i � U �n� � ����
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The Hellmann�Feynman theorem of section ��� allows us to simplify Eq� ���� to

Exc�n� �

Z �

�

d�h�min��n j �Veej�min��n i � U �n� � ����

Eq� ���� �looks like� a potential energy� the kinetic energy contribution to Exc

has been subsumed by the coupling�constant integration� We should remember�
of course� that only � � � is real or physical� The Kohn�Sham system at � �  �
and all the intermediate values of �� are convenient mathematical 	ctions�

To make further progress� we need to know how to evaluate the N �electron
expectation value of a sum of one�body operators like �T � or a sum of two�body
operators like �Vee� For this purpose� we introduce one�electron ���� and two�
electron ���� reduced density matrices ���� 


���r
�
� r
� � N

X
������NZ

d�r� � � �

Z
d�rN�

��r�
� r�
�� � � � � rN
N ���r
� r�
�� � � � � rN
N � � ��
�

���r
�� r� � N�N � ��

X
������N

Z
d�r� � � �

Z
d�rN j��r�
�� r
�� � � � � rN
N �j� � ����

From Eq� �� ��
n��r� � ���r
� r
� � ����

Clearly also

h �T i �
X
�

Z
d�r � �

�

�

�r
� �
�r

���r
�
� r
�

�����
r��r

� ����

h �Veei � �

�

Z
d�r

Z
d�r�

���r
�� r�

jr� r�j � �� �

We interpret the positive number ���r
�� r�d�r�d�r as the joint probability of

	nding an electron in volume element d�r� at r�� and an electron in d�r at r� By
standard probability theory� this is the product of the probability of 	nding an
electron in d�r �n�r�d�r� and the conditional probability of 	nding an electron
in d�r�� given that there is one at r �n��r� r

��d�r��


���r
�� r� � n�r�n��r� r

�� � ����

By arguments similar to those used in section ���� we interpret n��r� r
�� as the

average density of electrons at r�� given that there is an electron at r� Clearly
then Z

d�r�n��r� r
�� � N � � � ����

For the wavefunction �min��n � we write

n��r� r
�� � n�r�� � n�xc�r� r

�� � ����



�� John P� Perdew and Stefan Kurth

an equation which de	nes n�xc�r� r
��� the density at r� of the exchange�correlation

hole ���� about an electron at r� Eqs� ��� and ���� imply thatZ
d�r�n�xc�r� r

�� � �� � ����

which says that� if an electron is de	nitely at r� it is missing from the rest of the
system�

Because the Coulomb interaction ��u is singular as u � jr � r�j �  � the
exchange�correlation hole density has a cusp ���� ��� around u �  


�

�u

Z
d�u
��

n�xc�r� r� u�

����
u��

� �
�
n�r� � n�xc�r� r�

	
� ����

where
R
d�u����� is an angular average� This cusp vanishes when � �  � and

also in the fully�spin�polarized and low�density limits� in which all other electrons
are excluded from the position of a given electron
 n�xc�r� r� � �n�r��

We can now rewrite Eq� ���� as ����

Exc�n� �
�

�

Z
d�r

Z
d�r�

n�r��nxc�r� r
��

jr� r�j � ��
�

where

�nxc�r� r
�� �

Z �

�

d�n�xc�r� r
�� ����

is the coupling�constant averaged hole density� The exchange�correlation energy
is just the electrostatic interaction between each electron and the coupling�
constant�averaged exchange�correlation hole which surrounds it� The hole is
created by three e�ects
 ��� self�interaction correction� a classical e�ect which
guarantees that an electron cannot interact with itself� ��� the Pauli exclusion
principle� which tends to keep two electrons with parallel spins apart in space�
and ��� the Coulomb repulsion� which tends to keep any two electrons apart
in space� E�ects ��� and ��� are responsible for the exchange energy� which is
present even at � �  � while e�ect ��� is responsible for the correlation energy�
and arises only for � ��  �

If �min����n is a single Slater determinant� as it typically is� then the one� and
two�electron density matrices at � �  can be constructed explicitly from the
Kohn�Sham spin orbitals ����r�


����� �r�
� r
� �
X
�

��	� �����
�
���r

������r� � ����

����� �r�� r� � n�r�n�r�� � n�r�nx�r� r
�� � ����

where

nx�r� r
�� � n���xc �r� r�� � �

X
�

j����� �r�
� r
�j�
n�r�

�� �
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is the exact exchange�hole density� Eq� �� � shows that

nx�r� r
�� �  � ����

so the exact exchange energy

Ex�n� �
�

�

Z
d�r

Z
d�r�

n�r�nx�r� r
��

jr� r�j ����

is also negative� and can be written as the sum of up�spin and down�spin con�
tributions


Ex � E�
x �E�

x �  � ����

Eq� ���� provides a sum rule for the exchange hole
Z
d�r�nx�r� r

�� � �� � ����

Eqs� �� � and ���� show that the �on�top� exchange hole density is ��
�

nx�r� r� � �n���r� � n���r�

n�r�
� ����

which is determined by just the local spin densities at position r � suggesting
a reason why local spin density approximations work better than local density
approximations�

The correlation hole density is de	ned by

�nxc�r� r
�� � nx�r� r

�� � �nc�r� r
�� � ��
�

and satis	es the sum rule Z
d�r��nc�r� r

�� �  � ����

which says that Coulomb repulsion changes the shape of the hole but not its
integral� In fact� this repulsion typically makes the hole deeper but more short�
ranged� with a negative on�top correlation hole density


�nc�r� r� �  � ����

The positivity of Eq� ���� is equivalent via Eqs� ���� and ���� to the inequality

�nxc�r� r
�� 	 �n�r�� � ����

which asserts that the hole cannot take away electrons that weren�t there initially�
By the sum rule ����� the correlation hole density �nc�r� r

�� must have positive
as well as negative contributions� Moreover� unlike the exchange hole density
nx�r� r

��� the exchange�correlation hole density �nxc�r� r
�� can be positive�
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To better understand Exc� we can simplify Eq� ��
� to the �real�space ana�
lysis� ����

Exc�n� �
N

�

Z �

�

du ��u�
h�nxc�u�i

u
� ��  �

where

h�nxc�u�i � �

N

Z
d�rn�r�

Z
d�u
��

�nxc�r� r� u� �� ��

is the system� and spherical�average of the coupling�constant�averaged hole den�
sity� The sum rule of Eq� ���� becomes

Z �

�

du ��u�h�nxc�u�i � �� � �� ��

As u increases from  � hnx�u�i rises analytically like hnx� �i � O�u��� while
h�nc�u�i rises like h�nc� �i � O�juj� as a consequence of the cusp of Eq� �����
Because of the constraint of Eq� �� �� and because of the factor ��u in Eq� ��  ��
Exc typically becomes more negative as the on�top hole density h�nxc�u�i gets
more negative�

� Formal Properties of Functionals

��� Uniform Coordinate Scaling

The more we know of the exact properties of the density functionals Exc�n� and
Ts�n�� the better we shall understand and be able to approximate these function�
als� We start with the behavior of the functionals under a uniform coordinate
scaling of the density� Eq� �� ��

The Hartree electrostatic self�repulsion of the electrons is known exactly
�Eq� ����� and has a simple coordinate scaling


U �n� � �
�

�

Z
d���r�

Z
d���r��

n��r�n��r��

jr� r�j
� �

�

�

Z
d�r�

Z
d�r��

n�r��n�r
�
��

jr� � r��j
� �U �n� � �� ��

where r� � �r and r�� � �r��
Next consider the non�interacting kinetic energy of Eq� ����� Scaling all the

wavefunctions � in the constrained search as in Eq� ���� will scale the density as
in Eq� �� � and scale each kinetic energy expectation value as in Eq� ����� Thus
the constrained search for the unscaled density maps into the constrained search
for the scaled density� and ����

Ts�n� � � �� Ts�n� � �� ��
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We turn now to the exchange energy of Eq� �
��� By the argument of the last
paragraph� �minn� is the scaled version of �minn � Since also

�Vee��r�� � � � � �rN� � ��� �Vee�r�� � � � � rN � � �� ��

and with the help of Eq� �� ��� we 	nd ����

Ex�n� � � �Ex�n� � �� 
�

In the high�density �� � 
� limit� Ts�n� � dominates U �n� � and Ex�n� �� An
example would be an ion with a 	xed number of electrons N and a nuclear
charge Z which tends to in	nity� in this limit� the density and energy become
essentially hydrogenic� and the e�ects of U and Ex become relatively negligible�
In the low�density �� �  � limit� U �n� � and Ex�n� � dominate Ts�n� ��

We can use coordinate scaling relations to 	x the form of a local density
approximation

F �n� �

Z
d�rf�n�r�� � �� ��

If F �n�� � �pF �n�� then

���
Z
d���r�f



��n��r�

�
� �p

Z
d�rf�n�r�� � �� ��

or f���n� � �p��f�n�� whence

f�n� � n��p	� � �� ��

For the exchange energy of Eq� �� 
�� p � � so Eqs� �� �� and �� �� imply
Eq� ����� For the non�interacting kinetic energy of Eq� �� ��� p � � so Eqs� �� ��
and �� �� imply the Thomas�Fermi approximation

T��n� � As

Z
d�rn�	��r� � ��� �

U �n� of Eq� ��� is too strongly nonlocal for any local approximation�
While Ts�n�� U �n� and Ex�n� have simple scalings� Ec�n� of Eq� �
�� does

not� This is because �minn� � the wavefunction which via Eq� ���� yields the scaled

density n��r� and minimizes the expectation value of �T � �Vee� is not the scaled
wavefunction ��N	��minn ��r�� � � � � �rN �� The scaled wavefunction yields n��r�

but minimizes the expectation value of �T �� �Vee� and it is this latter expectation
value which scales like �� under wavefunction scaling� Thus ����

Ec�n� � � ��E�	�
c �n� � �����

where E
�	�
c �n� is the density functional for the correlation energy in a system for

which the electron�electron interaction is not �Vee but �
�� �Vee�
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To understand these results� let us assume that the Kohn�Sham non�inter�
acting Hamiltonian has a non�degenerate ground state� In the high�density limit
�� �
�� �minn� minimizes just h �T i and reduces to �minn� � Now we treat

� � �Vee �
NX
i��

�
�U

�n�ri�
�

�Ex

�n�ri�

�
�����

as a weak perturbation �� � ��� on the Kohn�Sham non�interacting Hamiltonian�
and 	nd

Ec �
X
n���

jhnj�j ij�
E� �En

� �����

where the jni are the eigenfunctions of the Kohn�Sham non�interacting Hamil�
tonian� and j i is its ground state� Both the numerator and the denominator of
Eq� ����� scale like ��� so ����

lim
���

Ec�n� � � constant � �����

In the low�density limit� �minn� minimizes just h �Veei� and Eq� �
�� then shows
that ����

Ec�n� � � �D�n� �� �  � � �����

Generally� we have a scaling inequality ����

Ec�n� � 
 �Ec�n� �� 
 �� � ���
�

Ec�n� � � �Ec�n� �� � �� � �����

If we choose a density n� we can plot Ec�n� � versus �� and compare the result to
the straight line �Ec�n�� These two curves will drop away from zero as � increases
from zero �with di�erent initial slopes�� then cross at � � �� The convex Ec�n� �
will then approach a negative constant as � �
�

��� Local Lower Bounds

Because of the importance of local and semilocal approximations like Eqs� ����
and ����� bounds on the exact functionals are especially useful when the bounds
are themselves local functionals�

Lieb and Thirring ���� have conjectured that Ts�n� is bounded from below by
the Thomas�Fermi functional

Ts�n� 	 T��n� � �����

where T��n� is given by Eqs� ��� � with

As �
�

� 
������	� � �����
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We have already established that

Ex�n� 	 Exc�n� 	 E���
xc �n� � ��� �

where the 	nal term of Eq� ��� � is the integrand E�
xc�n� of the coupling�constant

integration of Eq� ���� �

E�
xc�n� � h�min��n j �Veej�min��n i � U �n� � �����

evaluated at the upper limit � � �� Lieb and Oxford ���� have proved that

E���
xc �n� 	 �����ELDA

x �n� � �����

where ELDA
x �n� is the local density approximation for the exchange energy�

Eq� ����� with

Ax � � �

��
������	� � �����

��� Spin Scaling Relations

Spin scaling relations can be used to convert density functionals into spin�density
functionals�

For example� the non�interacting kinetic energy is the sum of the separate
kinetic energies of the spin�up and spin�down electrons


Ts�n�� n�� � Ts�n��  � � Ts� � n�� � �����

The corresponding density functional� appropriate to a spin�unpolarized system�
is ��
�

Ts�n� � Ts�n��� n��� � �Ts�n���  � � �����

whence Ts�n���  � �
�

�
Ts�n� and Eq� ����� becomes

Ts�n�� n�� �
�

�
Ts��n�� �

�

�
Ts��n�� � ���
�

Similarly� Eq� ���� implies ��
�

Ex�n�� n�� �
�

�
Ex��n�� �

�

�
Ex��n�� � �����

For example� we can start with the local density approximations ��� � and �����
then apply ���
� and ����� to generate the corresponding local spin density
approximations�

Because two electrons of anti�parallel spin repel one another Coulombically�
making an important contribution to the correlation energy� there is no simple
spin scaling relation for Ec�
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��� Size Consistency

Common sense tells us that the total energy E and density n�r� for a sys�
tem� comprised of two well�separated subsystems with energies E� and E� and
densities n��r� and n��r�� must be E � E� � E� and n�r� � n��r� � n��r��
Approximations which satisfy this expectation� such as the LSD of Eq� ���� or
the GGA of Eq� ����� are properly size consistent ����� Size consistency is not
only a principle of physics� it is almost a principle of epistemology
 How could
we analyze or understand complex systems� if they could not be separated into
simpler components#

Density functionals which are not size consistent are to be avoided� An ex�
ample is the Fermi�Amaldi ���� approximation for the exchange energy�

EFA
x �n� � �U �n�N � � �����

where N is given by Eq� ���� which was constructed to satisfy Eq� �
���

��� Derivative Discontinuity

In section �� our density functionals were de	ned as constrained searches over
wavefunctions� Because all wavefunctions searched have the same electron num�
ber� there is no way to make a number�nonconserving density variation �n�r��
The functional derivatives are de	ned only up to an arbitrary constant� which
has no e�ect on Eq� �� � when

R
d�r�n�r� �  �

To complete the de	nition of the functional derivatives and of the chemical
potential 	� we extend the constrained search from wavefunctions to ensembles
���� � � � An ensemble or mixed state is a set of wavefunctions or pure states and
their respective probabilities� By including wavefunctions with di�erent electron
numbers in the same ensemble� we can develop a density functional theory for
non�integer particle number � Fractional particle numbers can arise in an open
system that shares electrons with its environment� and in which the electron
number �uctuates between integers�

The upshot is that the ground�state energy E�N� varies linearly between
two adjacent integers� and has a derivative discontinuity at each integer� This
discontinuity arises in part from the exchange�correlation energy �and entirely
so in cases for which the integer does not fall on the boundary of an electronic
shell or subshell� e�g�� for N � 
 in the carbon atom but not for N � � in the
neon atom��

By Janak�s theorem ����� the highest partly�occupied Kohn�Sham eigenvalue
�HO equals �E��N � 	� and so changes discontinuously ���� � � at an integer
Z


�HO �

��IZ �Z � � � N � Z�
�AZ �Z � N � Z � ��

� �����

where IZ is the 	rst ionization energy of the Z�electron system �i�e�� the least
energy needed to remove an electron from this system�� and AZ is the electron
a�nity of the Z�electron system �i�e�� AZ � IZ���� If Z does not fall on the
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boundary of an electronic shell or subshell� all of the di�erence between �IZ and
�AZ must arise from a discontinous jump in the exchange�correlation potential
�Exc��n�r� as the electron number N crosses the integer Z�

Since the asymptotic decay of the density of a 	nite system with Z electrons
is controlled by IZ � we can show that the exchange�correlation potential tends
to zero as jrj � 
 ����


lim
jrj��

�Exc

�n�r�
�  �Z � � � N � Z� � ��� �

or more precisely

lim
jrj��

�Exc

�n�r�
� ��

r
�Z � � � N � Z� � �����

AsN increases through the integerZ� �Exc��n�r� jumps up by a positive additive
constant� With further increases in N above Z� this �constant� vanishes� 	rst at
very large jrj and then at smaller and smaller jrj� until it is all gone in the limit
where N approaches the integer Z � � from below�

Simple continuum approximations to Exc�n�� n��� such as the LSD of Eq� ����
or the GGA of Eq� ����� miss much or all the derivative discontinuity� and can
at best average over it� For example� the highest occupied orbital energy for
a neutral atom becomes approximately � �

�
�IZ � AZ�� the average of Eq� �����

from the electron�de	cient and electron�rich sides of neutrality� We must never
forget� when we make these approximations� that we are 	tting a round peg into
a square hole� The areas �integrated properties� of a circle and a square can be
matched� but their perimeters �di�erential properties� will remain stubbornly
di�erent�

� Uniform Electron Gas

��� Kinetic Energy

Simple systems play an important paradigmatic role in science� For example�
the hydrogen atom is a paradigm for all of atomic physics� In the same way�
the uniform electron gas ���� is a paradigm for solid�state physics� and also for
density functional theory� In this system� the electron density n�r� is uniform
or constant over space� and thus the electron number is in	nite� The negative
charge of the electrons is neutralized by a rigid uniform positive background� We
could imagine creating such a system by starting with a simple metal� regarded
as a perfect crystal of valence electrons and ions� and then smearing out the ions
to make the uniform background of positive charge� In fact� the simple metal
sodium is physically very much like a uniform electron gas�

We begin by evaluating the non�interacting kinetic energy �this section� and
exchange energy �next section� per electron for a spin�unpolarized electron gas
of uniform density n� The corresponding energies for the spin�polarized case can
then be found from Eqs� ���
� and ������
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By symmetry� the Kohn�Sham potential vs�r� must be uniform or constant�
and we take it to be zero� We impose boundary conditions within a cube of
volume V � 
� i�e�� we require that the orbitals repeat from one face of the
cube to its opposite face� �Presumably any choice of boundary conditions would
give the same answer as V � 
�� The Kohn�Sham orbitals are then plane waves
exp�ik � r��

p
V � with momenta or wavevectors k and energies k���� The number

of orbitals of both spins in a volume d�k of wavevector space is ��V�������d�k�
by an elementary geometrical argument �����

Let N � nV be the number of electrons in volume V � These electrons occupy
the N lowest Kohn�Sham spin orbitals� i�e�� those with k � kF


N � �
X
k

��kF � k� � �
V

�����

Z kF

�

dk ��k� � V k�F
���

� �����

where kF is called the Fermi wavevector� The Fermi wavelength ���kF is the
shortest de Broglie wavelength for the non�interacting electrons� Clearly

n �
k�F
���

�
�

��r�s
� �����

where we have introduced the Seitz radius rs � the radius of a sphere which on
average contains one electron�

The kinetic energy of an orbital is k���� and the average kinetic energy per
electron is

ts�n� �
�

N

X
k

��kF � k�
k�

�
�

�V
N�����

Z kF

�

dk ��k�
k�

�
�

�

�

k�F
�

� �����

or ��� of the Fermi energy� In other notation�

ts�n� �
�

� 
����n��	� �

�

� 

������
�	�

r�s
� �����

All of this kinetic energy follows from the Pauli exclusion principle� i�e�� from
the fermion character of the electron�

��� Exchange Energy

To evaluate the exchange energy� we need the Kohn�Sham one�matrix for elec�
trons of spin 
� as de	ned in Eq� ����


����� �r� u
� r
� �
X
k

��kF � k�
exp��ik � �r� u�pV

exp�ik � r�pV

�
�

�����

Z kF

�

dk ��k�
Z

d�k
��

exp��ik � u�

�
�

���

Z kF

�

dk k�
sin�ku�

ku

�
k�F
���

sin�kFu�� kFu cos�kFu�

�kFu��
� ���
�



Density Functionals for Non	Relativistic Coulomb Systems ��

The exchange hole density at distance u from an electron is� by Eq� �� ��

nx�u� � �� j�
���
� �r � u
� r
�j�

n
� �����

which ranges from �n�� at u �  �where all other electrons of the same spin
are excluded by the Pauli principle� to  �like ��u�� as u � 
� The exchange
energy per electron is

ex�n� �

Z �

�

du ��unx�u� � � �

��
kF � �����

In other notation�

ex�n� � � �

��
����n��	� � � �

��

������
�	�

rs
� �����

Since the self�interaction correction vanishes for the di�use orbitals of the uni�
form gas� all of this exchange energy is due to the Pauli exclusion principle�

��� Correlation Energy

Exact analytic expressions for ec�n�� the correlation energy per electron of the
uniform gas� are known only in extreme limits� The high�density �rs �  � limit
is also the weak�coupling limit� in which

ec�n� � c� ln rs � c� � c�rs ln rs � c�rs � � � � �rs �  � ��� �

from many�body perturbation theory ����� The positive constants c� �  � �� ��
���� and c� �  � �

�� ���� are known� Eq� ��� � does not quite tend to a constant
when rs �  � as Eq� ����� would suggest� because the excited states of the non�
interacting system lie arbitrarily close in energy to the ground state�

The low�density �rs �
� limit is also the strong coupling limit in which the
uniform �uid phase is unstable against the formation of a close�packed Wigner
lattice of localized electrons� Because the energies of these two phases remain
nearly degenerate as rs � 
� they have the same kind of dependence upon rs
��
�


ec�n�� �d�
rs

�
d�

r
�	�
s

� � � � �rs �
� � �����

The constants d� and d� in Eq� ����� can be estimated from the Madelung
electrostatic and zero�point vibrational energies of the Wigner crystal� respec�
tively� The estimate

d� � � �

� 
�����

can be found from the electrostatic energy of a neutral spherical cell
 just add
the electrostatic self�repulsion ���rs of a sphere of uniform positive background
�with radius rs� to the interaction ����rs between this background and the



�� John P� Perdew and Stefan Kurth

electron at its center� The origin of the r
��	�
s term in Eq� ����� is also simple


Think of the potential energy of the electron at small distance u from the center
of the sphere as ����rs� �

�
ku�� where k is a spring constant� Since this potential

energy must vanish for u � rs� we 	nd that k � r��s and thus the zero�point

vibrational energy is ���� � ���
p
k�m � r

��	�
s �

An expression which encompasses both limits ��� �and ����� is ���

ec�n� � ��c��� � ��rs� ln

�
� �

�

�c����r
�	�
s � ��rs � ��r

�	�
s � ��r�s �



� �����

where

�� �
�

�c�
exp �� c�

�c�
� � �����

�� � �c��
�
� � �����

The coe�cients �� �  ����� � �� � ��
���� and �� �  ������ are found by
	tting to accurate Quantum Monte Carlo correlation energies ���� for rs ��� ��
� � � � � � and �  �

The uniform electron gas is in equilibrium when the density n minimizes the
total energy per electron� i�e�� when

�

�n
�ts�n� � ex�n� � ec�n�� �  � ���
�

This condition is met at rs � ���� close to the observed valence electron density
of sodium� At any rs� we have

�Ts
�n�r�

�
�

�n
�nts�n�� �

�

�
k�F � �����

�Ex

�n�r�
�

�

�n
�nex�n�� � � �

�
kF � �����

Eq� ����� with the parameters listed above provides a representation of
ec�n�� n�� for n� � n� � n��� other accurate representations are also available
��� � �� Eq� ����� with di�erent parameters �c� �  � ������ c� �  � ������ �� �
 �� ���� �� � ���

�� �� �  �
����� can represent ec�n�� n�� for n� � n and
n� �  � the correlation energy per electron for a fully spin�polarized uniform
gas� But we shall need ec�n�� n�� for arbitrary relative spin polarization

� �
�n� � n��

�n� � n��
� �����

which ranges from  for an unpolarized system to 
� for a fully�spin�polarized
system� A useful interpolation formula� based upon a study of the random phase
approximation� is �� �

ec�n�� n�� � ec�n� � �c�n�
f���

f ��� �
��� ��� � �ec�n�  �� ec�n��f����

�

� ec�n� � �c�n��
� �O���� � ��� �
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where

f��� �
��� � ���	� � ��� ���	� � ��

���	� � ��
� �����

In Eq� ��� �� �c�n� is the correlation contribution to the spin sti�ness� Roughly
�c�n� � ec�n�  � � ec�n�� but more precisely ��c�n� can be parametrized in
the form of Eq� ����� �with c� �  � �
���� c� �  � ������ �� �  ������� �� �
 ��� �
� �� �  ���
����

For completeness� we note that the spin�scaling relations ���
� and �����
imply that

ex�n�� n�� � ex�n�

�
�� � ���	� � ��� ���	�

	
�

� �����

ts�n�� n�� � ts�n�

�
�� � ���	� � ��� ���	�

	
�

� �����

The exchange�hole density of Eq� ����� can also be spin scaled� Expressions for
the exchange and correlation holes for arbitrary rs and � are given in Ref� �����

��� Linear Response

We now discuss the linear response of the spin�unpolarized uniform electron gas
to a weak� static� external potential �v�r�� This is a well�studied problem �����
and a practical one for the local�pseudopotential description of a simple metal
�
 ��

Because the unperturbed system is homogeneous� we 	nd that� to 	rst order
in �v�r�� the electron density response is

�n�r� �

Z
d�r���jr� r�j��v�r�� �����

where � is a linear response function� If

�v�r� � �v�q� exp�iq � r� �����

is a wave of wavevector q and small amplitude �v�q�� then Eq� ����� becomes
�n�r� � �n�q� exp�iq � r�� where

�n�q� � ��q��v�q� � ���
�

and

��q� �

Z
d�x exp��iq � x���jxj� �����

is the Fourier transform of ��jr�r�j� with respect to x � r�r�� �In Eq� ������ the
real part of the complex exponential exp�i�� � cos��� � i sin��� is understood��

By the Kohn�Sham theorem� we also have

�n�q� � �s�q��vs�q� � �����
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where �vs�q� is the change in the Kohn�Sham e�ective one�electron potential of
Eq� �
��� and

�s�q� � �kF
��

F �q��kF� �����

is the density response function for the non�interacting uniform electron gas�
The Lindhard function

F �x� �
�

�
�

�� x�

�x
ln

����� � x

�� x

���� ��
 �

equals � � x��� � x���� as x �  � ��� at x � �� and ����x�� � �����x�� as
x�
� dF�dx diverges logarithmically as x� ��

Besides �v�r�� the other contributions to �vs�r� of Eq� �
�� are

�

�
�U

�n�r�

�
�

Z
d�r�

�n�r��

jr� r�j � ��
��

�

�
�Exc

�n�r�

�
�

Z
d�r�

��Exc

�n�r��n�r��
�n�r�� � ��
��

In other words�

�vs�q� � �v�q� �
��

q�
�n�q�� �

k�F
�xc�q��n�q� � ��
��

where the coe�cient of the 	rst �n�q� is the Fourier transform of the Coulomb
interaction ��jr � r�j� and the coe�cient of the second �n�q� is the Fourier
transform of ��Exc��n�r��n�r

���
We re�write Eq� ��
�� as

�vs�q� � �v�q� �
��

q�
���Gxc�q�� �n�q� � ��
��

where

Gxc�q� � �xc�q�

�
q

�kF

��
��
��

is the so�called local�	eld factor� Then we insert Eq� ����� into Eq� ��
�� and
	nd

�vs�q� �
�v�q�

�s�q�
��

�

where

�s�q� � �� ��

q�
���Gxc�q���s�q� � ��
��

In other words� the density response function of the interacting uniform electron
gas is

��q� �
�s�q�

�s�q�
� ��
��
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These results are particularly simple in the long�wavelength �q �  � limit�
in which �xc�q� tends to a constant and

�s�q�� �� �xc�q �  �

�kF
�
k�s
q�

�q �  � � ��
��

where

ks �

�
�kF
�

��	�
�

�
�

�

��	��
��

�

��		
�

r
�	�
s

��� �

is the inverse of the Thomas�Fermi screening length � the characteristic distance
over which an external perturbation is screened out� Eqs� ��

� and ��
�� show
that a slowly�varying external perturbation �v�q� is strongly �screened out� by
the uniform electron gas� leaving only a very weak Kohn�Sham potential �vs�q��
Eq� ��
�� shows that the response function ��q� is weaker than �s�q� by a factor
�q�ks�

� in the limit q �  �
In Eq� ��

�� �s�q� is a kind of dielectric function � but it is not the standard

dielectric function ��q� which predicts the response of the electrostatic potential
alone


�v�q� �
��

q�
�n�q� �

�v�q�

��q�
� �����

By inserting Eq� ���
� into Eq� ������ we 	nd

�

��q�
� � �

��

q�
��q� � �����

It is only when we neglect exchange and correlation that we 	nd the simple
Lindhard result

��q�� �s�q�� �L�q� � �� ��

q�
�s�q� ��xc �  � � �����

Neglecting correlation� �x is a numerically�tabulated function of �q��kF� with
the small�q expansion �
��

�x�q� � � �
�

�

�
q

�kF

��
�

��

���

�
q

�kF

��
�q �  � � �����

When correlation is included� �xc�q� depends upon rs as well as �q��kF�� in a way
that is known from Quantum Monte Carlo studies �
�� of the weakly�perturbed
uniform gas�

The second�order change �E in the total energy may be found from the
Hellmann�Feynman theorem of Sect� ���� Replace �v�r� by v��r� � ��v�r� and
�n�r� by ��n�r�� to 	nd

�E �

Z �

�

d�

Z
d�rn��r�

d

d�
v��r�

�

Z �

�

d�

Z
d�r�n� ��n�r���v�r�
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�
�

�

Z
d�r�n�r��v�r�

�
�

�
�n��q��v�q� � �����

��� Clumping and Adiabatic Connection

The uniform electron gas for rs
�� � provides a nice example of the adiabatic

connection discussed in Sect� ���� As the coupling constant � turns on from  
to �� the ground state wavefunction evolves continuously from the Kohn�Sham
determinant of plane waves to the ground state of interacting electrons in the
presence of the external potential� while the density remains 	xed� �One should
of course regard the in	nite system as the in	nite�volume limit of a 	nite chunk
of uniform background neutralized by electrons��

The adiabatic connection between non�interacting and interacting uniform�
density ground states could be destroyed by any tendency of the density to
clump� A 	ctitious attractive interaction between electrons would yield such a
tendency� Even in the absence of attractive interactions� clumping appears in
the very�low�density electron gas as a charge density wave or Wigner crystalliza�
tion ��
� ���� Then there is probably no external potential which will hold the
interacting system in a uniform�density ground state� but one can still 	nd the
energy of the uniform state by imposing density uniformity as a constraint on a
trial interacting wavefunction�

The uniform phase becomes unstable against a charge density wave of wave�
vector q and in	nitesimal amplitude when �s�q� of Eq� ��
�� vanishes ����� This
instability for q � �kF arises at low density as a consequence of exchange and
correlation�

� Local and Semi	Local Approximations

��� Local Spin Density Approximation

The local spin density approximation �LSD� for the exchange�correlation energy�
Eq� ����� was proposed in the original work of Kohn and Sham �
�� and has proved
to be remarkably accurate� useful� and hard to improve upon� The generalized
gradient approximation �GGA� of Eq� ����� a kind of simple extension of LSD� is
now more widely used in quantum chemistry� but LSD remains the most popular
way to do electronic�structure calculations in solid state physics� Tables � and
� provide a summary of typical errors for LSD and GGA� while Tables � and
� make this comparison for a few speci	c atoms and molecules� The LSD is
parametrized as in Sect� �� while the GGA is the non�empirical one of Perdew�
Burke� and Ernzerhof �� �� to be presented later�

The LSD approximation to any energy component G is

GLSD�n�� n�� �

Z
d�rn�r�g�n��r�� n��r�� � ���
�
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Table �� Exchange	correlation energies of atoms� in hartree�

Atom LSD GGA Exact

H 	���� 	��
� 	��
�
He 	���� 	���� 	����
Li 	���� 	���� 	���

Be 	���� 	���� 	����
N 	��
� 	���
 	����
Ne 	����� 	����� 	�����

Table �� Atomization energies of molecules� in eV� 
� hartree � ����� eV�� From Ref�
�����

Molecule LSD GGA Exact

H� ��� ��� ���
CH� ���� ���� ����
NH� ���� �
�� ����
H�O ���� ���� ����
CO �
�� ���� ����
O� ��� ��� ���

where g�n�� n�� is that energy component per particle in an electron gas with
uniform spin densities n� and n�� and n�r�d

�r is the average number of electrons
in volume element d�r� Sections ������� provide the ingredients for TLSD

s � T��
ELSD
x � and ELSD

c � The functional derivative of Eq� ���
� is

�GLSD

�n��r�
�

�

�n�
��n� � n��g�n�� n��� � �����

By construction� LSD is exact for a uniform density� or more generally for
a density that varies slowly over space �
�� More precisely� LSD should be valid
when the length scale of the density variation is large in comparison with length
scales set by the local density� such as the Fermi wavelength ���kF or the screen�
ing length ��ks� This condition is rarely satis	ed in real electronic systems� so
we must look elsewhere to understand why LSD works�

We need to understand why LSD works� for three reasons
 to justify LSD cal�
culations� to understand the physics� and to develop improved density functional
approximations� Thus we will start with the good news about LSD� proceed to
the mixed good$bad news� and close with the bad news�

LSD has many correct formal features� It is exact for uniform densities and
nearly�exact for slowly�varying ones� a feature that makes LSD well suited at
least to the description of the crystalline simple metals� It satis	es the inequal�
ities Ex �  �Eq� ����� and Ec �  �Eq� �
���� the correct uniform coordinate
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scaling of Ex �Eq� �� 
��� the correct spin scaling of Ex �Eq� ������� the correct
coordinate scaling for Ec �Eqs� ������ ���
�� ������� the correct low�density be�
havior of Ec �Eq� ������� and the correct Lieb�Oxford bound on Exc �Eqs� ��� �
and ������� LSD is properly size�consistent �Sect� �����

LSD provides a surprisingly good account of the linear response of the spin�
unpolarized uniform electron gas �Sect� ����� Since

��ELSD
xc

�n�r��n�r��
� ��r� r��

���nexc�n��

�n�
� �����

where ��r� r�� is the Dirac delta function� we 	nd

�LSDxc �q� � �� k�F
�

��

�n�
�nec�n�� � �����

a constant independent of q� which must be the exact q �  or slowly�varying
limit of �xc�q�� Figure � of Ref� �� � shows that the �exact� �xc�q� from a Quan�
tum Monte Carlo calculation �
�� for rs � � is remarkably close to the LSD

prediction for q
�� �kF� The same is true over the whole valence�electron density

range �
�� rs

�� �� and results from a strong cancellation between the nonlocali�
ties of exchange and correlation� Indeed the exact result for exchange �neglecting
correlation�� Eq� ������ is strongly q�dependent or nonlocal� The displayed terms

of Eq� ����� su�ce for q
�� �kF�

Powerful reasons for the success of LSD are provided by the coupling con�
stant integration of Sect� ���� Comparison of Eqs� ��
� and ���� reveals that the
LSD approximations for the exchange and correlation holes of an inhomogeneous
system are

nLSDx �r� r�� � nunifx �n��r�� n��r�� jr � r�j� � ��� �

nLSDc �r� r�� � nunifc �n��r�� n��r�� jr � r�j� � �����

where nunifxc �n�� n��u� is the hole in an electron gas with uniform spin densities
n� and n�� Since the uniform gas is a possible physical system� Eqs� ��� � and
����� obey the exact constraints of Eqs� ���� �negativity of nx�� ���� �sum rule
on nx�� ����� ���� �sum rule on �nc�� ����� and ���� �cusp condition��

By Eq� ����� the LSD on�top exchange hole nLSDx �r� r� is exact� at least when
the Kohn�Sham wavefunction is a single Slater determinant� The LSD on�top
correlation hole �nLSDc �r� r� is not exact �
�� �except in the high�density� low�
density� fully spin�polarized� or slowly�varying limit�� but it is often quite realistic
�
��� By Eq� ����� its cusp is then also realistic�

Because it satis	es all these constraints� the LSD model for the system��
spherically�� and coupling�constant�averaged hole of Eq� �� ���

h�nLSDxc �u�i � �

N

Z
d�rn�r��nunifxc �n��r�� n��r��u� � �����

can be very physical� Moreover� the system average in Eq� ����� �unweights�
regions of space where LSD is expected to be least reliable� such as near a
nucleus or in the evanescent tail of the electron density �
�� 
���
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Since correlation makes h�nxc�u �  �i deeper� and thus by Eq� �� �� makes
h�nxc�u�i more short�ranged� Exc can be �more local� than either Ex or Ec� In
other words� LSD often bene	ts from a cancellation of errors between exchange
and correlation�

Mixed good and bad news about LSD is the fact that selfconsistent LSD
calculations can break exact spin symmetries� As an example� consider �stretched
H��� the hydrogen molecule �N � �� with a very large separation between the
two nuclei� The exact ground state is a spin singlet �S �  �� with n��r� � n��r� �
n�r���� But the LSD ground state localizes all of the spin�up density on one of
the nuclei� and all of the spin�down density on the other� Although �or rather
because� the LSD spin densities are wrong� the LSD total energy is correctly the
sum of the energies of two isolated hydrogen atoms� so this symmetry breaking
is by no means entirely a bad thing �

� 
��� The selfconsistent LSD on�top hole
density h�nxc� �i � �hni is also right
 Heitler�London correlation ensues that two
electrons are never found near one another� or on the same nucleus at the same
time�

Finally� we present the bad news about LSD
 ��� LSD does not incorporate
known inhomogeneity or gradient corrections to the exchange�correlation hole
near the electron �Sect� 
��� ��� It does not satisfy the high�density correla�
tion scaling requirement of Eq� ������ but shows a ln � divergence associated
with the ln rs term of Eq� ��� �� ��� LSD is not exact in the one�electron limit�
i�e�� does not satisfy Eqs� �
��� and �� �� ����� Although the �self�interaction
error� is small for the exchange�correlation energy� it is more substantial for
the exchange�correlation potential and orbital eigenvalues� ��� As a �continuum
approximation�� based as it is on the uniform electron gas and its continuous
one�electron energy spectrum� LSD misses the derivative discontinuity of Sect�
���� E�ectively� LSD averages over the discontinuity� so its highest occupied or�
bital energy for a Z�electron system is not Eq� ����� but �HO � ��IZ �AZ����
A second consequence is that LSD predicts an incorrect dissociation of a hetero�
nuclear molecule or solid to fractionally charged fragments� �In LSD calculations
of atomization energies� the dissociation products are constrained to be neutral
atoms� and not these unphysical fragments�� ��� LSD does not guarantee satis�
faction of Eq� ����� an inherently nonlocal constraint�

The GGA to be derived in Sect� 
�� will preserve all the good or mixed
features of LSD listed above� while eliminating bad features ��� and ��� but
not ��� � ���� Elimination of ��� � ��� will probably require the construction of
Exc�n�� n�� from the Kohn�Sham orbitals �which are themselves highly�nonlocal
functionals of the density�� For example� the self�interaction correction ��� 
��
to LSD eliminates most of the bad features ��� and ���� but not in an entirely
satisfactory way�

��� Gradient Expansion

Gradient expansions �
� 
��� which o�er systematic corrections to LSD for elec�
tron densities that vary slowly over space� might appear to be the natural next
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step beyond LSD� As we shall see� they are not� understanding why not will light
the path to the generalized gradient approximations of Sect� 
���

As a 	rst measure of inhomogeneity� we de	ne the reduced density gradient

s �
jrnj
�kFn

�
jrnj

������	�n�	�
�

�

�

�
�

��

��	�
jrrsj � �����

which measures how fast and how much the density varies on the scale of the
local Fermi wavelength ���kF� For the energy of an atom� molecule� or solid� the

range  
�� s

�� � is very important� The range �
�� s

�� � is somewhat important�
more so in atoms than in solids� while s 
 � �as in the exponential tail of the
density� is unimportant �� � ����

Other measures of density inhomogeneity� such as p � r�n���kF�
�n� are also

possible� Note that s and p are small not only for a slow density variation but also
for a density variation of small amplitude �as in Sect� ����� The slowly�varying
limit is one in which p�s is also small �
��

Under the uniform density scaling of Eq� �� �� s�r� � s��r� � s��r�� The
functionals Ts�n� and Ex�n� must scale as in Eqs� �� �� and �� 
�� so their gra�
dient expansions are

Ts�n� � As

Z
d�rn�	��� � �s� � � � �� � �����

Ex�n� � Ax

Z
d�rn�	��� � 	s� � � � �� � �����

Because there is no special direction in the uniform electron gas� there can be
no term linear in rn� Moreover� terms linear in r�n can be recast as s� terms�
since Z

d�rf�n�r�n � �
Z
d�r

�
�f

�n

�
jrnj� ���
�

via integration by parts� Neglecting the dotted terms in Eqs� ����� and ������
which are fourth or higher�order in r� amounts to the second�order gradient
expansion� which we call the gradient expansion approximation �GEA��

Correlation introduces a second length scale� the screening length ��ks� and
thus another reduced density gradient

t �
jrnj
�ksn

�
��
�

��	� ���

�

��		
s

r
�	�
s

� �����

In the high�density �rs �  � limit� the screening length ���ks � r
�	�
s � is the only

important length scale for the correlation hole� The gradient expansion of the
correlation energy is

Ec�n� �

Z
d�rn

�
ec�n� � ��n�t� � � � �

	
� �����

While ec�n� does not quite approach a constant as n�
� ��n� does �
���
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While the form of the gradient expansion is easy to guess� the coe�cients can
only be calculated by hard work� Start with the uniform electron gas� in either
its non�interacting �Ts�Ex� or interacting �Ec� ground state� and apply a weak
external perturbation �vs�q� exp�iq � r� or �v�q� exp�iq � r�� respectively� Find
the linear response �n�q� of the density� and the second�order response �G of
the energy component G of interest� Use the linear response of the density �as
in Eqs� ����� or ���
�� to express �G entirely in terms of �n�q�� Finally� expand
�G in powers of q�� observing that jrnj� � q�j�n�q�j�� and extract the gradient
coe�cient�

In this way� Kirzhnits ���� found the gradient coe�cient for Ts�

� �
�

��
�����

�which respects the conjectured bound of Eq� ������� Sham ���� found the coef�
	cient of Ex�

	Sham �
�

��
� ��� �

and Ma and Brueckner �
�� found the high�density limit of ��n�


�MB �  � 

��� � �����

The weak density dependence of ��n� is also known ����� as is its spin�dependence
����� Neglecting small r� contributions� the gradient coe�cients �coe�cients of
jrnj��n�	�� for both exchange and correlation at arbitrary relative spin polar�
ization � are found from those for � �  through multiplication by ��
�

���� �
�

�

h
�� � ���	� � ��� ���	�

i
� �����

For exchange� this is easily veri	ed by applying the spin�scaling relation of
Eq� ����� to Eqs� ����� and ������

There is another interesting similarity between the gradient coe�cients for
exchange and correlation� Generalize the de	nition of t �Eq� ������ to

t �
jrnj
��ksn

�
��
�

��	� ���

�

��		
s

�r
�	�
s

� �����

Then

�MB�
�nt� � 	Cx�n

�	�s� � �����

where

	 � �MB

��

�
�  ������ � �����

Sham�s derivation ���� of Eq� ��� � starts with a screened Coulomb interac�
tion ���u� exp���u�� and takes the limit � �  at the end of the calculation�
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Antoniewicz and Kleinman ���� showed that the correct gradient coe�cient for
the unscreened Coulomb interaction is not 	Sham but

	AK �
� 

��
� ���
�

It is believed ���� that a similar order�of limits problem exists for �� in such a way
that the combination of Sham�s exchange coe�cient with the Ma�Brueckner �
��
correlation coe�cient yields the correct gradient expansion of Exc in the slowly�
varying high�density limit�

Numerical tests of these gradient expansions for atoms show that the second�
order gradient term provides a useful correction to the Thomas�Fermi or local
density approximation for Ts� and a modestly useful correction to the local den�
sity approximation for Ex� but seriously worsens the local spin density results for
Ec and Exc� In fact� the GEA correlation energies are positive" The latter fact
was pointed out in the original work of Ma and Brueckner �
��� who suggested
the 	rst generalized gradient approximation as a remedy�

The local spin density approximation to Exc� which is the leading term of
the gradient expansion� provides rather realistic results for atoms� molecules�
and solids� But the second�order term� which is the next systematic correction
for slowly�varying densities� makes Exc worse�

There are two answers to the seeming paradox of the previous paragraph� The
	rst is that realistic electron densities are not very close to the slowly�varying
limit �s� �� p�s� �� t� �� etc��� The second is this
 The LSD approximation
to the exchange�correlation hole is the hole of a possible physical system� the
uniform electron gas� and so satis	es many exact constraints� as discussed in
Sect� 
��� The second�order gradient expansion or GEA approximation to the
hole is not� and does not�

The second�order gradient expansion or GEA models are known for both the
exchange hole ���� ��� nx�r� r�u� and the correlation hole �nc�r� r�u� ����� They
appear to be more realistic than the corresponding LSD models at small u� but
far less realistic at large u� where several spurious features appear
 nx�r� r�u�GEA
has an undamped cos��kFu� oscillation which violates the negativity constraint
of Eq� ����� and integrates to �� �Eq� ����� only with the help of a convergence
factor exp���u� ���  �� �nc�r� r�u�GEA has a positive u�� tail� and integrates
not to zero �Eq� ����� but to a positive number � s�� These spurious large�u
behaviors are sampled by the long range of the Coulomb interaction ��u� leading
to unsatisfactory energies for real systems�

The gradient expansion for the exchange hole density is known �� � to third
order in r� and suggests the following interpretation of the gradient expan�
sion
 When the density does not vary too rapidly over space �e�g�� in the weak�
pseudopotential description of a simple metal�� the addition of each successive
order of the gradient expansion improves the description of the hole at small u
while worsening it at large u� The bad large�u behavior thwarts our expectation
that the hole will remain normalized to each order in r�
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The non�interacting kinetic energy Ts does not sample the spurious large�u
part of the gradient expansion� so its gradient expansion �Eqs� ����� and ������
works reasonably well even for realistic electron densities� In fact� we can use
Eq� ���� to show that

Ts�n� �
X
�

Z
d�r ��

�

�

�r
� �
�r

����� �r�
� r
�

����
r��r

�����

samples only the small�u part of the gradient expansion of the Kohn�Sham one�
electron reduced density matrix� while Ex�n� of Eqs� �� � and ���� also samples
large values of u� The GEA for Ts�n� is� in a sense� its own GGA ����� Moreover�
the sixth�order gradient expansion of Ts is also known
 it diverges for 	nite
systems� but provides accurate monovacancy formation energies for jellium �����

The GEA form of Eqs� ������ ������ and ����� is a special case of the GGA
form of Eq� ����� To 	nd the functional derivative� note that

�F �

Z
d�r�f�n�� n��rn��rn��

�
X
�

Z
d�r

�
�f

�n��r�
�n��r� �

�f

�rn��r� � r�n��r�
�

�
X
�

Z
d�r

�F

�n��r�
�n��r� � �����

Integration by parts gives

�F

�n��r�
�

�f

�n��r�
�r � �f

�rn��r� � �����

For example� the functional derivative of the gradient term in the spin�unpola�
rized high�density limit is

�

�n�r�

Z
d�rCxc

jrn�r�j�
n�	�

� Cxc

�
�

�

jrn�r�j�
n
	�

� �
r�n

n�	�

�
� ��  �

which involves second as well as 	rst derivatives of the density�

The GEA for the linear response function �xc�q� of Eq� ��
�� is found by
inserting n�r� � n� �n�q� exp�iq � r� into Eq� ����� and linearizing in �n�q�


�GEAxc �q� � �LSDxc � ���������	�Cxc

�
q

�kF

��
� �� ��

For example� the Antoniewicz�Kleinman gradient coe�cient ���� for exchange of
Eq� ���
�� inserted into Eqs� ��  � and �� ��� yields the q� term of Eq� ������
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��� History of Several Generalized Gradient Approximations

In ��
�� Ma and Brueckner �
�� derived the second�order gradient expansion
for the correlation energy in the high�density limit� Eqs� ����� and ������ In
numerical tests� they found that it led to improperly positive correlation energies
for atoms� because of the large size of the positive gradient term� As a remedy�
they proposed the 	rst GGA�

EMB
c �n� �

Z
d�rnec�n�

�
�� �MBt

�

�nec�n�

���
� �� ��

where � �  ��� was 	tted to known correlation energies� Eq� �� �� reduces to
Eqs� ����� and ����� in the slowly�varying �t�  � limit� but provides a strictly
negative �energy density� which tends to zero as t � 
� In this respect� it
is strikingly like the nonempirical GGA�s that were developed in ���� or later�
di�ering from them mainly in the presence of an empirical parameter� the absence
of a spin�density generalization� and a less satisfactory high�density limit�

Under the uniform scaling of Eq� �� �� n�r� � n��r�� we 	nd rs�r� �
���rs��r�� ��r� � ���r�� s�r� � s��r�� and t�r� � ��	�t��r�� Thus EMB

c �n� �
tends to ELSD

c �n� � as � � 
� and not to a negative constant as required by
Eq� ������

In ��� � Langreth and Perdew ���� explained the failure of the second�order
gradient expansion �GEA� for Ec� They made a complete wavevector analysis of
Exc� i�e�� they replaced the Coulomb interaction ��u in Eq� ��  � by its Fourier
transform and found

Exc�n� �
N

�

Z �

�

dk
��k�

�����
h�nxc�k�i��

k�
� �� ��

where

h�nxc�k�i �
Z �

�

du ��u�h�nxc�u�i sin�ku�
ku

�� ��

is the Fourier transform of the system� and spherically�averaged exchange�corre�
lation hole� In Eq� �� ��� Exc is decomposed into contributions from dynamic
density �uctuations of various wavevectors k�

The sum rule of Eq� �� �� should emerge from Eq� �� �� in the k �  limit
�since sin�x��x � � as x �  �� and does so for the exchange energy at the
GEA level� But the k �  limit of �nGEAc �k� turns out to be a positive number
proportional to t�� and not zero� The reason seems to be that the GEA correlation
hole is only a truncated expansion� and not the exact hole for any physical
system� so it can and does violate the sum rule�

Langreth and Mehl ���� ������ proposed a GGA based upon the wavevector
analysis of Eq� �� ��� They introduced a sharp cuto� of the spurious small�k
contributions to EGEA

c 
 all contributions were set to zero for k � kc � f jrn�nj�
where f �  ��� is only semi�empirical since f � ��
 was estimated theoretically�
Extension of the Langreth�Mehl EGGA

c beyond the random phase approximation
was made by Perdew ���� in ���
�
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The errors of the GEA for the exchange energy are best revealed in real space
�Eq� ��  ��� not in wavevector space �Eq� �� ���� In ����� Perdew ���� showed
that the GEA for the exchange hole density nx�r� r�u� contains a spurious un�
damped cos��kFu� oscillation as u�
� which violates the negativity constraint
of Eq� ���� and respects the sum rule of Eq� ���� only with the help of a conver�
gence factor �e�g�� exp���u� as ��  �� This suggested that the required cuto�s
should be done in real space� not in wavevector space� The GEA hole density
nGEAx �r� r�u� was replaced by zero for all u where nGEAx was positive� and for all
u 
 ux�r� where the cuto� radius ux�r� was chosen to recover Eq� ����� Eq� ����
then provided a numerically�de	ned GGA for Ex� which turned out to be more
accurate than either LSD or GEA� In ���
� Perdew and Wang ���� simpli	ed this
GGA in two ways
 ��� They replaced nGEAx �r� r� u�� which depends upon both
	rst and second derivatives of n�r�� by %nGEAx �r� r� u�� an equivalent expression
found through integration by parts� which depends only upon rn�r�� ��� The
resulting numerical GGA has the form

EGGA
x �n� � Ax

Z
d�rn�	�Fx�s� � �� ��

which scales properly as in Eq� �� 
�� The function Fx�s� was plotted and 	tted
by an analytic form� The spin�scaling relation ����� was used to generate a spin�
density generalization� Perdew and Wang ���� also coined the term �generalized
gradient approximation��

A parallel but more empirical line of GGA development arose in quantum
chemistry around ���
� Becke ���� �
� showed that a GGA for Ex could be
constructed with the help of one or two parameters 	tted to exchange energies of
atoms� and demonstrated numerically that these functionals could greatly reduce
the LSD overestimate of atomization energies of molecules� Lee� Yang� and Parr
���� transformed the Colle�Salvetti ���� expression for the correlation energy from
a functional of the Kohn�Sham one�particle density matrix into a functional of
the density� This functional contains one empirical parameter and works well in
conjunction with Becke ��
� exchange for many atoms and molecules� although
it underestimates the correlation energy of the uniform electron gas by about a
factor of two at valence�electron densities�

The real�space cuto� of the GEA hole provides a powerful nonempirical way
to construct GGA�s� Since exchange and correlation should be treated in a bal�
anced way� there was a need to extend the ���
 real�space cuto� construction
���� from exchange to correlation with the help of a second cuto� radius uc�r�
chosen to satisfy Eq� ����� Without accurate formulas for the correlation hole of
the uniform electron gas� this extension had to wait until ����� when it led to the
Perdew�Wang ���� �PW��� ���� ��� GGA for Exc� For most practical purposes�
PW�� is equivalent to the Perdew�Burke�Ernzerhof �� � ��� �PBE� �GGA made
simple�� which will be derived� presented� and discussed in the next two sections�
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��� Construction of a 	GGA Made Simple


The PW�� GGA and its construction ���� ��� are simple in principle� but com�
plicated in practice by a mass of detail� In ���
� Perdew� Burke and Ernzerhof
�� � ��� �PBE� showed how to construct essentially the same GGA in a much
simpler form and with a much simpler derivation�

Ideally� an approximate density functional Exc�n�� n�� should have all of the
following features
 ��� a non�empirical derivation� since the principles of quan�
tum mechanics are well�known and su�cient� ��� universality� since in principle
one functional should work for diverse systems �atoms� molecules� solids� with
di�erent bonding characters �covalent� ionic� metallic� hydrogen� and van der
Waals�� ��� simplicity� since this is our only hope for intuitive understanding
and our best hope for practical calculation� and ��� accuracy enough to be use�
ful in calculations for real systems�

The LSD of Eq� ���� and the non�empirical GGA of Eq� ���� nicely balance
these desiderata� Both are exact only for the electron gas of uniform density� and
represent controlled extrapolations away from the slowly�varying limit �unlike
the GEA of Sect� 
��� which is an uncontrolled extrapolation�� LSD is a controlled
extrapolation because� even when applied to a density that varies rapidly over
space� it preserves many features of the exact Exc� as discussed in Sect� 
��� LSD
has worked well in solid state applications for thirty years�

Our conservative philosophy of GGA construction is to try to retain all the
correct features of LSD� while adding others� In particular� we retain the cor�
rect uniform�gas limit� for two reasons
 ��� This is the only limit in which the
restricted GGA form can be exact� ��� Nature�s data set includes the crystalline
simple metals like Na and Al� The success of the stabilized jellium model ����
rea�rms that the valence electrons in these systems are correlated very much as
in a uniform gas� Among the welter of possible conditions which could be im�
posed to construct a GGA� the most natural and important are those respected
by LSD or by the real�space cuto� construction of PW��� and these are the
conditions chosen in the PBE derivation �� � below� The resulting GGA is one
in which all parameters �other than those in LSD� are fundamental constants�

We start by writing the correlation energy in the form

EGGA
c �n�� n�� �

Z
d�rn�ec�rs� �� �H�rs� �� t�� � �� 
�

where the local density parameters rs and � are de	ned in Eqs� ����� and ������
and the reduced density gradient t in Eq� ������ The small�t behavior of nH
should be given by the left�hand side of Eq� ������ which emerges naturally
from the real�space cuto� construction of PW�� ����� In the opposite or t�

limit� we expect that H � �ec�rs� ��� the correlation energy per electron of the
uniform gas� as it does in the PW�� construction or in the Ma�Brueckner GGA
of Eq� �� ��� Finally� under the uniform scaling of Eq� �� � to the high�density
�� � 
� limit� Eq� �� 
� should tend to a negative constant� as in Eq� �����
or in the numerically�constructed PW��� This means that H must cancel the
logarithmic singularity of ec �Eq� ��� �� in this limit�
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A simple function which meets these expectations is

H � c��
� ln

�
� �

�MB

c�
t�
�

� �At�

� �At� �A�t�

��
� �� ��

where � is given by Eq� ����� and

A �
�MB

c�

�

exp ��ec�rs� ���c����� �
� �� ��

We now check the required limits


t�  
 H � c��
� ln

�
� �

�MB

c�
t�
�

� �MB�
�t� � �� ��

t�
 
 H � c��
� ln

�
� �

�MB

c�A

�

� c��
� ln

�
exp

�
�ec�rs� ��

c���

��
� �ec�rs� �� � ��� �

rs �  at 	xed s
 H � c��
� ln t� � �c��� ln rs � �����

To a good approximation� Eq� ��� � can be generalized to

ec�rs� �� � ���c� ln rs � c� � � � �� � �����

which cancels the log singularity of Eq� ������
Under uniform density scaling to the high�density limit� we 	nd

� �
 
 EGGA
c �n� �� �c�

Z
d�rn�� ln

�
� �

�

�s���� � ��s������

�
�����

�where s is de	ned by Eq� ������� a negative constant as required by Eq� ������
with

� �

�
���

�


��	�
�MB

c�
exp��c��c�� � �����

For a two�electron ion of nuclear charge Z in the limit Z � 
� Eq� ����� is
� � ��� hartree and the exact value is � � �
�� Realistic results from Eq� �����
in the Z � 
 limit have also be found ��
� for ions with �� �� � � and ��
electrons�

Now we turn to the construction of a GGA for the exchange energy� Because
of the spin�scaling relation ������ we only need to construct EGGA

x �n�� which
must be of the form of Eq� �� ��� To recover the good LSD description of the
linear response of the uniform gas �Sect� ����� we choose the gradient coe�cient
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for exchange to cancel that for correlation� i�e�� we take advantage of Eq� �����
to write

s�  
 Fx�s� � � � 	s� � �����

Then the gradient coe�cients for exchange and correlation will cancel for all rs
and �� apart from small r� contributions to EGGA

x � as discussed in the next
section�

The value of 	 of Eq� ����� is ���� times bigger than 	AK of Eq� ���
�� the
proper gradient coe�cient for exchange in the slowly�varying limit� But this
choice can be justi	ed in two other ways as well
 �a� It provides a decent 	t
to the results of the real�space cuto� construction ���� of the PW�� exchange
energy� which does not recover 	AK in the slowly�varying limit� �b� It provides a
reasonable emulation of the exact�exchange linear response function of Eq� �����

over the important range of  � q��kF
�� � �but not of course in the limit q �  �

where 	AK is needed��
Finally� we want to satisfy the Lieb�Oxford bound of Eqs� ��� � and ������

which LSD respects� We can achieve this� and also recover the limit of Eq� ������
with the simple form

Fx�s� � � � �� �

�� � 	s����
� ���
�

where � is a constant less than or equal to  �� �� Taking � �  �� � gives a GGA
which is virtually identical to PW�� over the range of densities and reduced den�
sity gradients important in most real systems� We shall complete the discussion
of this paragraph in the next section�

��� GGA Nonlocality� Its Character� Origins� and E
ects

A useful way to visualize and think about gradient�corrected nonlocality� or to
compare one GGA with another� is to write ���� ���

EGGA
xc �n�� n�� �

Z
d�rn

�
� c

rs

�
Fxc�rs� �� s� � �����

where c � �������������	� and �c�rs � ex�rs� � �  � is the exchange energy
per electron of a spin�unpolarized uniform electron gas� The enhancement factor
Fxc�rs� �� s� shows the e�ects of correlation �through its rs dependence�� spin
polarization ���� and inhomogeneity or nonlocality �s�� Fxc is the analog of ����
in Slater�s X� method ����� so its variation is bounded and plottable� Figure �
shows Fxc�rs� � �  � s�� the enhancement factor for a spin�unpolarized system�
Figure � shows Fxc�rs� � � �� s� � Fxc�rs� � �  � s�� the enhancement factor
for the spin polarization energy� �Roughly� Fxc�rs� �� s� � Fxc�rs� � �  � s� �
���Fxc�rs� � � �� s��Fxc�rs� � �  � s���� The nonlocality is the s�dependence� and

FLSD
xc �rs� �� s� � Fxc�rs� �� s �  � �����
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rs� � � �� s�

Fig� �� The enhancment factor Fxc of Eq� 
���� for the GGA of Perdew� Burke� and
Ernzerhof ����� as a function of the reduced density gradient s of Eq� 
��
�� for � � ��
The local density parameter rs and the relative spin polarization � are de�ned in
Eqs� 
�

� and 
����� respectively�

is visualized as a set of horizontal straight lines coinciding with the GGA curves
in the limit s�  �

Clearly� the correlation energy of Eq� �� 
� can be written in the form of
Eq� ������ To get the exchange energy into this form� apply the spin�scaling
relation ����� to Eq� �� ��� then drop small rs contributions to 	nd

Fx��� s� �
�

�
�� � ���	�Fx

�
s��� � ���	�

�
�

�

�
��� ���	�Fx

�
s���� ���	�

�
�

�

�

h
�� � ���	� � ��� ���	�

i
� 	�s� � � � � �����
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rs� � � �� s�

Fig� �� Same as Fig� �� but for the di�erence between the fully spin	polarized 
� � ��
and unpolarized 
� � �� enhancement factors�

Now
Fxc�rs� �� s� � Fx��� s� � Fc�rs� �� s� � ��� �

where
lim
rs��

Fc�rs� �� s� �  �����

by Eqs� �� 
� and ������ Thus the rs �  or high�density�limit curve in each
	gure is the exchange�only enhancement factor� Clearly Fx 
  � Fc 
  � and
Fx�� �  � s �  � � � by de	nition�

The Lieb�Oxford bound of Eq� ����� will be satis	ed for all densities n�r� if
and only if

Fxc�rs� �� s� 	 ����� � �����

For the PBE GGA of Eqs� �� 
� and ���
�� this requires that

��	�Fx�s��
�	�� � ����� � �����

or
� � ��������	� � � �  �� � � �����
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as stated in Sect� 
���
There is much to be seen and explained ���� in Eq� ����� and Figs� � and

�� However� the main qualitative features are simply stated
 When we make a
density variation in which rs decreases� � increases� or s increases everywhere�
we 	nd that jExj increases and jEc�Exj decreases�

To understand this pattern ����� we note that the second�order gradient ex�
pansion for the non�interacting kinetic energy Ts�n�� n��� which is arguably its
own GGA ����� can be written as

TGGA
s �n�� n�� �

Z
d�rn

�

� 



�

�

��	�
r�s

G��� s� � �����

G��� s� �
�

�

h
�� � ���	� � ��� ���	�

i
�

�

��
s� � ���
�

using approximate spin scaling �Eq� ���
� plus neglect of r� contributions��
Eqs� ����� and ���
� respect Eq� �� �� and con	rm our intuition based upon the
Pauli exclusion and uncertainty principles
 Under a density variation in which rs
decreases� � increases� or s increases everywhere� we 	nd that Ts�n�� n�� increases�

The 	rst e�ect of such an increase in Ts is an increase in jExj� Ts and jExj
are �conjoint� ����� in the sense that both can be constructed from the occupied
Kohn�Sham orbitals �Eqs� ���� ����� �� � and ������ With more kinetic energy�
these occupied orbitals will have shorter de Broglie wavelengths� By the uncer�
tainty principle� they can then dig a more short�ranged and deeper exchange
hole with a more negative exchange energy� Thus exchange turns on when we
decrease rs� increase �� or increase s�

The second e�ect of such an increase in Ts is to strengthen the Kohn�Sham
Hamiltonian which holds non�interacting electrons at the spin densities n��r� and
n��r�� This makes the electron�electron repulsion of Eq� ����� a relatively weaker
perturbation on the Kohn�Sham problem� and so reduces the ratio jEc�Exj� Thus
correlation turns o� relative to exchange when we decrease rs� increase �� or
increase s�

We note in particular that Fx�rs� �� s� increases while Fc�rs� �� s� decreases
with increasing s� The nonlocalities of exchange and correlation are opposite�

and tend to cancel for valence�electron densities ��
�� rs

�� � � in the range

 
�� s

�� �� The same remarkable cancellation occurs �
�� ��� in the linear response
function for the uniform gas of Eq� ��
��� i�e�� �xc�q� � �LSDxc �q� � �xc�q �  � for

 � q��kF
�� ��

The core electrons in any system� and the valence electrons in solids� sample

primarily the range  
�� s

�� �� The high�density core electrons see a strong�
exchange�like nonlocality of Exc which provides an important correction to the
LSD total energy� But the valence electrons in solids see an almost�complete
cancellation between the nonlocalities of exchange and correlation� This helps
to explain why LSD has been so successful in solid state physics� and why the
small residue of GGA nonlocality in solids does not provide a universally�better
description than LSD�
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The valence electrons in atoms and molecules see  
�� s

�� 
� when s diverges
in the exponential tail of the density� but the energetically�important range is

 
�� s

�� � �� � ���� Figs� � and � show that GGA nonlocality is important in this
range� so GGA is almost�always better than LSD for atoms and molecules�

For rs
�� � � the residual GGA nonlocality is exchange�like� i�e�� exchange

and correlation together turn on stronger with increasing inhomogeneity� It can
then be seen from Eq� ����� that gradient corrections will favor greater density
inhomogeneity and higher density �� �� De	ning average density parameters hrsi�
h�i� and hsi as in Ref� �� �� we 	nd that gradient corrections favor changes
dhsi 
  and dhrsi �  � Gradient corrections tend to drive a process forward
when �� �

dhsi
hsi 	 dhrsi

hrsi � �����

In a typical process �bond stretching� transition to a more open structure�
fragmentation� or atomization�� one has dhsi 
  and dhrsi 
  � Thus� by
Eq� ������ these e�ects compete � another reason why LSD has met with some
success� In most such cases� the left�hand side of Eq� ����� is bigger than the
right� so typically gradient corrections favor larger bond lengths or lattice con�
stants �and thus softer vibration frequencies�� more open structures� fragmen�
tation of a highly�bonded transition state� or atomization of a molecule� In the
case of bond stretching in H�� however� the right hand side of Eq� ����� exceeds
the left� so gradient corrections actually and correctly shrink the equilibrium
bond length relative to LSD�

There have been many interesting tests and applications of GGA to a wide
range of atoms� molecules� and solids� Some references will be found in Refs�
���� � � ��� ����

We close by discussing those situations in which LSD or GGA can fail badly�
They seem to be of two types
 ��� When the Kohn�Sham non�interacting wave�
function is not a single Slater determinant� or when the non�interacting energies
are nearly degenerate� the LSD and GGA exchange�correlation holes can be
unrealistic even very close to or on top of the electron ��
� ��� 

�� ��� In an
extended system� the exact hole may display a di�use long�range tail which is
not properly captured by either LSD or GGA� To a limited extent� this e�ect
could be mimicked by reducing the parameter � in Eq� ���
�� An example of a
di�use hole arises in the calculation of the surface energy of a metal ���� ���

When an electron wanders out into the vacuum region� the exchange�correlation
hole around it can extend signi	cantly backward into the interior of the metal�
A more extreme example is �stretched H�

� �� the ground state of one electron
in the presence of two protons at very large separation
 Half of the exact hole
is localized on each proton� a situation which has no analog in the electron gas
of uniform or slowly�varying density� and for which LSD and GGA make large
self�interaction errors ��� ��� 
���

�Stretched H�
� � and related systems are of course unusual� In most systems�

the exact exchange�correlation hole is reasonably localized around its electron�
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as it is in LSD or GGA � and that fact is one of the reasons ���� why LSD and
GGA work as well as they do�
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