
Problems 2 2024

Let (Ω,F,P, (Ft)t∈[0,1]) be a stochastic basis satisfying the usual conditions and let (Bt)t∈[0,1] be
an (Ft)t∈[0,1]-Brownian motion as in the course.
First we introduce a 2-dimensional version of Itô’s formula:

Theorem 0.1. Let B = (Bt)t∈[0,1] a Brownian motion, and
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be Itô-processes, and f ∈ C1,2([0, 1]× R2). Then
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(1) Solving a linear SDE I: Let x, b ∈ R. Solve the SDE
dXt = bXtdt+ dBt with X0 = x

in the following way: define the process Y = (Yt)t∈[0,1] by

Yt =
Xt

ebt
.

Then it holds Yt = f(t,Xt), where f(t, x) = x
ebt

, so that one can apply Itô’s formula to
write down Yt explicitly. Multiplying Yt by ebt one can derive a representation for Xt.

(2) Solving a linear SDE II: Let x, σ1, σ2 ∈ R. Solve the SDE
dXt = (σ1Xt + σ2)dBt with X0 = x.

Hint: Define the stochastic exponential E(σ1B)t := eσ1Bt−
σ2
1
2
t, and define the process by

Yt =
Xt

E(σ1B)t
. Then Yt = f(t,Xt, Bt), where f(t, x, b) = xe−σ1b+

σ2
1
2
t. Proceed as before; apply

Itô’s formula to get a representation for Yt, and multiply Yt by E(σ1B)t to get Xt.
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