Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in[0,1]}\right)$ be a stochastic basis satisfying the usual conditions and let $\left(B_{t}\right)_{t \in[0,1]}$ be an $\left(\mathcal{F}_{t}\right)_{t \in[0,1]}$-Brownian motion as in the course.
First we introduce a 2-dimensional version of Itô's formula:
Theorem 0.1. Let $B=\left(B_{t}\right)_{t \in[0,1]}$ a Brownian motion, and

$$
\begin{aligned}
X_{t} & =x+\int_{0}^{t} a_{s} d s+\int_{0}^{t} L_{s} d B_{s} \\
Y_{t} & =y+\int_{0}^{t} b_{s} d s+\int_{0}^{t} K_{s} d B_{s}
\end{aligned}
$$

be Itô-processes, and $f \in C^{1,2}\left([0,1] \times \mathbb{R}^{2}\right)$. Then

$$
\begin{aligned}
f\left(t, X_{t}, Y_{t}\right)= & f\left(0, X_{0}, Y_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial s}\left(s, X_{s}, Y_{s}\right) d s \\
& +\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, X_{s}, Y_{s}\right) d X_{s}+\int_{0}^{t} \frac{\partial f}{\partial y}\left(s, X_{s}, Y_{s}\right) d Y_{s} \\
& +\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, X_{s}, Y_{s}\right) L_{s}^{2} d s+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial y^{2}}\left(s, X_{s}, Y_{s}\right) K_{s}^{2} d s \\
& +\int_{0}^{t} \frac{\partial^{2} f}{\partial x \partial y}\left(s, X_{s}, Y_{s}\right) L_{s} K_{s} d s
\end{aligned}
$$

(1) Solving a linear SDE I: Let $x, b \in \mathbb{R}$. Solve the SDE

$$
d X_{t}=b X_{t} d t+d B_{t} \text { with } X_{0}=x
$$

in the following way: define the process $Y=\left(Y_{t}\right)_{t \in[0,1]}$ by

$$
Y_{t}=\frac{X_{t}}{e^{b t}}
$$

Then it holds $Y_{t}=f\left(t, X_{t}\right)$, where $f(t, x)=\frac{x}{e^{b t}}$, so that one can apply Itô's formula to write down Y_{t} explicitly. Multiplying Y_{t} by $e^{b t}$ one can derive a representation for X_{t}.
(2) Solving a linear SDE II: Let $x, \sigma_{1}, \sigma_{2} \in \mathbb{R}$. Solve the SDE

$$
d X_{t}=\left(\sigma_{1} X_{t}+\sigma_{2}\right) d B_{t} \text { with } X_{0}=x
$$

Hint: Define the stochastic exponential $\mathcal{E}\left(\sigma_{1} B\right)_{t}:=e^{\sigma_{1} B_{t}-\frac{\sigma_{1}^{2}}{2} t}$, and define the process by $Y_{t}=\frac{X_{t}}{\varepsilon\left(\sigma_{1} B\right)_{t}}$. Then $Y_{t}=f\left(t, X_{t}, B_{t}\right)$, where $f(t, x, b)=x e^{-\sigma_{1} b+\frac{\sigma_{1}^{2}}{2} t}$. Proceed as before; apply Itô's formula to get a representation for Y_{t}, and multiply Y_{t} by $\mathcal{E}\left(\sigma_{1} B\right)_{t}$ to get X_{t}.

