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1, The standardized simple random walk

For arbitrary p ∈ (0, 1) consider (αn)n≥1 iid Bernoulli with

P[αn = 0] = 1− p, P[αn = 1] = p, (1)

Denote by (ζn)n≥1 the standardized variables, so that E [ζn] = 0
and Var[ζn] = 1, and let ξn,k the scaled partial sums, that is,

ζn =
αn − p√
p(1− p)

, ξn,k =
1√
n

k∑
j=1

ζj . (2)

For k = 0, . . . , n set

zn,k =
k − np√
np(1− p)

, fn,k =

(
n

k

)
pk(1− p)n−k . (3)

Then
fn,k = P[ξn,n = zn,k ]. (4)



2, The tail comparison proposition

Denote the lower and upper tail for the standardized binomial
distributions by

Fn(x) = P[ξn,n ≤ x ], F̄n(x) = P[ξn,n > x ]. (5)

If p ∈ [1/2, 1), then there is C > 0 such that, for n ≥ 1, we have

fn,k ≤ C · 1√
np(1− p)

φ(zn,k−1), 0 ≤ k ≤ dnpe , (6)

fn,k ≤ C · 1√
np(1− p)

φ(zn,k+1), bnpc ≤ k ≤ n. (7)

Furthermore
Fn(x) ≤ CΦ(x), x ≤ 0 (8)

and
F̄n(x) ≤ C Φ̄(x), x ≥ 0. (9)

Here φ is the density, Φ the lower tail and Φ̄ the upper tail of N(0, 1).



3, An illustration of the proposition

z[n,k]z[n,k-1]

ϕ[z[n,k-1]

x

ϕ[x]

z[n,k] z[n,k+1]

ϕ[z[n,k+1]]

x

ϕ[x]

Remark
The terms 1√

np(1−p)
φ(zn,k±1) in (6) and (7) are a lower bound for

the area under the density ϕ(x) between zn,k−1 and zn,k on the left
and zn,k and zn,k+1 on the right tail, respectively.



4, Classical, well-known, trivial, boring. . . ?

I The CLT is about absolute errors.

I Both the binomial and the Gaussian tails are negligibly small.

I Look at large deviation results?

I Inbetween a gap, the moderate deviation region. . .

I Please show me a precise argument or reference!

Masashi Okamoto, Some inequalities relating to the partial sum of
binomial probabilities. Ann Inst Stat Math 10, 29–35 (1959)
[Hoeffding, Chernoff/Rubin, . . . ]

⇒ F̄n(x) ≤ Cφ(x)

Almost there, but miss an x−1 since Φ̄(x) ∼ x−1φ(x) as x → +∞. Recall

φ(x) =
1√
2π

e−x
2/2.



5, From a Feller paper

W. Feller, On the Normal Approximation to the Binomial Distribution
Ann. Math. Statist. 16 (1945), 319–329.

 ON THE NORMAL APPROXIMATION TO THE BINOMIAL

 DISTRIBUTION

 BY W. FELLER

 Cornell University

 1. Although the problem of an efficient estimation of the error in the normal

 approximation to the binomial distribution is classical, the many papers which
 are still being written on the subject show that not all pertinent questions have
 found a satisfactory solution. Let for a fixed n and 0 < p < 1, q =l-p,

 (1) Tk = (T ) pk qn-k PX, =E Tk_ .

 For reasons of tradition (and, apparently, only for such reasons) one sets

 (2) Zk = (k - np)', u- = (npq)"2,

 and compares (1) with

 (3) NA; = (27rt)-1/2a-1e-Z2/2 and nx, = 4)(z + )-(x

 respectively,1 where -4(z) stands for the normalized error function. Many

 estimates are available for the maximum of the difference I P, -IIX J I for all X, v.
 Now this error is O(&-1) and even a precise appraisal will break down in the two
 most interesting cases: if a is small, or if X and v are large as compared to a.
 Indeed, even for moderately large values of k (such as are usually considered)
 the contribution of Tk to the sum in (1) will be considerably smaller than 1-'
 so that any estimate of the form O(1-1) leaves us without guidance. With some
 modifications this remains true also for more refined estimates like Uspensky's
 remarkable result2

 (4) + 60(27r)'1/ [(1 - z2)12212] I t1, +

 with

 I < {.13 + .18 1 P- q I}, -2 + e-3a/2

 provided a > 5. What is really needed in many applications is an estimate of

 the relative error, but this seems difficult to obtain.
 It should also be noticed that the accuracy of the normal approximation to the

 binomial is by no means quite as good as many texts would make appear. Exam-

 I 1
 1 Very often the limits zx and z, instead of z, + - and Zx - - are used. This naturally

 results in an unnecessary systematic undervaluation.
 2 Uspensky [3], p. 129. A two-term development of Tr with an error of O(a-2) valid for

 I x I < 2, a > 3 has been given by Mirimanoff and Dovaz [19271.
 319
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Precisely: Needed for the utility maximization application below!



6, Kraft on Kambo and Kotz

Olaf Krafft, A note on exponential bounds for binomial probabilities
Annals of the Institute of Statistical Mathematics volume 21, pages 219–
220 (1969)



7, McKay on Littlewood
Brendan McKay, On Littlewood’s Estimate for the Binomial Distribution,
Advances in Applied Probability 1989, Vol. 21, No. 2, 475–478.

 Adv. Appl. Prob. 21, 475-478 (1989)
 Printed in N. Ireland

 @?Applied Probability Trust 1989

 ON LITTLEWOOD'S ESTIMATE FOR THE BINOMIAL DISTRIBUTION

 BRENDAN D. McKAY,* The Australian National University

 Abstract

 We correct a theorem of J. E. Littlewood which gives an approximation
 for the tail of the binomial distribution. We also present several new
 approximations which are less accurate but have wider scope. One of them
 gives an estimate with relative error uniformly O(1/a) over all values of all
 the parameters, where a is the standard deviation.

 For some types of probability calculations, the familiar DeMoivre-Laplace approximation
 to the binomial distribution (see Feller [2] for example), is insufficiently accurate. The most
 serious attack on this problem seems to have been that of Littlewood [3]. Unfortunately,
 Littlewood's Theorem 2 contains two typographic errors as well as an incorrect sign which can
 be traced to a clerical error in the proof. The main purpose of this note is to state
 Littlewood's theorem correctly. We also take the opportunity to give some other approxima-
 tions which may be more convenient, though lesser in accuracy and scope in some cases.

 For the normal distribution, define 4(x) = ex2/2/' 7, Q(x) = fX (u) du, and Y(x) =
 Q(x)I/(x). For the binomial distribution, define

 b(k) = b(k; n;p) = )pkqn-k
 and

 B(k) = B(k; n, p) = E b(j; n, p),
 j=k

 where q = 1 - p. The mean of this distribution is y = pn and the variance is a2 = npq.
 We begin with Littlewood's Theorem 2. With the errors corrected, we can state that

 theorem as follows.

 Theorem 1. Let p, 0 <p < 1, be fixed. Let t = t(n) be such that pn + t is an integer and

 0O5 t - 3qn. Define x = t/o and p = q - t/n. Then
 B(pn + t; n, p) = Q(x) exp (A, + A2/1p(l - p)n + O(n-')),

 where

 A,=-2 = (pn+t-') log 1+ -(qn - t + ) log 1- 2pqn pnq qn/
 and

 A2 = -(1 - 2p)((l - x2)/Y(x) + x3) + (1/Y(x) - x).
 Proof. Littlewood's statement of this theorem has three errors:
 (i) The coefficient - should be - (it comes from c3).
 (ii) The definition of p should be as in (his) Theorem 1.
 (iii) The sign of the O(n-1/2) term is wrong.

 Received 19 September 1988; revision received 13 December 1988.
 * Postal address: Computer Science Department, Australian National University, GPO Box 4, ACT

 2601, Australia.
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 Errors (i) and (ii) are merely typos. Error (iii) can be traced to an incorrect sign change in
 passing from (22.5) to (22.6). Apart from this, Littlewood's proof appears valid. To guard
 against other gross errors, we have succesfully checked the theorem numerically for a wide
 range of values of the parameters.

 Since Y(x) has an asymptotic expansion of the form 1/x - 1/x3 + 0(1/x'), the coefficient
 A2 is uniformly bounded over the range of validity of Theorem 1. In fact, 0 < A2 < 0-532 and
 0 < (1 + x)A2 < 1-084 for x - 0 and 0 - p - 1. Also, as Littlewood makes clear in his paper,
 the choice of 3qn as the upper limit for t is arbitrary; in fact the theorem and its proof are
 equally valid for 0 - t - aqn, where a is any constant with a < 1. Subject to this bound on t,
 the error term in Theorem 1 is uniform over n and t. However, it is not uniform over p or ar.
 We note here that the slip leading to error (iii) also invalidates Littlewood's Theorem 1, but
 in that case we have not determined the correct form.
 Littlewood's method (but not his theorem) would doubtless work if p was not constant but
 instead decreased as some function of n. We have not attempted to modify his proof in this
 way, but have instead taken several alternative approaches.
 The first approach is suggested by Littlewood's theorem. The second and third terms of A1
 strongly suggest Stirling's approximation to log b(pn + t). Applying this approximation in
 reverse, and dropping A2, gives the estimate B(pn + t) b(pn + t)Y(x)(1 + t/(pn)).
 Amazingly, the error in this approximation turns out to be uniformly O(1/a) for all n, p and
 t - 0.

 Theorem 2. Let 0 < p < 1, n 1, and pn - k -5 n. Define x = (k - pn)/a. Then

 B(k; n, p) = ab(k - 1; n - 1, p)Y(x) exp (E(k; n, p)/a),
 where

 0O5 E(k; n, p) - min ({V.-, l/x}.

 Proof. Define B*(k)= ab(k - 1; n - 1, p)Y(x) and b*(k)= B*(k)- B*(k + 1). We bound
 E(k) = E(k; n, p) by comparing B*(n) with B(n) and b*(k) with b(k) for k < n.

 We begin by recalling some standard properties of the function Y(x). For any x - 0, the
 sequence Y(x), Y'(x), Y"(x), ... , alternates in sign. With the help of the identity Y'(x) =
 xY(x) - 1, this fact yields many inequalities for Y(x) and its derivatives. For example, the
 inequalities Y' < 0 and Y" > 0 imply that x/(1 + x2) < Y(x) < 1/x for x > 0.

 First consider the case k = n. From the definitions, we find that B*(n) = B(n)xY(x), where

 x = \/qn7p. Thus, E(n) = -x In (xY(x)), from which standard methods yield the inequalities
 0-5 E(n) -5 min {1, l/x}.

 Next, consider 0 - k - n - 1. Define e(k) = e(k; n, p) by b(k) = b*(k) exp (e(k)/a). After
 a little algebra, we find that b*(k) = b(k)f(x), where

 f(x) = (a + qx)Y(x) - (a -px)Y(x + 1/a).

 Since k <n, we have a - px >0. Also, since Y">0, Y(x + 1/a)> Y(x)+ Y'(x)/o. This
 yields f (x) < 1 + pxY'(x)a/o 1, which implies that e(k) - 0.

 Similarly, for x > 0,

 f(x) = a(Y(x) - Y(x + 1/a)) + x(pY(x) + qY(x + 1/a))

 - - Y'(x + 1/a) + x(pY(x) + qY(x + 1/a))
 =1 - 1Y(x + l/a) + qx(Y(x) - Y(x + 1/a))

 S1 _ Y(x + 1 / a)

 - ox + 1'

 from which it follows that e(k) - 1/x.
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 The theorem now follows for t -:0. For t < 0, we need only note that B(np + t; n, p)=
 1- B(nq - t + 1; n, q).

 The symbolic algebra system Maple [4] was used for these calculations. Both Theorems 2
 and 3 could be extended to more terms or a wider range if required.

 Acknowledgements

 I wish to thank Nick Wormald for some useful ideas. Also, the referee deserves thanks for
 detecting an error in the first draft of this note, thereby (one hopes) obviating the need for a
 third iteration!
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8, Motivation

The Kreps book

David M. Kreps
The Black–Scholes–Merton Model as an Idealization of
Discrete-Time Economies
Cambridge University Press, Cambridge, 2019.

The Kreps and Schachermayer paper

David M. Kreps and Walter Schachermayer
Convergence of Optimal Expected Utility for a Sequence of
Discrete-Time Markets
Mathematical Finance 30(4):1205–1228, 2020.

Our note
Friedrich Hubalek and Walter Schachermayer
Convergence of Optimal Expected Utility for a Sequence of
Binomial Models
arXiv:2009.09751 [math.PR]



9, Two central topics in mathematical finance

I Pricing and hedging of derivatives

I Dynamic utility maximization

If we have a sequence of market models Sn approximating a limit
model S do

I Option prices, trading strategies, gains processes, hedging
errors etc. from the sequence converge [. . . ] to the
corresponding [. . . ] quantities in the limit model?

I And do utilities and optimal investments etc. converge?

More precise: Consider also measures Pn and P and possibly
equivalent martingale measures Qn and Q in this discussion!



10, On the convergence of option prices

Friedrich Hubalek and Walter Schachermayer, When Does Convergence
of Asset Price Processes Imply Convergence of Option Prices? Volume 8,
Issue 4, October 1998, Pages 385-403.

I The usual (homogeneous) approximation is fine.

I Minor variations (e.g. odd-even model) behave wildly. Connected to
asymptotic arbitrage. [. . . ]

Many other results, e.g.,

Jean-Luc Prigent, Weak Convergence of Financial Markets, Springer,
2003.



11, Contiguity and entire separation

1. Contiguity (Qn) C (Pn): If

Pn(An)→ 0 ⇒ Qn(An)→ 0

as n→∞ for all An ∈ Fn.

2. Entire separation (Qn)4 (Pn): If there is a subsequence nk →∞
and for each k a set Ank , such that

Pnk (Ank )→ 1, and Qnk (Ank )→ 0

as k →∞.

Useful criteria in terms of

hn(α) =
n∑

k=1

[1− H(α; pnk , q
n
k )] , (10)

where H(α; pnk , q
n
k ) is the Hellinger integral of order α ∈ (0, 1).



12, The sequence of discrete-time markets for utility
maximization

Let (ζn)n≥1 an iid sequence of standardized random variables with
bounded support [. . . !], i.e.,

E [ζ] = 0, Var[ζ] = 1, ∃M > 0 : P[|ζ| < M] = 1

For n ≥ 1 define a sequence of continuous time processes
(ξn(t) : t ∈ [0, 1]) on the grid

ξn
(
k

n

)
=

1√
n

k∑
j=1

ζj , k = 0, . . . , n

and extend for all t ∈ [0, 1] by linear interpolation. [. . . ]

The n-th discrete time market consists of a bond (B(t) : t ∈ [0, 1]) and a
stock (Sn(t) : t ∈ [0, 1]) with

B(t) = 1, Sn(t) = eξ
n(t), t ∈ [0, 1].



13, The continuous-time limit

Let (W (t) : t ∈ [0, 1]) a standard Brownian motion.

The continuous-time limit market consists of a bond
(B(t) : t ∈ [0, 1]) and a stock (S(t) : t ∈ [0, 1]) with

B(t) = 1, S(t) = eW (t), t ∈ [0, 1].

This is the theorist’s version of the Black-Scholes-Merton model, i.e.,

T = 1, S(0) = 1, r = 0, q = 0, µ =
1

2
, σ = 1.

Donsker’s Theorem implies ξn
d→W as n→∞, and thus

Sn d→ S .



14, Utility maximization
Suppose U : (0,∞)→ R is a utility function [. . . ].

For x > 0 let Xn(x) resp. X (x) the set of all outcomes (terminal
wealth)

I from trading in the n-th discrete-time market

I resp. the continuous-time limit market

I starting with capital x > 0,

I following an admissible, self-financing strategy. [. . . ]

Expected utility from terminal wealth

un(x) = sup
X∈Xn(x)

E [U(X )], u(x) = sup
X∈X (x)

E [U(X )]

Is this utility maximization continuous ? I.e.,

lim
n→∞

un(x)
?
= u(x), x > 0.



15, Assumptions on the utility function

The utility function U : (0,∞)→ R is

I strictly increasing, strictly concave, continuously differentiable,

I satisfies the Inada conditions

lim
x→0

U ′(x) = +∞, lim
x→∞

U ′(x) = 0

I and (w.l.o.g.) has limx→∞ U(x) > 0.

Note we allow

I limx→0 U(x) = −∞ or finite, and

I limx→∞ U(x) = +∞ or finite positive!



16, The Kreps-Schachermayer convergence result

The asymptotic elasticity of U is

Æ(U) = lim sup
x→∞

xU ′(x)

U(x)
.

Theorem (Kreps and Schachermayer 2020, Theorem 8.1)

Given
I a sequence of discrete-time markets as above, and
I a utility function U satisfying the conditions above,
I which has Æ(U) < 1

then
u(x) <∞ ∀x > 0

and
lim
n→∞

un(x) = u(x) ∀x > 0.



17, The Kreps-Schachermayer counterexample

There is

I a sequence of discrete-time markets as above, and

I a utility function U satisfying the conditions above,

I which has Æ(U) = 1

such that
u(x) <∞ ∀x > 0

and
lim
n→∞

un(x) = +∞ ∀x > 0.

I The sequence of markets is easy, need only E [ζ3] > 0.

I Construction of the appropriate utility function U is more
tricky! [. . . ]



18, The binomial counterexample and the binomial
question

A standardized Ber(p) has

E [ζ3] =
1− 2p√
p(1− p)

and thus E [ζ3] > 0 for 0 < p < 1/2.

In other words: In a sequence of Cox-Ross-Rubinstein binomial
models with p ∈ (0, 1/2) utility explodes!

Urgent question

What happens for p =
1

2
or more generally

1

2
≤ p < 1 ?



19, A binomial convergence result

Theorem (Hubalek and Schachermayer 2020, Theorem 1)

Given
I a sequence of binomial markets with p ∈ [1/2, 1), and
I a utility function U satisfying the conditions above,

then
u(x) <∞ ∀x > 0

and
lim
n→∞

un(x) = u(x) ∀x > 0.



20, Back to the tail comparison: An illustration

1 2 3 4 5

0.5

1.0

1.5

2.0

Illustration

Cn(x) =
F̄n(x)

Φ̄(x)

for n = 20 and p = 1/2 on 0 ≤ x ≤
√
n.



21, Binomial tail and Beta functions

Well-known and old: Binomial CDF by Regularized Incomplete
Beta-Function

F̄n(x) = 1− I 1
2
(n − bxc, 1 + bxc),

Iz(a, b) =
Bz(a, b)

B(a, b)
, Bz(a, b) =

∫ z

0
ta−1(1− t)b−1dt

Well-known asymptotics of Iz(a, b) ? [. . . ]



22, More tail comparison illustrations



1 2 3 4 5

0.5

1.0

1.5
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2.0



Illustration

Cn(x) =
F̄n(x)

Φ̄(x)

for n = 20, 40, 80 and p = 1/2 on 1/2 ≤ x ≤
√
n.



23, Approximating factorials

Recall: For k = 0, . . . , n set

zn,k =
k − np√
np(1− p)

, fn,k =

(
n

k

)
pk(1− p)n−k . (11)

Most cumbersome (
n

k

)
=

n!

k!(n − k)!
. (12)

I Central area: Exploit interaction of k and n when both
growing more or less ’together’.

I Far tails: Have k or n − k much smaller than n.

I But I do not want to split and paste!

Need an accurate version of Stirling’s formula for all arguments!



24, A fine version of Stirling’s formula

Milton Abramowitz and Irene A. Stegun, editors. Handbook of
mathematical functions with formulas, graphs, and mathematical tables.
Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition.
[6.1.38, p.257]

x! =
√

2πxx+
1
2 exp

(
−x +

θ(x)

12x

)
, x > 0, (13)

with 0 < θ(x) < 1 for all x > 0. Notation: x! = Γ(x + 1).

[DLMF, 5.6.1] NIST Digital Library of Mathematical Functions.
http://dlmf.nist.gov/,Release1.0.28of2020-09-15. F. W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A.
McClain, eds.

NIST Handbook of Mathematical Functions Hardback and CD-ROM
Edited by Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert
Charles W. Clark

http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15.


25, The key auxiliary function, p = 1/2

From

zn,k =
2k − n√

n
, fn,k =

(
n

k

)
2−n. (14)

with

x! =
√

2πxx+
1
2 exp

(
−x +

θ(x)

12x

)
, x > 0, (15)

and patience and/or computer help

log

( √
nfn,k

2φ(zn,k+1)

)
≤ gn

(
k

n

)
, (16)

with gn(w) = α(w)n + βn(w), where w ∈ [ 12 , 1], and

α(w) = −w logw − (1− w) log(1− w)− 2w(1− w) +
1

2
− log 2 (17)

and

βn(w) = −1

2
logw − 1

2
log(1− w) + 4w − 2 +

25

12n
. (18)



26, An elementary discussion

It remains to show that gn(w) = α(w)n + βn(w) is bounded from above
uniformly in n ∈ N and w ∈ [1/2, 1− 1/n].

α(w) = −w logw − (1− w) log(1− w)− 2w(1− w) +
1

2
− log 2 (19)

and

βn(w) = −1

2
logw − 1

2
log(1− w) + 4w − 2 +

25

12n
. (20)

We have

α

(
1

2

)
= α′

(
1

2

)
= α′′

(
1

2

)
= α′′′

(
1

2

)
= 0

and

αiv (w) = − 2

(1− w)3
− 2

w3
< 0

for w ∈ ( 1
2 , 1). Thus α′′′(w), α′′(w), α′(w), and α(w) is strictly negative

and decreasing for w ∈ ( 1
2 , 1). [. . . ]

Similar, more asymmetric, for p ∈ (1/2, 1).



27, Variants of the comparison

Always p ∈ [1/2, 1) fixed.

Our proposition, as required for the application:

∃C > 0, ∀n ≥ 1 ∀x > 0 F̄n(x) ≤ C Φ̄(x)

Sharpening from the proof:

∀C > 1 ∃n0(C ) ≥ 1 ∀n ≥ n0(C ) ∀x > 0 F̄n(x) ≤ C Φ̄(x)

Similar for the left tail.

Remark: We cannot have C = 1.
Scaled binomial and Gaussian interlace. [. . . ]

Also interesting: Asymptotics [. . . ?]

sup
x>0

F̄n(x)

Φ̄(x)
n→∞



28, Sketch of utility convergence proof
Recall

I Utility from trading in the n-th binomial market is un(x),

I Utility from trading in the Black-Scholes-Merton market is u(x).

We want to show
lim

n→∞
un(x) = u(x).

Recall the solutions from [. . . ]

I Dimitrij Kramkov and Walter Schachermayer, The asymptotic
elasticity of utility functions and optimal investment in incomplete
markets. The Annals of Applied Probability, 9(3):904–950, 1999.
[KS99]

I David M. Kreps and Walter Schachermayer, Convergence of
Optimal Expected Utility for a Sequence of Discrete-Time Markets,
Mathematical Finance 30(4):1205–1228, 2020. [KS20]

All our markets are complete! Easy!



29, Solutions for utility maximization

Conjugate function of U, namely

V (y) = sup
x>0
{U(x)− xy} .

Unique equivalent martingale measures Qn and Q with

dQn

dPn
= Zn,

dQ

dP
= Z

where

Zn = exp (−anξn(1)− bn) , Z = exp

(
−1

2
W (1)− 1

8

)
with an = 1/2 and bn = n log cosh

(
1

2
√
n

)
when p = 1/2. [. . . ]



30, Solutions for utility maximization (continued)

Set
vn(y) = E [V (yZn)], v(y) = E [V (yZ )]

then
un(x) = inf

y>0
{vn(y) + xy}

and
u(x) = inf

y>0
{v(y) + xy} .

To show un(x)→ u(x) it is sufficient [KS20] to have

lim
n→∞

vn(y) = v(y), y > 0.

From [KS20, Prop.2] we know

lim inf
n→∞

vn(y) ≥ v(y), y > 0.



31, The liminf
We only have to show

lim inf
n→∞

vn(y) ≤ v(y), y > 0.

For x ∈ R let

Hn(x) = V (y exp (−anx − bn)) , H(x) = V

(
y exp

(
−x

2
− 1

8

))
,

with an = 1/2 when p = 1/2 [. . . ] and then Hn(x) ≤ H(x) for all x ∈ R
and

vn(y) = E [Hn(ξn(1)] ≤ E [H(ξn(1)], v(y) = E [H(W (1))].

We know H is continuous. If H was bounded, we are done by weak
convergence. Typically it is not. We need uniform integrability.

E
[
|H(ξn(1))|1{|H(ξn(1))|>M}

]
=

n∑
k=0

|H(zn,k)|1{|H(zn,k )|>M}fn,k < ε,

This is provided by our tail comparison proposition. [. . . ]

Asymmetric p ∈ (1/2, 1) slightly more technical, but similar.



32, Interlacing tails, n = 40, p = 1/2

1 2 3 4 5 6
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