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Chapter 1

Introduction

Insurance Mathematics might be divided into
e [ife insurance,
e health insurance,
e non-life insurance.

Life insurance includes for instance life insurance contracts and pensions, where
long terms are covered. Non-life insurance comprises insurances against fire, wa-
ter damage, earthquake, industrial catastrophes or car insurance, for example.
Non-life insurances cover in general a year or other fixed time periods. Health
insurance is special because it is differently organized in each country.

The course material is based on the textbook Non-Life Insurance Mathematics
by Thomas Mikosch [7].

1.1 The ruin of an insurance company

1.1.1 Solvency II Directive

In the following we concentrate ourselves on non-life insurance. There is a the
Solvency II Directive of the European Union.

e Published: 2009
e Taken into effect: 01/01/2016
e Contents: Defines requirements for insurance companies.

One of these requirements is the amount of capital an insurer should hold, or
in other words, the Solvency Capital Requirement:
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e The probability that the assets of an insurer are greater or equal to its
liabilities (in other words, to avoid the ruin) has to be larger or equal than
99,5 %.

In the lecture we will treat exactly this problem. Here we slightly simplify the
problem by only looking at one particular insurance contract instead of looking
at the overall company (this is a common approach in research as well). What
are the key parameters for a non-life insurance contract for a certain class of
claims?

1. How often does this event occur?

e Significant weather catastrophes in Europe: 2 per year

e Accidents in public transportation in Berlin in 2016: 141.155
2. Amount of loss or the typical claim size:

e Hurricane Niklas, 2015, Europe: 750.000.000 €
e Storm Fla, 2014, Europe, 650.000.000 €
e Damage on a parking area: 500-1500 €
Opposite to the Solvency II Directive an insurance company needs to have rea-

sonable low premiums and fees to attract customers. So there has to be a
balance between the Solvency Capital Requirement and the premiums.

1.1.2 Idea of the mathematical model

We will consider the following situation:

(1) Insurance contracts (or policies) are sold. The resulting premium (yearly
or monthly payments of the customers for the contract) form the income
of the insurance company.

(2) At times T;, 0 < Ty < Ty < ... claims happen. The times T; are called the
claim arrival times.

(3) The i-th claim arriving at time T; causes the claim size X;.

Mathematical problem: Find a stochastic model for the T;’s and X;’s to compute
or estimate how much an insurance company should demand for its contracts
and how much initial capital of the insurance company is required to keep the
probability of ruin below a certain level.

1.2 Some facts about probability

We shortly recall some definitions and facts from probability theory which we
need in this course. For more information see [12], or [2] and [3], for example.
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(1) A probability space is a triple (2, F,P), where

e (2 is a non-empty set,
e JF is a o-algebra consisting of subsets of 2, and
e P is a probability measure on (2, F).

(2) A function f : Q — R is called a random variable if and only if for all
intervals (a,b), —0o < a < b < oo we have that

fH(a,b) :={weQ:a< fw) <bleT.

(3) By B(R) we denote the Borel o-algebra. It is the smallest o-algebra on
R which contains all open intervals. The o-algebra B(R™) is the Borel o-
algebra, which is the smallest o-algebra containing all the open rectangles
(a1,b1) X oo X (an, by).

(4) The random variables fi, ..., f,, are independent if and only if
P(fl S Bl; 7fn S Bn) = P(fl S Bl) o P(fn S Bn)

for all By € B(R),k = 1,...,n. If the f;’s have discrete values, i.e. f; : Q —
{z1,22,x3,...}, then the random variables f1,..., f, are independent if and only
if

P(fi =kiyeo, fn =kn) =P(fi = k1) -+ - P(frn = kn)
for all k; € {z1,z2,23...}.

(5) If f1,..., fn are independent random variables such that f; has the density
function h;(x), i.e. P(f; € (a,b)) = f; h;(z)dz, then

B((f1,oon fu) € B) = / (21, o) () - b (2n)day - - ety

n

for all B € B(R")..

(6) The function Ip(z) is the indicator function for the set B, which is
defined as
lifzx e B
Is(z) = { 0ifz ¢ B.

(7) A random variable f : Q@ — {0,1,2,...} is Poisson distributed with
parameter A > 0 if and only if
AF
N A
P(f=k)=e R

This is often written as f ~ Pois()).
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(8) A random variable g : Q@ — [0,00) is exponentially distributed with
parameter A > 0 if and only if for all a < b

b
P(g € (a,b)) = )\/ Tjg,00)(z)e™ M da.

This is often written as f ~ Exp(\).
The picture below shows the density Aljg o) (z)e™* for A = 3.

density for lambda=3

3.0

2.0

1.0

0.0

(9) How to characterize distributions?
We briefly recall how to describe the distribution of a random variable. Let
(©,F,P) be a probability space.

(a) The distribution of a random variable f : @ — R can be uniquely
described by its distribution function F : R — [0, 1],

F(z) =P{weQ: f(w) <z}), z €R.

(b) Especially, it holds for g : R — R, such that g~1(B) € B(R) for all
B € B(R), that

Eg(f) = / o(2)dF ()

in the sense that, if either side of this expression exists, so does the
other, and then they are equal, see [8], pp. 168-169.

(¢) The distribution of f can also be determined by its characteristic
function (see [12])

wr(u) = ]Eemf, u € R,
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or by its moment-generating function
my(h) :=Ee"', h € (—ho, ho)

provided that Ee"/ < oo for some hg > 0. We also recall that for
independent random variables f and g it holds that

Pf+g (u) = Pr (u)@g (u).
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Chapter 2

The Models for the claim
number process N(t)

In the following we will introduce three processes which are used as claim number
processes: the Poisson process, the renewal process and the inhomogeneous
Poisson process.

2.1 The homogeneous Poisson process with pa-
rameter \ > 0

Definition 2.1.1 (homogeneous Poisson process). Assume a probability space
(£2,3,P). A stochastic process N = (N(t));e[0,00) is @ map

N :[0,00) x Q2 =R

such that for each fixed t € [0,00) the map N(¢,-) : @ — R is a random
variable. The process N = (N(t))¢c[o,o) is a Poisson process with intensity
A > 0if N(t,w) € {0,1,2,...}, for each fixed w the function t — N(t,w) is
non-decreasing and if the following conditions are fulfilled:

(P1) N(0) =0 a.s. (almost surely), i.e. P({w € 2: N(0,w) =0}) = 1.

(P2) The process N has independent increments, i.e. for all n > 1 and 0 =
to <t; < ...<t, < oo the random variables N (¢,) — N(tn—1), N(tn—1) —
N(tp—2),...,N(t1) — N(to) are independent.

(P3) For any s > 0 and ¢ > 0 the random variable N (¢t 4+ s) — N(s) is Poisson
distributed, i.e.

P(N(t+s)—N(s)=m)=¢e

, m=0,1,2,...

11
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(P4) The paths of N, i.e. the functions (N (t,w))se[0,00) for fixed w, are almost
surely right continuous and have left limits. One says N has cadlag
(continue & droite, limite & gauche) paths.

Remark 2.1.2. One can show that the definition implies the following: there is
a set Qg € F with P(Qp) = 1 such that for all w € Qg one has that

(1) N(0,w) =1,

(2) the paths t — N(t,w) are cadlag, take values in {0,1,2,...}, are non-
decreasing,

(3) all jumps have the size 1.

In the following we prove that the Poisson process does exist. To do so we need
some preparations:

Lemma 2.1.3. Let (2, F,P) be a probability space and let Wi, Wa,... : Q@ —
(0,00) be independent and exponentially distributed random variables with pa-
rameter A > 0. Then, for any t > 0 we have

n—1 (At)k)
P(Wl+~~+wn§t):lfe*”27.
k=0 ’

Consequently, the law of Wy + --- + W), has the density

i )\ntnfl
P, 1 (t) = L(g,00)(t)e CEk
i.e. the sum of n independent exponentially distributed random variables with
parameter X is a Gamma distributed with shape n and scale 1/\.

Proof. The first part is subject to an exercise, we only show the formula for the
density. The density is obtained by differentiating the distribution function on
(0,00). Using the product rule, we get

n—1 n—1 n—1
d At CL T (At)* At AFh1
a |t ZT =AM |t Dk k!
k=0 k=0 k=1
n—1 k n—2 k
Y (A1) e (M)
= )de [ A + [—AXe Z o
k=0 k=0
)\efkt (At net
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Definition 2.1.4. Let (Q, F,P) be a probability space and let Wy, Ws, ... :  —
(0, 00) be random variables that are independent and exponentially distributed
with parameter A > 0. Define Ty(w) =0 and, for n > 1, ¢t > 0, and w € Q,

To(w) = W)+ W),
N(t,w) = #{i>1:T;(w) <t} t>0.
We say that
e Wi, Ws, ... are the waiting times,
e T1,T5, ... are the arrival times.

What is the idea behind using exponentially distributed waiting times
Wi, Ws,...7 Assume that W : Q@ — R is exponentially distributed with pa-
rameter A > 0 and that s,¢ > 0. Then one has

P(W > s+ t/W >s) =P(W > t).

In other words, the distribution does not have a memory. The distribution of
the counting process (N (t,-))i>0 is given by the next statement, which also
explains the name Poisson process:

Lemma 2.1.5. For eachn=0,1,2,... and for all t > 0 it holds

P({w e Q: N(t,w) =n}) = e ()\t)"’

n!
i.e. N(t) is Poisson distributed with parameter \t.

Proof. From the definition of N it can be concluded that

{weQ:Nt,w)=n}={weQ:Th(w) <t<Thii(w)}
={weQ: T,(w) <t} \{weQ:Thi1(w) <t}

Because of T,, < T,,11 we have the inclusion {T},11 < ¢t} C {T,, < t}. This
implies

P(N(t):n):P(T7LSt)_P(Tn+1St)
Lt (AR s (A)F
21—6_/\2(7!)—1+€)\Z(k!)

k=0 k=0

_ae (A"
nl

=€

O

Now we can prove the existence of the Poisson process which is one of the
important processes in stochastic process theory:
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Theorem 2.1.6 (Existence of the Poisson process).
(1) ]\Af(t)te[o,oo) is a Poisson process with parameter A > 0.

(2) Any Poisson process N(t) with parameter X > 0 can be written as
Nt)=#{i>1,T; <t}, t >0,

where T,, = W1 + ...+ W,, n > 1, and Wy, Ws, ... are independent and
exponentially distributed with A > 0.

Proof. (1) We check the properties of Definition 2.1.1.

(P1) According to our construction we have that Wi(w) > 0 for all w € Q.
Because N(0,w) = 0 if and only if 0 < T} (w) = W1 (w), we deduce N(0,w) =0
for all w € Q.

(P2) We only show that N(s) and N(t) — N(s) are independent, i.e.

P(N(s)=1,N(t) — N(s) = m)=P(N(s) = )P(N(t) = N(s) =m) (1)

for I,m > 0. The independence of arbitrary many increments can be shown
similarly. It holds for [ > 0 and m > 1 that

P(N(s)=1, N(t) = N(s) =m) = P(N(s)=1, N(t)=m+]I)
= P(T) <5 <Tiy1, Tipm <t < Tigmg1)-

By defining functions fi, f2, f3 and f4 as

o= T

fo = Wi

fs = Wihe+ ..+ Winm
fa = Wipmyr,

and hq, ..., hy as the corresponding densities, it follows that

P(Ty < s <Tip1, Tigm <t <Tiyme1)
= P(i<s<fit+fo, i+ fotfs<t<fi+fot fz3+[fa)
PO< fi<s,s—f1< fa<00,0< f3<t—f1— fa,
t=(fit+fat f3) < fa<o0)

s oot—xr1—x2 OO

_ / / / / ha(24)ds hg(2s)dws ho(2)des by (21)das

0s—x; 0t—x1—x2—23

Iy(x1,22,23)

I3(z1,22)

12(:131)
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By direct computation and rewriting the density function of fy = Wiy ,41,

o0

Iy(x1, @0, x3) = / )\67)‘“11[0,00)(%4)(1% S e

t—x1—To—x3

Here we used t — x1 — x5 — x3 > 0. This is true because the integration w.r.t.
a3 implies 0 < x3 <t — x1 — x9. The density of f3 = Wiio + ...+ Wiy, is

zf 2 A
(m —2)! To,00) (3)e™

x3

hg(l’g) = )\mil

according to Lemma 2.1.3. Therefore,

t—x1—x2

m—2
13(33'1, 332) — )\mfl (T::L?)_ 2)' 67>\m367)\(t7m17m27x3)d$3
) !
—At—z1—m2) ym— (t s ‘T’2)m71
= Mooy (wp)e Mmoo (m —1)!
The density of fo = W41 is
hg(l’g) = ]I[O,oo)(zg)A€7A$2.
This implies
I —At—x1—22)ym— (t_'rl_xQ)m_l —Azx
12(.131) = /]I[O’t,zl)(l'g)e At L 2))\ 1w)\6 A 2d.132
S—I1
_ ymeAt—ay (= 8)™
N m!
Finally, from Lemma 2.1.5 we conclude
S t _ m -1 )
L = /O Ame e { m‘?) Al (lxi o Ljo,00) (21)e ™" day
_ )\mAle—At (t_ S)mil
N m! 1

- () ((A(t;!s>>me_w_s)>

= P(N(s) = )P(N(t — s) = m).

over | € N we get

P(N(t)— N(s)=m) = P(N(t—s)=m) (2)
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and hence (1) for I > 0 and m > 1. The case m = 0 can deduced from that
above by exploiting

P(N(s) =1, N(t) — N(s) = 0)

=P(N(s)=1)— Y_P(N(s) =1, N(t) = N(s) = m)

m=1

and

oo

P(N(t—s)=0)=1- Y PN(t—s)=m).

m=1

(P3) follows from Lemma 2.1.5 and (2).

(P4) follows from the construction.

(2) This part is subject to an exercise. O

Poisson, lambda=50

30
|

20
|
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Poisson, lambda=10

2.2 A generalization of the Poisson process: the
renewal process

To model windstorm claims, for example, it is not appropriate to use the Pois-
son process because windstorm claims happen rarely, sometimes with years in
between. The Pareto distribution, for example, which has the distribution func-
tion

K

F(a:):l—(

with parameters a, k > 0 will fit better when we use this as distribution for the
waitig times, i.e.

(e}
) for >0
K+

K

P(Wizx):< ) for x>0.

K+

For a Pareto distributed random variable it is more likely to have large values
than for an exponential distributed random variable.

Definition 2.2.1 (Renewal process). Assume a probability space (2, F,P) and
independent and identically distributed random variables Wi, W, ... : Q@ —
(0,00). Then

o = 0
Tn = W1++Wn, nZ 1,
is a renewal sequence and N : [0,00) x Q — {0,1,...} with
N(t)=#{i>1:T; <t}, t >0,

is the corresponding renewal process.



18 CHAPTER 2. CLAIM NUMBER PROCESS MODELS

By Theorem 2.1.6 we know that a renewal process with Wy, Wa, ... ~ Exp())
is a Poisson process with intensity A > 0.

In order to study the limit behavior of N we need the Strong Law of Large
Numbers (SLLN):

Theorem 2.2.2 (SLLN). If the random wvariables X1, Xo,... are i.i.d. with
E|X;| < o0, then

X1+ X+ X,
lim

n—00 n

=EX; a.s.

Theorem 2.2.3 (SLLN for renewal processes). Assume N (t) is a renewal pro-
cess. If EW7 < oo, then

Proof. Because of
{weQ:Nit,w)=n}={weQ: Th(w) <t <Thyi1(w)} for neN

we have for N(t)(w) > 0 that

Tvew@) ot INew)1 @)  INw+1(@) N(tw) +1 3)
N(t,w) ~ N(t,w) N(t,w)  N(t,w)+1 N(tw)
Note that

N={weQ: T (w) <o} ={weQ:supN(t) >0}
>0
Theorem 2.2.2 implies that
Ty
; — EW;, (4)

holds on a set Q¢ with P(y) = 1. Hence lim, o T, — o0 on g and by
definition of N also lim;_, o, N(t) — 0o on . From (4) we get

Tn(tw
lim )

N, Nt w)

EW; for w € Q.

Finally (3) implies that

lim =EW; forw € Q.
N(tt?wo)lo N(t’w)
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In the following we will investigate the behavior of EN(¢) as t — oc.

Theorem 2.2.4 (Elementary renewal theorem). Assume that (N(t))i>0 is a
renewal process and that 0 < EW; < oo. Then
EN(t) 1

A = (5)

Remark 2.2.5. If the W;’s are exponentially distributed with parameter A > 0,
W; ~ Exp(\), i > 1, then N(t) is a Poisson process and

EN(t) = At.
Since EW,; = %, it follows that for all £ > 0 that

EN() 1
t  EwWy’

(6)

If the W;’s are not exponentially distributed, then the equation (6) holds only
for the limit ¢ — co.

In order to prove Theorem 2.2.4 we formulate the following Lemma of Fatou
type:

Lemma 2.2.6. Let Z = (Zi)1c[0,00) be a stochastic process such that
Zy 1 Q2 —[0,00) forallt>0
and infs>¢ Zs : @ — [0,00) is measurable for all t > 0. Then
Eliminf Z, < liminf EZ.
Proof. By monotone convergence, since ¢ — infy>; Z, is non-decreasing, we have

E lim inf Z;, = lim Einf Z,.

t—00 s>t t—oo s>t

Obviously, Einfs>; Z; < EZ, for all v > t which allows us to write

Einf Z, < inf EZ,,.
u>t

s>t
This implies the assertion. O

Proof of Theorem 2.2.4. Let A = ﬁ. From Theorem 2.2.3 we conclude

A= lim N(®) = lim infM

t—oo t—oo s>t S
Since Z; := @ for t > 0 and Z; := 0 fulfills the requirements of Lemma 2.2.6
we have N N
A =E lim inf ﬂ < liminfEﬂ.

t—oo s>t S t—o0
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So, we only have to verify that limsup,_, . E@ < A. Let ¢ > 0. Recall that
N(t) =#{i > 1:T; <t}. We introduce the filtration (F,),>0 given by

Fn = U(Wla B3] Wn)7 n2>1, Fo:= {@,Q}

Then the random variable 7, := N(t) + 1 is a stopping time w.r.t. (F,),>0 i.e.
it holds
{n=n}eF,, n>0.

Let us verify this.

n =0 yields to {7, =0} = {N(t) = -1} =0 € Fo,
n=1yields to {r, =1} = {N(t) =0} = {t < W1} € F1, and for
n > 2 we have

{=n}={Th 1 <t<Tp}={W1+ ..+ W1 <t <Wi+ ..+ W,} €F,.

By definition of N(t) we have that T ) < t. Hence we get
ETnw+1 = E(Tng) + Way+1) < t+EW; < oco. (7)
On the other hand it holds

T NK

ETn(1 =E) Wi= lim E Y W,

i=1 =1

by monotone convergence. Since Er; A K < oo and the W/s are i.i.d with
EW; < oo we may apply Wald’s identity

T+ ANK
E Z W; = E(r; A K)EW;.

i=1
This implies
00 > ET N1 = Klim E(r: AN K)EW; = Er, EW;.
—00

This relation is used in the following computation to substitute Ery = EN(t)+1:

EN EN 1
lim sup ﬂ lim sup &

t—o0 t—o0

. E7
= limsup —
t—o00
~ limesup EIN@+1
t~>oop t EWI
t+EW; 1

lim sup =

t—soo tEW] EW;’

IN

where (7) was used for the last estimate. O
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2.3 The inhomogeneous Poisson process and the
mixed Poisson process

Definition 2.3.1. Let x : [0,00) — [0,00) be a function such that

(1) u(0) =0

(2) p is non-decreasing, i.e. 0 < s <t = u(s) < u(t)

(3) w is cadlag.

Then the function p is called a mean-value function.

> A

(=]
]
N
(o]
ES

p(t) continuous

>N

0’0 0’5 1.0 15 210
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u(t) cadlag

3.0

2.0

1.0

0.0

0.0 0.5 1.0 15 20 25 30

Definition 2.3.2 (Inhomogeneous Poisson process). A stochastic process N =
N(t)te[0,00) is an inhomogeneous Poisson process if and only if it has the
following properties:

(P1) N(0) =0 a.s.

(P2) N has independent increments, i.e. if 0 = tp < t; < ... < tp, (
it holds that N(t,) — N(tn-1), N(tn—1) — N(tn—2), ...,N( 1) — N(t
independent.

nZ)
(t

0) ar

(Pinn.3) There exists a mean-value function p such that for 0 < s < ¢
t) — m
P(N(t) — N(s) = m) = e~ () =n(s) (u() ﬁ‘(s)) 7
m)!

where m =0,1,2, ..., and ¢t > 0.
(P4) The paths of N are cadlag a.s.

Theorem 2.3.3 (Time change for the Poisson process). If i denotes the mean-
value function of an inhomogeneous Poisson process N and N is a homogeneous
Poisson process with A = 1, then

(1)

=,

(N () 1ef0,00) = (

(2) If p is continuous, increasing and lim;_,~, p(t) = oo, then

(1(t)))eel0,00)

N () tepo.00) = (N (8))ief0.00)-

Here ;1 1(t) denotes the inverse function of p and f 4 g means that the two
random variables f and g have the same distribution (but one can not conclude
that f(w) = g(w) for w € Q).
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Definition 2.3.4 (Mixed Poisson process). Let N be a homogeneous Poisson
process with intensity A =1 and p be a mean-value function. Let 6 :  — R be
a random variable such that 8 > 0 a.s., and 6 is independent of N. Then

N(t) := N(Ou(t), t >0
is a mixed Poisson process with mixing variable 6.

Proposition 2.3.5. It holds

ar(F(0u(0) = BN 0(0) (1+ o).

Proof. We recall that EN(t) = var(N(t)) = t and therefore EN (£)% = ¢t +t2. We
conclude

EN(0p(t))? — [ N (Ouft ))}2
= E(p(t) + 6*u(t)?) — (EOu(t)
= pu(t) (EO + Vareu( ).

var(N (6p(t)))

O

The property var(N(t)) > EN(¢) is called over-dispersion. If N is an inho-
mogeneous Poisson process, then

var(N(t)) = EN(t).
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Chapter 3

The total claim amount
process S(t)

3.1 The renewal model and the Cramér-
Lundberg-model

Definition 3.1.1. The renewal model (or Sparre-Anderson-model) considers
the following setting;:

(1) Claims happen at the claim arrival times 0 < 7} < T3 < ... of a renewal
process

Nty =#{i>1:T; <t}, t >0.

(2) At time T; the claim size X; happens and it holds that the sequence (X;)5°,
is 1id., X; > 0.

(3) The processes (T;)2, and (X;)52, are independent.

The renewal model is called Cramér-Lundberg-model if the claims happen
at the claim arrival times 0 < T} < T < ... of a Poisson process

3.2 Properties of the total claim amount process
5(t)
Definition 3.2.1. The total claim amount process is defined as

N(t)
S(t) =Y X, t>0.
i=1

25
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The insurance company needs information about S(t) in order to determine a
premium which covers the losses represented by S(¢). In general, the distri-
bution of S(t), i.e.

P{we Q: S(t,w) <z}), z>0,

can only be approximated by numerical methods or simulations while ES(t)
and var(S(t)) are easy to compute exactly. One can establish principles which
use only ES(t) and var(S(t)) to calculate the premium. This will be done in
chapter 4.

Proposition 3.2.2. One has that
ES(t) = EX jEN(t),
var(S(t)) = var(X;)EN(t) + var(N(t)(EX)?.

Consequently, one obtains the following relations:
(1) Cramér-Lundberg-model: [t holds

(i) ES(t) = MEX;,

(ii) var(S(t)) = MEX?Z.
(2) Renewal model: Let EW; = § € (0,00) and EX; < oo.

(i) Then lim;_., 258 = \EX;.

(i) If var(W1) < oo and var(X1) < oo, then

lim var(S(t))

t— 00 t

= X (var(Xy) + var(W1)A\*(EX4)?) .

Proof. (a) Since
oo
1=Tow) =Y vk}
k=0

by a direct computation,
()
ES(t) = EY X;
i=1

= Eki_o <(22 Xz‘)ﬂ{Na)—k})

= Y E(X1+ .. + X)) Lyt
k=0

—kEX, —P(N(t)=Fk)

= EX, i KP(N(t) = k)
k=0
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= EX,EN(t).

In the Cramér-Lundberg-model we have EN(t) = At. For the general case we
use the Elementary Renewal Theorem (Thereom 2.2.4) to get the assertion.

(b) We continue with

k 2
ES(t)? ZX) L n()= k}>

oo k 2
= E < X1> LN (t)=k}
k=0 \i:=1

[e%) k
= D) E(XiX;Iv=r))

k=01,j=1

= EX? ik]P’(N(t) = k) + (EX1)? f: E(k — D)P(N(t) = k)
k=0 k=1

= EX?EN(t)+ (EX))?(EN(t)> —EN(t))
= var(X1)EN(t) + (EX;)*EN(t)2.

It follows that

var(S(t)) = ES(t)* - (ES(t))”
= ES(1)* - (EX1)*(EN(1))?
= var(X;)EN(t) + (EX;)?var(N(t)).

For the Cramér-Lundberg-model it holds EN(t) = var(N(¢)) = At, hence we
have var(S(t)) = At(var(X1) + (EX1)?) = MEX?. For the renewal model we get

lim var(X1)EN(t) _ var(X 1)\,
t—o0
The relation
lim var(N(t))  var(Wp)
t—00 t - (EW,)3°

is shown in [6, Theorem 2.5.2]. O

Theorem 3.2.3 (SLLN and CLT for renewal model).
(1) SLLN for (S(t)): If EW; = § < o0 and EX; < oo, then

lim @ = )MEX; a.s.

t—o0
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(2) CLT for (S(t)): If var(W7) < oo, and var(Xy) < oo, then

b (W . ) _ o)
var(S(t))

t—o00
sup — 0,

z€R

where @ is the distribution function of the standard normal distribution,

1 T2

Proof. (1) We follow the proof of [7, Theorem 3.1.5 ]. We have shown that

N(t
lim L =\
t—oo t
and therefore it holds
lim N(t) =00 a.s.

t—o0

Because of S(t) = X; 4+ X2 4 ... + X () and, by the SSLN

Xi+...+X
lim SLF A pe o
n—oo n
we get
t N(t t
lim & = lim & lim i) = EX; a.s.
t—oo t t—oo t t—oo (t)

(2) See [5, Theorem 2.5.16]. O



Chapter 4

Premium calculation
principles

The standard problem in insurance is to determine that amount of premium
such that the losses S(t) are covered. On the other hand, the price of the
premiums should be low enough to be competitive and attract customers. In
the following we let

p(t) € [0,00) be the cumulative premium income up to time ¢ € [0, 00)

in our stochastic model. Below we review some premium calculation principles.

4.1 Classical premium calculation principles

First approximations of S(t) are given by ES(¢) and var(S(t)), and the classical
principles are based on these quantities. Intuitively, we have:

p(t) < ES(t) = insurance company loses on average
p(t) > ES(t) = insurance company gains on average
4.1.1 Net principle

The Net Principle

pxer(t) = ES(1)
defines the premium to be a fair market premium. However, this usually leads
to the ruin for the company as we will see later.

4.1.2 Expected value principle
In the Expected Value Principle the premium is calculated by

prv(t) = (1+ p)ES(t)
where p > 0 is called the safety loading.

29
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4.1.3 The variance principle
The Variance Principle is given by

pvar(t) = ES(t) + avar(S(t)), a > 0.

This principle is in the renewal model asymptotically the same as pgy (t), since
by Proposition 3.2.2 we have that

pev(l) i A TPESE) (1+p)

im = =
t=oo pyaR(t)  t—oo BS(t) +avar(S(t) 1+ alims .o Va]é(ég(g))

is a constant. This means that « plays the role of the safety loading p.

4.1.4 The standard deviation principle

This principle is given by

psp(t) = ES(t) + an/var(S(t)), a > 0.

4.1.5 The constant income principle

Here we simply

pconst(t) =ct, ¢ > 0.

In the case of the Cramér-Lundberg-modelthis principle coincides with the ex-
pected value principle by setting

c:= (14 p)AEX];.

In the case of the renewal model it is asymptotically the expected value principle
as by Proposition 3.2.2 we have

ES(t) ~ NEX]t.

In Definition 5.1.4 we introduce the Net Profit Condition that gives the necessary
range for ¢ (or p).

4.2 Modern premium calculation principles

In the following principles the expected value E(g(S(¢)) needs to be computed
for certain functions g(x) in order to compute p(t). This means it is not enough
to know ES(t) and var(S(t)), the distribution of S(t) is needed as well.
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4.2.1 The Exponential Principle
The Exponential Principle is defined as

!

Pexp (t) . 65(t)

5 log Ee ,

for some ¢ > 0, where 0 is the risk aversion constant. The function pey,(t) is
motivated by the so-called utility theory. By JENSEN’s inequality one checks
that

1
Pexp(t) = 3 log Ee?5) > ES(t)

as the function x — €% is convex.

4.2.2 The Esscher Principle
The Esscher principle is defined as

_ ES()ed5®
PEss(t) = “EedS@) 6> 0.
As a homework we show that
ES(t)e?S®
PEss(t) = RS 2 ES(t)

4.2.3 The Quantile Principle

Denote by Fi(x) := P({w : S(t,w) < z}), € R, the distribution function of
S(t). Given 0 < £ < 1, we let

Pquant (t) ;== min{x > 0: P{w e Q: S(t,w) <z}) >1—¢e}.
This principle is called (1 — €)—quantile principle. Note that
P(S(t) > pquant(t)) < €.

This setting is related to the theory of Value at Risk.

4.3 Reinsurance treaties

Reinsurance treaties are mutual agreements between different insurance com-
panies to reduce the risk in a particular insurance portfolio. Reinsurances can
be considered as insurance for the insurance company. Reinsurances are used
if there is a risk of rare but huge claims. Examples of these usually involve a
catastrophe such as earthquake, nuclear power station disaster, industrial fire,
war, tanker accident, etc.
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According to Wikipedia, the world’s largest reinsurance company in 2009 is
Munich Re, based in Germany, with gross written premiums worth over $31.4
billion, followed by Swiss Re (Switzerland), General Re (USA) and Hannover
Re (Germany).

There are two different types of reinsurance:

4.3.1 Random walk type reinsurance

1. Proportional reinsurance: The reinsurer pays an agreed proportion p of
the claims,

Rorop(t) = pS(1).

2. Stop-loss reinsurance: The reinsurer covers the losses that exceed an
agreed amount of K,

Rgr(t) :=(S(t) — K)Jr,
where 1 = max{z,0}.

3. Excess-of-loss reinsurance: The reinsurer covers the losses that exceed an
agreed amount of D for each claim separately,

N(t)
REIL = Z(Xz - D)+7

i=1
where D is the deductible.

4.3.2 Extreme value type reinsurance

Extreme value type reinsurances cover the largest claims in a portfolio. Mathe-
matically, these contracts are investigated with extreme value theory techniques.
The ordering of the claims X, ..., X is denoted by

Xy <= Xvey:

1. Largest claims reinsurance: The largest claims reinsurance covers the k
largest claims arriving within time frame [0, ¢],

k
Rio(t) =Y X(n@-it1)-
=1

2. ECOMOR reinsurance: (Ezcédent du coit moyen relatif means excess of
the average cost). Define k = L%J Then

N(#)

Rpcomor(t) = Z(X(N(t)—i—H)_X(N(t)—k+1))+
=1

k—1
= Y Xwvy-i+1) — (k= D)X (N -k+1)
i=1
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Treaties of random walk type can be handled like before. For example,

P( Rsp(t) <x)=P(S(t) < K)+P(K < S(t) <z+K),

(S(H)—K)*

so if Fg(4) is known, so is Frg, (1)-

33
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Chapter 5

Probability of ruin: small
claim sizes

5.1

The risk process

In this chapter, if not stated differently, we use the following assumptions and
notation:

The renewal model is assumed.
Total claim amount process: S(t) := ZZ].V:(P X; with ¢t > 0.

Premium income function: p(t) = ¢t where ¢ > 0 is the premium
rate.

The risk process or surplus process is given by
U(t) :=u+p(t)—S(t), t >0,

where U(t) is the insurer’s capital balance at time ¢t and u is the initial
capital.

risk process U(t)

0 2 4 [3 8 10 12
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Definition 5.1.1 (Ruin, ruin time, ruin probability). We let

ruin(u) = {weQ:U(t,w) <0 for some ¢t > 0}
= the event that U ever falls below zero,
Ruin time 7T := inf{t>0:U(t) <0}

= the time when the process falls below zero
for the first time.
The ruin probability is given by

P(u) = P(ruin(u)) = P(T < 0).
Remark 5.1.2.

(1) T:Q — RU{oo} is an extended random variable (i.e. T can also take
the value co).

(2) In the literature ¢ (u) is often written as
Y(u) = P(ruin|U(0) = u)
to indicate the dependence on the initial capital w.
(3) Ruin can only occur at the times ¢ = T;,, n > 1. This implies

ruin(u) = {weQ:T(w) < oo}
= {weQ:nfU(tw) <0}

= {wen: Tllgfl U(Ty(w),w) <0}

{we: 1I;f1(u + I, — S(T,)) <0},

where the last equation yields from the fact that U(t) = u+ct — S(t). Since
in the renewal model it was assumed that W; > 0, it follows that

N(T) =#{i>1:T;<T,} =n

and
N(T») n
S(T)= > Xi=> X,
i=1 i=1
where

T,=Wi+ ...+ W,,
which imply that

{w €Q: inf (u+ T, — S(Tn)) < 0}

= {wEQ:rlgfl (u—i—cTn—ZXi) <O}.

i=1
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By setting
Zp =Xy —cWy,, n>1

and
Gn = Zl++Zna nZ]-a GO ::O?

it follows that

{weQ:Tw) <o} = {wGQ: inf(fGn)<fu}

n>1

{wEQ:squn>u}

n>1

and for the ruin probability the equality it holds that

Y(u) = ]P’(sup Gp(w) > u)

n>1

First we state the theorem that justifies the Net Profit Condition introduced
below:

Theorem 5.1.3. If EW; < oo, EX; < 00, and
EZl = EXl — CEW1 Z 0,
then ¥(u) = 1 for all uw > 0, i.e. ruin occurs with probability one independent
from the initial capital u.
Proof. (a) EZ; > 0: By the Strong Law of Large Numbers,
lim —* = [EZ; almost surely.
n—oo N

Because we assumed EZ; > 0, one gets that

a.s.
G, = 00, n— 00,

because G, ~ nEZ; for large n. This means ruin probability ¥ (u) = 1 for all
u > 0.
(b) The case EZ; = 0 we show under the additional assumption that EZ? < oc.

Let P P
A, = {limsupl—i_m—’_n > m}.
n—00 \/’E

Notice that for fixed w € 2 and ng > 1 we have

Jim sup Z1(w) + oo + Zp(w) <

m
n— 00 \/'ﬁ o

iff

Z
lim sup > m.

n>ng \/ﬁ a
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Hence

Am C

DL

O'(Zn07 Zn0+1, )
1

no

The sequence (Z,,)n>1 consists of independent random variables. By the 0 — 1
law of Kolmogorov (see [4, Proposition 2.1.6]) we conclude that

P(A,,) € {0,1}.

Since

I+ ...+ 2, . 7
P(limsup At oo> = lim P(A4,,)
n—oo0 Vn m— o0

it suffices to show P(4,,) > 0. We have

\Y

A, = {limsup m

n—o0 Vvn
2 U ET e

n=1k=n

Zi+ ...+ 2, }

v

By Fatou’s Lemma and the Central Limit Theorem,

- Z ..+ 7
P(A,) > limsup[P’(MZm)

k—oo \/E
= /00 e_z"ﬁ? du >0
m V2mo?
where 02 = EZ2. O

Definition 5.1.4 (Net profit condition). The renewal model satisfies the net
profit condition (NPC) if and only if EX; < oo, EW; < 00, and

EZ, =EX, — cEW, <0. (NPC)

The consequence of (NPC) is that on average more premium flows into the
portfolio of the company than claim sizes flow out: We have

G, = _p(Tn)+S(T7L)
= —c(Wi+.+Wy)+X1+...+ X,

which implies
]EGn =nEZ; <0.

Theorem 5.1.3 implies that any insurance company should choose the premium
p(t) = ct in such a way that EZ; < 0. In that case there is hope that the ruin
probability is less than 1.
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5.2 Lundberg inequality and Cramér’s ruin
bound

Before we start: we wish to recall the following basic facts from probability:
We assume a probability space (2, F,P) and a random variable A : 2 — R. The
distribution function Fa : R — [0,1] of A was given by
Fa(u) =P({w € Q: A(w) < u}).
The law of A is the probability measure P4 on (R, B(R)) such that
Ps(B) :=P{weN: Alw) € B}) for Be BR).

We consider (R, B(R),P4) as probability space, assume a random variable ® :
R — R and use the following notation

/@(m)dFA(x) :z/@(m)dPA(x).
R R

So instead of writing dP4(x) we write, as often in the literature, dF4(x). For
us, this is only a notation. The real background is the notion of the Riemann-
Stieltjes integral (but we do not go into this).

Now, let us continue with the lecture:

Definition 5.2.1. For a random variable f :  — R on some probability space
(©,F,P) the function
my(h) = Ee7,

is called the moment-generating function if it is finite for h € (—hg, hg) for
some hg > 0.

Remark 5.2.2. (1) The map
his Ee "t

is called two-sided Laplace transform.

(2) If E|f|*e"f < oo on (—hg,hg) for all k = 0,...,m, then my(h) exists, is
m-times differentiable, and one has

d’nl

=Efmehd.
Jpm () =Ef"e
Therefore o
—_— =Efm.
gy (0) =Ef

Definition 5.2.3 (Small claim size condition and Lundberg coefficient).

(1) Given a claim size distribution X; : @ — (,00) on a probability space
(Q,F,P), we say that the small claim size condition with parameter
ho > 0 is satisfied if

mx, (h) = Ee"*t < oo forall h e (—o0,hg).



40 CHAPTER 5. PROBABILITY OF RUIN: SMALL CLAIM SIZES

(2) Assume that X; satisfies the small claim size condition with parameter
ho > 0 and assume the independent waiting time Wy : Q — (0, 00), we call
an r € (0, ho) Lundberg coeflicient if

Eer(X1=eW1) — 1,

Remark 5.2.4. Some remarks about the Lundberg coefficient:

(1) The small claim size condition with parameter hy > 0 and the existence of
the Lundberg coefficient r € (0, hg) implies automatically that Ee=""1 ¢
(0, 00), because

1 =Eer X171 — RerX1Ee="W1 and  Ee™* € (0,00).

(2) If mg, exists in (—hg, ho) for some hg > 0, then
P(Z1 > ) = P(e5% > ) < e Pmy, (€)

and
P(—Z1 >\ < e Pm_g, (e) = e my, (—¢)

for all € € (—hg, ho). This implies
P(|Z1] 2 A) < €™ mz, (€) + mz, (—¢)).
(3) If the Lundberg coefficient r exists, then it is unique. First we observe that
which follows from the fact that my, is convex: We have
cA=0m0Z1+0r1 21 < (1 _ gyeroZi | geriZa,
Moreover, mz, (0) = 1 and by Jensen’s inequality,
g, (h) = EeZih > (EZih
such that (assuming (NPC) holds) we get
—EZy (—h)

lim mg, (h) > lim e
h——o0 h——o0

= Q.

If myz, exists in (—e¢,¢) and mz, (h) = 1 for some h € {r,s} C (0,e] then,
by convexity,
mz,(h) =1 VYhel[0,rVs].

From (1) we have

P(|Z1] > M) < ce~¢ for some ¢ > 0

and it holds

E|Zy|" :/ P(|Z|" > \)d\ = n/ P(|Z1] > A)A™ dA
0 0
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o0
n / ce M1
0

jo%s) n—1
nc”/ e Me ()\> d\
0 C

(oo}
< ncn+1/ e_)‘)\"_ld)\
0

= nple"tt

IN

IN

Because of

Z E|Z1‘n < Z n+1

nO nO

for |he| < 1, the function

th

mz, (h) = Ee"%1 =R Z

is infinitely often differentiable for |h| < 1/c¢. Moreover the function is
constant on [0,7 V s] so that, for 0 < h < min{1/c,r V s}, one has

d2
0= Zgmz, (h) = EZ{e" .

This implies EZZe"?1 = 0 and Z; = 0 a.s.
(4) In practice, r is hard to compute from the distributions of X; and Wj.

Therefore it is often approximated numerically or by Monte Carlo methods.

Theorem 5.2.5 (Lundberg inequality in the renewal model). We assume
(1) the renewal model with (NPC),

(2) the small claim size condition with parameter hg > 0,

(3) r € (0, hg) is the Lundberg coefficient,

(4) p(t) =ct= (14 p)ES(t).

Then for all w > 0 it holds that

Y(u) <e ™.

The result implies, that if the small claim condition holds and the initial capital
u is large, then the ruin probability decays exponentially, which is remarkable.
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Proof of Theorem 5.2.5. We use Z, = X,, — cW,, and set G, := Z1 + ... + Zk.
We consider

P (u) = ]P’(lgl]?%(n Gr>u), u>0.

Because of 1, (u) 1T ¥(u) for n — oo it is sufficient to show
Yp(u) <e ™, n>1u>0.
For n = 1 we get the inequality by
Y1(u) =P(Z) > u) =P(e"? > ™) < e TEe" P =7,
Now we assume that the assertion holds for n. We have
Ypy1(u) = JP’( max Gy > u)

1<k<n-+1

= P(Z; > u) +IP’( max Gp>u,Zy < u)
1<k<n+1

= P(Z1>u)+ P(2<g1<a7)l<+1(Gk —Z)>u—21,71 < u)

= IP’(Z1>u)+/

— 00

P( Tax G > u—z)dFyz (x)

where we have used for the last line that maxo<p<p+1(Gr — Z1) and Z; are
independent. We estimate the first term

P(Zy > u) z/

(u,00)

APy, (z) < / @0 g, (),

(u,00)

and proceed with the second term as follows:

/(_007“] P( lrgnkaé(n Gk U= x>dF21 ($> = /(—oo,u] '(/)n(u - .IJ)dFZI (.Z’)

/ e TR, (z).
(—oo,u]

IN

Consequently,

Unii(u) < / er(ﬂcfu)dFZ1 (z) +/ efr(ufac)dFZ1 (z) = e "
(u,00)

(7005'“']

O

We consider an example where it is possible to compute the Lundberg coefficient:
Ezample 5.2.6. Let X1, X, ... ~ Exp(y) and Wi, Wa, ... ~ Exp(\). Then

A
v —h X+ ch

le (h) — Eeh(lecwl) — Eehxl]Ee—hcwl —
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for —% < h < 7 since
EehX1 = / ey dy = S
0 y—h
The (NPC) condition reads as

1
O>E%:EerM%:——§ or ¢y > A
v

Hence mz, exists on (—2,v) and for r > 0 we get

o A
y—=rA+cr

YA =Y\ + yer — Ar — er?

—
A
= r=y-"=.
c
Consequently,

Plu) <e =Y

Applying the expected value principle p(t) = (1 + p)ES(t) = (1 + p)\EX 1t we
get
A A _ P

Y-S =7 =7 .
¢ (1+p)3 140

This implies
z/z(u) < e T — 67u7ﬁ7

where one should notice that even p — oo does not change the ruin probability
considerably!

The following theorem considers the special case, the Cramér-Lundberg-model:

Theorem 5.2.7 (Cramér’s ruin bound in the Cramér-Lundberg-model). We
assume

(1) the Cramér-Lundberg-model with (NPC),

(2) the small claim size condition with parameter ho > 0,
(3) r € (0, hg) is the Lundberg coefficient,

(4) p(t) =ct= (14 p)ES(t).

Then one has

oo -1
lim e™(u) = pIEX1 (/ xe™P(X; > x)dx) .
0

Uu—>00 T

To prove this theorem introduce in the next section the fundamental integral
equation for the survival probability.
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5.3 Fundamental integral equation for the sur-
vival probability

We introduce the survival probability

Theorem 5.3.1 (Fundamental integral equation for survival probability). We
assume

(1) the Cramér-Lundberg-model with (NPC),
(2) p(t) =ct =1+ p)ES(t).
Then one has

1

o(u) = ¢(0) + m/o P(X; > x)p(u — z)dz. (1)

Remark 5.3.2. Let the assumptions of Theorem 5.3.1 hold.

(1) The assertion can be reformulated as follows. Let

1
Fx, 1(z) :

= F > 0.
EXl /0 X1(y)dy7 €T =z 0

The function F, r is a distribution function since

1 o
lim F = - F d
1 o0
EX1/0 (X1 > y)dy

Hence equation (1) can be written as

u

p(u) = ¢(0) plu—x)dFx, r(2).

+ [
1+pJo
(2) Tt holds that lim, o ¢(u) = 1. This can be seen as follows:

lim o(u) = lim (1 —¢(u))

UuU—r 00 U—00

= lim <1 —-P (squ;C > u))
U—00 k>1

lim P (sup G < u)

UuU—r 00 E>1

where G, = Z1 + ... + Zj. Since EZ; < 0 the SLLN implies

lim G = —oc0 a.s.
k—o0
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Therefore we have supy~; Gy < 0o a.s. and

lim P(Squk < u) =1.

U— 00 k>1

(3) It holds that ¢(0) = ¥~ — 1 for p 1 oco. Indeed, because of (1), and (2),

and Theorem 5.3.1 we may conclude that

T
L= Ot ) dim o T m)e(u = y)dFxi(y)
1 o
= e+ 7 | Jim (T W)e(u —v)dFx, 1)
1 (e e)
= o(0)+—— [ dF
©(0) v x1,1(y)
1
= O —_—
PO+ 17—

The interpretation of ¢(0) is the survival probability when starting with 0
Euro initial capital.

Proof of Theorem 5.3.1. (a) We first show that

A Xy
o) =5 [ oy - a)dFx )y, @)
¢ [u,00) (0.y]
To do this, we consider
p(u)
= IP’<squ’n < u>
n>1

P(Zlgu,Gn—Zl <u-—2 fornZZ)

/ / P(Gn - 71 <u—(z—cw) forn > 2) dFx, (x)dFw, (w)
[0,00) /[0,u+cw]

where we used for the last line that
r—cw<wuand >0 < 0<z<u+ cw.

We use that G,, — Z1 ~ Z1 + ... + Z,_1 and substitute y := u + cw in order to
obtain

ou) = / / P(Gn <u—(z—cw)forn> 1) dFx, (z)Ae " dw
[0,00) J[0,u+cw]
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/ / o(u — x + cw)dFx, (z) e dw
[0,00) J[0,u+cw]

/ / ply — 2)dFx, (@)re N d.
[u,00) /[0,y] ¢

(b) Differentiation of (2) leads to

A jyymu
o () () — / oy — 2)dFx, () 2"
[0,y] ¢

Ql> alx
S
>

= —% Ot oui o(u — x)dFx, (x)du

_ _% /0 t [W — 2)Fy, (x) : + /[o,u] & (u— z)Fy, (a:)dac} du

_ _% /O t {@(O)Fxl (u) — p(u) i, (0) + /[o,u] o (u— 7)Fx, (x)dx} du
_ %w(O) /Ot Fy, (u)du — 2/; /[m’t] o (u— 2) Fx, (2)dudz

_ —i\/otap(t—m)Fxl(x)d;v.

This implies

Using that
ES(t) = MEX; and ct=(1+p)ES(t) = (14 p)MEX;

gives % = m which yields the assertion. O

From the fundamental integral equation for survival probability we deduce a
method for its computation. It can be considered as some sort of Monte-Carlo
method where we have to simulate independent random variables X7 1, X7 2,...:
2 — [0, 00) that have the distribution function Fy, ,, i.e.

P(X;n <z)=Fx, (r) for xzecR.
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Theorem 5.3.3. We assume

(1) the Cramér-Lundberg-model with (NPC),
(2) p(t) = ct = (1+ p)ES(?).

(3) independent random variables X11,X12,... : Q — [0,00) that have the
distribution function Fx, , i.e.

P(Xrn <) =Fx,,(x) for zeR.

Define
flx):= {1—&—214—,0 P(Xia+...+Xrp,<z)| for >0

and f(x) =0 if x < 0. Then f is the unique solution to

1 x
F@) = $0)+ 15 [ Fe=9)dFito)

for x > 0 in the class

G = {g :R — [0,00) : non-decreasing, bounded,
0 <0
right-continuous with g(x) = { ) for x < }
Tty forxz =0

Consequently, we obtain for the ruin probability o(u) = f(u) for u > 0.

Proof. (a) Uniqueness: Assume fi, fo are solutions and Af = f; — fo. Then
A = A —y)dF
@) = s [ AT )

_ x, (y)
- 1—|—,0/ Aflu IEX1 Ex, W

T IER, / AF()Fx, (u— )y

and ) "
Af(x)| < —————— / A dy.
@) < G |, 16
Gronwall’s Lemma implies that|Af(x)| =0 for € R.
(b) Verification that ¢ is a solution: Here we get

£(0) = {14—214—,0 P(X[1 + .. +X1n§0)} ﬁ
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and
— / Flx — y)dFx, 1)
= T = [t - uars )
= +—
1+p + p 1+p
Cop
1 (1 P (X Xin<z-— dF
/0 1+p[ +Z +p) "P( X1+ + X <z —y) |dFx, 1(y)
_ P !
 14p 1+4p
p c- o ["
—— | Fx,1(x)+ Y _(1+p) / P(Xp1+ .+ X +y <) dFx, 1(y)
1+ P L n=1 0
_ P !
 14p 1+p
p - n
T+, Fx, 1 ( nz::l P(Xr1+ .. +X1n+1<$)]
_ P !
 14p 1+4p
p|(A+p) " P(Xry <)+ > (14p) "TIP(Xp1 + o4 Xppga < a:)]
n=1
- ~(n+1)
- 1 (1 P(X Xy <
T+p +nzl +p) (X714 ...+ X )
= f(=z).
(¢) Finally we observe that the ruin probability ¢ belongs to the class § which
completes our proof. O

5.4 Proof of Cramér’s ruin bound

To prove Cramér’s ruin bound we transform the fundamental integral equation
for the survival probability into the fundamental integral equation for the ruin
probability, however after performing the Esscher transform to the integrated
claim size distribution with the Lundberg coefficient as parameter. So let us
first explain the notion of the Esscher transform:

Definition 5.4.1 (Esscher transform). Assume that D : R — [0,00) is the
density of a probability measure u, i.e.

B):/BD(:L’)dx for B e B(R).
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If h€ R and [, " D(x)dx < oo, then
_D(h) (:L’) L eth(w)
. fR ehyD(y)dy

defines a density, which is called the Esscher transform of D with parameter
h. We let

M (B) = / DWW (z)dx for B e B(R).
B

If F,F(M : R — [0,1] are the distribution functions of x and p®, respectively,
then we call F(®) the Esscher transform of F.

Now we get the following transformed fundamental integral equation:
Theorem 5.4.2 (Smith’s renewal equation). We assume
(1) the Cramér-Lundberg-model with (NPC),
(2) the small claim size condition with parameter hg > 0,
(3) 7 € (0,hg) is the Lundberg coefficient,
(4) p(t) =ct =1+ p)ES().
Then one has:
(i) The function F)((Tl) :R — [0,1] with
R e e
0 <0,

is the Esscher transform of Fx, with parameter r.

(ii) For x >0 it holds

e T(z) = —— e (1 — Fy, 1(2)) + / Dz — y)dF Y (y).

L+p 0

Proof. (a) F)((r1 ) is a distribution function: First we compute

EerXt = / P(e™ > 2)dz
0

/ P(e™™ 1t > e™)re™Vdy

—00

0 0o
/ re Ydy —|—/ P(X; > y)re™Vdy
0

— 00

1 +/ P(Xy > y)re™dy.
0
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This implies

ey 11
lim F (x / —C _P(Xy>y)dy = ———— = (B — 1),
dm P @)= | G Ex T >V = G ey - B )

T‘(Xl —CW1

From Ee ) = 1 we conclude

1 1 1
lim Fy)(x) = - —1
:Elﬁnolo ( ) (1 + p)EX1 r <E€—TCW1 >

B 1 1 rc+)\71
I+ pEX r\ A

c 1 c 1

(b) Inserting the definitions of dF )((Tl )(y) we have to show

e

e p(z) =

1 erw(l—Fxl,I(x))"‘/ er(l_y)l/}(x_y) P(X1 > y)dy.

L+p 0 (1+pEX;

Using e"(*~%)e™ = ¢ and dividing the equation yields to

ble) = ——(1— Fx, (o /w

——P(X d
T, (X1 > y)dy,

what we have to prove. We use 9(z) = 1 — ¢(x) so that the equation becomes

1

= o) = (0= P+ [ (= o= ) e

]P)(Xl > y)dy

Replacing p(x) on the left-hand side by the expression from Theorem 5.3.1 we
get

1 ¢ 1
1—(0) = ——(1 — Fy, + [ ——P(Xy > y)dy.
o0 = 1350 = Prs@) + [ e PO > )
By the definition of Fx, ;(z) this becomes
1
1-p(0)= ——
O =1
which is true because of p(0) = ﬁ. O

Proof of Theorem 5.2.7. From Theorem 5.4.2 we know that

1
1+p

@) = (1= Fra(o) + " — y)drd (y)

0

for x > 0. With the notation
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eT.’/B

k’(l‘) = 1+pFX1’I($)’
H(y) = F (@)

this equation turns into

+ [ R -t

The function k : [0, 00) — [0, 00) is continuous because z — Fx, r(z) is contin-
uous. Moreover, from Theorem 5.4.2 we have

x Y
FOG@) = [ — S P(Xy > y)dy — 1

as r — 00, so that

erT o] o ery
- —_— < _—
k(z) e /x P(X:, > y)dy < /x e P(X: > y)dy — 0

for £ — oo with > 0. From Smith’s key renewal lemma [9, pp. 202] we know
that

1 [ee]
lim Rlu) = —— k(z)dx.
i R0 = ey | o
Therefore, with o := [, xdF)((Tl) (x), we get

1 e

lim €™ = = F d
Jim e™p(u) a/o 11, ()de
1 [ ™ 1 -
= -/ —|1- Fx, (y)dy|d
a/o 1+p[ EXl/o ) y}x

1 e 1 > _
= —_— F

= e"dxFx, (y)dy
1+pEX1/ / . Xl
1

|: TyFX1( )dy fo FXI )dy:|
(1+p) EX1 EXl

- ettt

a(l+p
1 »p
arl+p’
Jo< e Fx, (y)dy

el = 14 p one looks at the proof of Theorem 5.4.2. Finally

where for

1 oo _
_ (r) rT
a= /RxdF (z) = A RN / ze"™ Fx, (z)dz
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implies

. PEX 1
lim e"™(u) = = .
u—00 vl rof3S wert Fy, (x)dx




Chapter 6

Probability of ruin: large
claim sizes

6.1 Tails of claim size distributions

So far we did not discuss how to separate small and large claim sizes, and how
to choose the distributions to model the claim sizes (X;)? If one analyzes data
of claim sizes that have happened in the past, for example by a histogram or a
QQ-plot (see Chapter 7), it turns out that the distribution is either light-tailed
or heavy-tailed, the latter case is more often the case. Let us recall that for
probability space (2, F,P) and we associate to a random variable X :  — R
the distribution function Fx : R — [0, 1],

Fx(z) =P({w e Q: X(w) < z}).

Definition 6.1.1. Let (2, F,P) be a probability space and X :  — R be a
random variable with f(w) > 0 for all w € Q.

(1) The distribution function Fx or the random variable X is called light-
tailed if and only if there is some « > 0 such that one has

sup e**P(X > z) = supe®[1 — Fx(x)] < 0.
u>0 x>0

(2) The distribution function Fx or the random variable X is called heavy-
tailed if and only if for all & > 0 one has

lim e*"P(X > z) = lim e[l — Fx(x)] = oo.

r—r00 T—r 00

Remark 6.1.2. The distribution function F'x or the random variable X is heavy-
tailed if and only if for all 8 > 0 one has

. Bz . Bxr
igfoe P(X > z) —217121%6 [1— Fx(z)] > 0.

53
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In fact, assume for X the latter condition and o > 0. Choose § € (0, «). Then

liminf e**P(X > z) = liminf e~ [PP(X > )

T—r00 Tr—r00

> lim inf (@ A)® inf [e”YP(X > y)] = cc.

T—00 y>

Therefore X is heavy-tailed. Conversely, assume X to be heavy-tailed. Then
inf; >0 e*P(X > z) > 0 follows from lim,_,., e**P(X > z) = o0.

Ezample 6.1.3. (1) The exponential distribution with parameter A > 0 is light-
tailed, since for a. := A one has

e"P(X > ) = e MP(X > 1) =1

if X is a random variable with an exponential distribution with parameter
A> 0.

(2) The Pareto distribution is heavy-tailed: For Type I the distribution func-
tion is

bll
wa(aj):l—ﬁ for >b>0,a>0,
and for for Type II,
K/a
Foul)y=1———— for >0, a>0,k>0.
’ (k4 z)"

Proposition 6.1.4. If X : Q — R is light-tailed, then there is an hg > 0, such
that the moment generating function

h — EehX
is finite on (—hg, ho).

Proof. It is sufficient to find an hg > 0 such that Ee"¥X < co. We get
EeloX = / P(e"X > u)du
0

= 1+/ P(eX > u)du
(1,00)

= 1+/ ]P’<X>1log(u)> du
(1,00) ho

= 1+/(1)Oo) [1 —F (illolog(u))] du

s |:e—>\o<hl[)103(u)):| du

(1,00)

IN
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A

< 1+C [uf’Tg} du
(1700)
< o0
for 0 < hg < Ag- O

Proposition 6.1.4 means that a light-tailed claim size distribution satisfies the
small claim size condition from Definition 5.2.3.

6.2 Subexponential distributions

6.2.1 Definition and basic properties
In Theorem 6.3.1 below we need subexponential distributions:

Definition 6.2.1. A distribution function F' : R — [0, 1] such that F(0) = 0
and F(z) < 1 for all z > 0 is called subexponential if and only if for i.i.d.
(X:)2, and P(X; < u) = F(u), u € R, it holds that

lim

=1 forall > 2.
z—oo P(maxi<p<n Xp > T) orat o n=

We denote the class of subexponential distribution functions by 8.

We start with an equivalence that can be used to define 8§ as well.

oo

Proposition 6.2.2 (Equivalent conditions for 8, part I). Assume i.i.d. (X;)$2,
with P(X; <u) = F(u), u € R. Then F € 8§ if and only if

. PXyi++ X, > )
lim

= > 1.
Jim PX, > 2) n forall n>1

Proof. 1t holds for S,, = X7 +---+ X, that
P(S, > z) B P(S, > z)

P(maxlgkgn X > ZE) 1-— P(maxlgkgn X < CC)
P(S, > z)
1-P(X; <ax)»
P(S, > x)
1-(1-P(X; > )"
P(S, > x)
P(X; > z)n(l +o(1))"

O

Next we continue with properties of subexponential distributions that motivate
the name subexponential:
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Proposition 6.2.3. Assume i.i.d. random variables (X;)2, and a random
variable X with P(X < u) = P(X; < u) = F(u), w € R. Then one has the
following assertions:

(1) For F € 8 it holds

im FC =Y 0 a0,

(2) If F €8, then for all e > 0 it holds

e P(X > ) — oo for x — 0.

(3) If F €8, then for all e > 0 there exists a K > 0 such that

P(S, > x)

< K(1 " oNYn>2 dx>0.
PX, > ) = (1+¢) n>2 and x >

For the proof we need the concept of slowly varying functions:

Definition 6.2.4 (Slowly varying functions). A measurable function L :
[0,00) — (0, 00) is called slowly varying if

G
E—o0 L(§)

=1 forall ¢>0.

Proposition 6.2.5 (Karamata’s representation). Any slowly varying function
can be represented as

L&) = co(€) exp ( / 6 ﬁ”dt) for all € > &

for some & > 0 where cg, € : [§9,00) = R are measurable functions with

lim cg(€§) =co >0 and lim e(t) =0.

E—o0 t—o00

Corollary 6.2.6. For any slowly varying function L it holds

lim &°L(€) =00 for all &> 0.

E—o0

Proof. We can enlarge & such that sup,, |e(t)| < J. With this choice we get

13
Jim Eeo(€)exp ( /£ 0 df)dt)

3
= fli)n;oco(f) exp ((510g§—&—/5 es(tt)dt)

4]
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v

3
lim ¢o(&) exp ((5 log & — sup |e(t) dt)

E—o0 t>¢0 | o ?

> lim col€) exp (5 log€ — (log& — log£y) sup |s<t>|>
§—o0 t>€o

= oo0. O

Proof of Proposition 6.2.3. (1) For 0 <y < x < oo we have

P(X1+Xo>2) [P+ X >z)dF(t)
P(X; > x) B P(X; > x)
P(X1>2) + [y P+ X > 2)dF(2)
P(X; > x)
Sy B+ X > 2)dE (1)
+ P(X, > 2)

> 1+ F(y)+ F(;(;)Z’)(F(:v) - F(y)).

We choose x large enough such that F'(z) — F(y) > 0 and observe that

F(x —vy) P(X; + X > x)
@) S (Pt ) iy

1<

as & — 00.
(2) Let L(§) := F(log&). It follows from (1) that for all ¢ > 0 one has

L(c€) i F(logc+1logé)

500 L(E)  é50  F(logl)

By definition, L is slowly varying. Therefore,
lim £°F(logé) = lim **F(z) = 0o
§—o0 T—00

where we use Corollary 6.2.6.

(3) The proof can be found in [5][Lemma 1.3.5].

6.2.2 Examples

In order to consider fundamental examples we need the next lemma:

o7

Lemma 6.2.7. Let X1, Xy be independent positive random variables such that

for some a > 0

where L1, Ly are slowly varying. Then

Fxix,(@) = 27 %(Li(@) + La(2))(1 + o(1)).
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Proof. For 0 < 6 < % we have

(X1 4+ Xo>2) C {Xi>(1-8)z}U{Xs>(1-06)z)
U{X1 > (5$,X2 > (53;‘}

and hence

]P)(Xl + X5 > !E)

S FXI((l - 5)1') +FX2((]— - 5)CU) +FX1 (630)FX2 ((5.%)
< Fx((1-00)+ Py (1= 0)a) |1+ Fxlwac);(f%}

Fx, (1 — 8)2) + oy (1 — 8)a)][1 + o(1)]
Li((1=9)x) La((1—9)x)
[ (-0 T (10 }“ o]
Li((1 - 8)2) Lo((1 — 6)2)
Ll(l‘) Lg(ﬂ?)

- [Fxl (@) T (@) }[1 o)1 -8

From this we get

Jim sup P(Xl + X9 > LE) — limsup P(Xl + X9 > (E)
zro0 Fix, (2) + Fx, (2) oo P, (z)20200) L By () L2(U=0)0)

Li(x) La(x)
< (1-6)"

As this is true for all 0 < § < %, we may conclude

On the other hand,
P(Xi+Xo>2) > PHX;>a}U{Xe>z})
= P(Xl > 117) + ]P(XQ > x) — P(Xl > I’)]P(XQ > Z)
= FX1( )+FX2( ) FX1 ('T)FXZ ('T)
> [Fx,(z)+ Fx,(x)][1 - Fx,(z)]

and hence

Consequently,

im P(X1 + X5 > x) _
oo FXI (J?) +FX2 ($)
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Definition 6.2.8. If there exists a slowly varying function L and some o > 0
such that for a positive random variable X it holds

zo ]

then Fx is called regularly varying with index « or of Pareto type with
exponent a.

Proposition 6.2.9. If Fx is regularly varying with index «, then Fx is subex-
ponential.

Proof. An iteration of Lemma 6.2.7 implies

Froix,(a) | L@)+ o+ Lia)
Fx(a) L(@)

O

Ezample 6.2.10. (1) The exponential distribution with parameter A > 0 is not
subexponential.

(2) The Pareto distribution

F(x):l—ﬁ, >0, a>0,k>0
is subexponential.
(3) The Weibull distribution
F(x) =1—-¢", 0<r<l1,z>0,
is subexponential.
Proof. (1) The relation (1) of Proposition 6.2.3 is not satisfied.
(2) We define L(x) by

P(X >z) = L _(wR)* =: iL(:z:)

2 (k+x)* v

and conclude

L(cz) ( ) )a

K+ cr kKx

T+ K o
= (c ) —1 forz — oo.
K+ cx

Now we apply Proposition 6.2.9.
(3) See [5, Sections 1.4.1 and A3.2]. O



60 CHAPTER 6. PROBABILITY OF RUIN: LARGE CLAIM SIZES

6.2.3 Another characterization of subexponential distri-
butions

There is the following extension Proposition 6.2.2:

Proposition 6.2.11. Assume independent positive random variables X1, X5 :
Q — (0,00) such that

P(X, <z2)=P(Xy; <x)=F(z) foral xeR.

Then the following assertions are equivalent:

(1) Fes.

. P(X4+Xa>2)
(2) limgzeo m =1

. P(X1+X1 >
(3) limg_e0 % =9,

Proof. We only show (1) <= (3). The implication (1) <= (3) follows from
Proposition 6.2.2. To check the implication (3) <= (1) we show by induction

that
lim PXat+---+ Xy > 2) =n
T—00 P(X; > n) -

implies
lim P(X1+"'+Xn+1 >m)
z—00 P(X1 > n)

Then we start with n = 2, which is true according to Proposition 6.2.2, and get
the assertion for all n > 2. So we assume that

=n+1.

lim P(X1+-+X,>zx) -
T—00 P(X; > n) o

Hence there exists for all € € (0,n) an z¢ > 0 such that
m—e)P(X;>2)<PXi14+ -+ X,>2z) < (n+e)P(X; >2)

for x > x. For the following computation we remark that for y > 0 one has
T —1y > x if and only if 0 <y < x — zg. We estimate

IP’(X1+~~+Xn+Xn+1>x)

P(X; > z)
. Jo P(X1+ -+ Xy >z —y)dFx (y)
P(X;: > x)
. Jo TP(Xi4 -+ X > —y)dFx(y)
P(X; > )

f;—x E(‘(1 ‘(" >z y)d}X(y)
0
P(Xl > J})
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fgimo P(X; > x — y)dFx(y)
P(Xl > l‘)

< l1+(n+e)

Sy AFx (y)
]P(Xl > iE)

One can show that (see Proposition 6.2.3) that

. ff__L dFX(y) . P(Xl > {E) — P(Xl > — (E(])
lim =—=2——— = lim =0.
T—00 P(X1 > Jf) T—>00 ]P(X1 > Jf)

Moreover,

Jo PO > 2 = y)dFx () PG+ Xs>0)

li = i
oo P(X; > z) rhoe P(X; > )
= 2-1=1

which implies

P(X1+ -+ Xn + Xpp1 > 1)

li < 1.
RS P(X; > 2) =nt
The other inequality can be shown similarly. O

6.3 An asymptotics for the ruin probability for
large claim sizes

We proceed with the main result of this chapter.
Theorem 6.3.1. We assume

(1) the Cramér-Lunberg-model with (NPC),

(2) p(t) = ct = (14 PES(2),

(3) that the distribution function

1
EX;

yi
Fx, 1(y) :== /Fxl(x)dx with y >0
0

s subexponential.

Then one has
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Remark 6.3.2. (1) The left-hand side of the assertion of Theorem 6.3.1 can be
written more explicitly as

(2) The right-hand side of the assertion of Theorem 6.3.1 relates to the NP
condition as follows: As we use the Cramér-Lunberg model and as premium
principle the expected value principle, we have (using Proposition 3.2.2)

IETXlt

p(t) = (14 p)ESy = (1+ p)EN (NEXy = (14 p)MEXy = (14 p) gt

so that p(t) = ct with
EX;

EW;"
On the other hand the NP condition holds if and only if

c=(1+p)

EX;, — cEW; <0.

Now we get

- CEWl 1= CEWl —EXl and l - EXl
P=%Ex, T T Ex, p EW, —EX,

This means, the larger the 'overshoot’ cEW; —EX] is, the smaller gets the
factor % in Theorem 6.3.1.

(3) Summarizing, one can also write

lim ) -4

u—oo [FP(X; >ax)dr EW) —EX,

if the premium rate is p(t) = ct.

Proof of Theorem 6.53.1. From Theorem 5.3.1 we know that the survival prob-
ability solves

1

p(u) = (0) + m/o o(u—y)dFx, 1(y)

The function ¢ is bounded, non-decreasing and right-continuous, since

p(u) = P(sup G, < ).
k>1

Therefore we can apply Theorem 5.3.3 and get

o(u) = T ip {1 + Z(l +p) "P(X11 4.+ X S0)
n=1
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and
il—i—p T"P( X+ X > )
since
H’in(up)”1
Hence
Y(u)  p oo(1+p)7nIP’(X1,1+...+X1_’n>u)

Fx,1(u) 1+4p Fx, 1(u)

n=1
By assumption,
P(X71+ ...+ X1n > )

lim — : =n
n—oo FXl,I(u)

In order to be able to exchange summation and limit, we will use the estimate
of Proposition 6.2.3

P(X],l +o 4+ X, > u)

= < K(l1+4¢e)".
Fx, 1(u)
For € € (0, p) we have
P~ n l+e
T 1+ K(l1+4e)" .
1+pn:0( p) K 1+pz<1+p> >

Therefore we obtain by dominated convergence, that

lim 71/)(u) LZ(lep)fn lim P(X71 ";...+Xl,n > u)
U—00 FXl,I(U) 1+pn=1 U—00 FXl,I(U)
P _ 1
1+,OZ( ) p

1

Q
3
Il

6.4 Conditions for Fy; € $

The main condition in Theorem 6.3.1 consists in Fix ; € 8. For this reason we
introduce the class 8* and show that F' € 8" implies that Fx ; € 8.

Definition 6.4.1. A positive random variable X with distribution function F'x
belongs to 8* if and only if
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(1) EX = p € (0,00),

. z Fx(z—y)
(2) limgosoo o S0 T (y)dy = 20,
Proposition 6.4.2. If X € 8%, then X € § and Fx € 8.

Proof. We only prove Fx; € 8: From the definition we conclude that for all
€ > 0 there exists a constant xy > 0 such that, for ¢t > xg,

(i -0 < [ Tt — ) Fly)dy < 20(1 + ) Fx (0
0

Therefore, for any = > x,

oo o] ti _ o
2u(1 — 5)/ Fx(t)dt < / / Fx(t —y)Fx(y)dydt < 2u(1+ 5)/ Fx(t)dt
T T 0 T

and

I2° 3 Fx (t — y)Fx (y)dydt/ 2

A -e)< [ Fx )t/

<2(1+¢)

or, in another notation,

F F
91 - ¢) < Trx * Frx(@)
Frx(z)

Proposition 6.2.11 implies that Fix ; € 8*. O

<2(1+e).

Proposition 6.4.3. The Weibull distribution

P(X >2x) = e " for x>0,
with fized ¢ > 0 and r € (0,1) belongs to 8*.
Proof. Let M(z) := cz”. We show

T — ) — x/2
/ 7@ y)F(y)dy = 2/ eM@)=M@=y)=M) gy, _ 9,
o Flz) 0
for x — oo where we use that

z/2 T
/ M(@)=M(a=y)~M(y) gy, — / M (@)= M(a=9)=M() g,
0 z/2

because of the symmetry of y — M(z) — M(z —y) — M(y) around z/2. For
0 <y < 35 we have

1 < M@ < M@)=M(a—y) < yM'(2/2)
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and hence

x/2 z/2 z/2 ,
/ M) gy < / M(@)=M(e=3)~M(w) gy < / M (@/2) =M () gy
0 0 0

For the left-hand side we have

z/2 z/2 0o
lim e MW dy = lim P(X > y)dy = / P(X > y)dy = EX = p.

For the right-hand side and 0 < y < /2 we observe that

r—1

T
— —0 as z—>

yM'(z/2) = cry 5

for all y > 0. Therefore, we can use dominated convergence on the right-hand
side to derive
z/2
lim eYM'(2/2) ,—M(y)
Tr—r00 O

as for the left-hand side. Since the left-hand side and the right-hand side of the
inequality, both converge to u as z — oo we get

dy =p

z/2
tim [ MMM gy g,
0

O

Corollary 6.4.4. Assume the Cramér-Lundberg-model and that the claim size
distribution is Weibull distributed, i.e.

P(X >u)=e" " for u>0,

where ¢ > 0 and r € (0,1) are fived. Assume that the NP condition is fulfilled.
Then

L)
im —= — = — .
u—00 fu e~ dx pfo e~ dx
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6.5 Summary

Class 8

+ Pareto type with exponent o > 0

+ Pareto with parameters o,k > 0

Class §*

Heavy-tailed * [Pareto II with parameters o > 1 and k > 0

*

'Weibull with parameters 0 < r < 1

and ¢ >0

Light-tailed
* Exponential distribtion with parameter A > 0

* Weibull with parameters » > 1 and ¢ > 0




Chapter 7

More facts on claim size
distributions and

distributions of the total
claim amount

7.1 QQ-Plot

A quantile is "the inverse of the distribution function”. We take the ”left in-
verse” if the distribution function is not strictly increasing and continuous which

is is defined by
Fo(t):=inf{z e R, F(z) > t}, 0<t<]1,

and the empirical distribution function of the data X1,...X,, as
F()'—lill (X:), xeR
n\T) ‘= n i:1 (—o0,z] i)y, T .

It can be shown that if X; ~ F, (X;)$2; ii.d., then

lim F () — F© (),

n—oo

almost surely for all continuity points ¢ of F'*~. Hence, if X; ~ F, then the plot
of (F (t), F< (t)) should give almost the straight line y = «.

67
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< 4 left inverse of F(x)

S
.
N
(&
N
o
o

7.2 The distribution of the total claim amount
5()
7.2.1 Compound Poisson random variables

The following mixture distributions will be used to show that an independent
sum of compound Poisson random variables, introduced in Definition 7.2.3 be-
low, is a compound Poisson random variable.

Definition 7.2.1 (Mixture distributions). Let Fy, k = 1,...,n be distribution
functions and py, € [0,1] such that >.;'_, pr = 1. Then

G(Sﬂ) = plFl(:L') T+ +pnFn(x)7 r € R,
is called the mixture distribution of Fi, ..., F,.

Lemma 7.2.2. Let f1,..., fn be random wvariables with distribution function
Fy, ..., F,, respectively. Assume that J : Q@ — {1,....n} is independent from
fis oo fro and P(J = k) = p.. Then the random variable

g=T—nfi+ ..+ L=y fa

has the mizture distribution function G.

Definition 7.2.3 (Compound Poisson random variable). Let Ny ~ Pois())
and (X;)$2, i.i.d. random variables, independent from Ny. Then

N
Y = ZX,-
=1

is called a compound Poisson random variable.
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Proposition 7.2.4. The sum of independent compound Poisson random vari-

ables is a compound Poisson random variable: Let S1,...,S, given by
N
Se=> X", k=1,.n,
i=1

be independent compound Poisson random variables such that A\, > 0,
N ~ Pois(\r), and  (X{);z1 iid.,

and Ny, is independent from (Xi(k))izl forallk =1,...,n. Then S := S1+...+5,
s a compound Poisson random variable with representation

N
SL3"Yi, Nx~ Pois(A), A=A+ oo+ An,

i=1

and (Y;)i>1 is an i.i.d. sequence, independent from Ny, and such that

Ak

Vi 2S5 Moy X5, with P(J = k) = x

k=1
and J is independent of (X{k))zzl.

Proof. From Section 9 we know that it is sufficient to show that S and 27{\2\1 Y;
have the same characteristic function. We start with the characteristic function
of Sy and get that
. N
©s, (U) _ ]EezuSk — Rt ijl X;

o0
_ Z iy, X
= E € ! ! ]I{N;’;):m}

m=0
> (k)
; X (F)
= IEE X xR
{3 =m}
m=0

all of these are independent

A

I
M8

(Eewxf'”) P(N, @ = m)
Ak

3
Il
o

I
NE

(%{{’” (U)) " P(NQZ) =m)

3
I
<

m — —
)‘k M Ar(1 prgk)(u))'

(o) T

m!

I
NE

3
Il
<

Then

SDS(U) ]Eeiu(5’1+“.+5’n)
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= Rt x ... x Ee'vSn

= g (u) x ... X pg, (1)

e—/\l(l—vxgl)(u)) 6_)‘”(1_"924") (w))

X ... X
~ (1= X o) )

Now we compute the characteristic function of £ := Zfi*l Y;. Then by the same
computation, as we have done for ¢g, (u), we get

@&(U) = Ee'™¢ = 67)‘(1*901/1 (u))
Finally,
oy, (u) = Ee'Xi= Ty X3P

=1

_ iE (ei'UXik)]I{J:k})
k=1

= Z Px® )\
k=1

7.2.2 Applications in insurance
First application

Assume that the claims arrive according to an inhomogeneous Poisson process,
ie.

N(t) — N(s) ~ Pois(u(t) — u(s)).
The total claim amount in year [ is

N(l)

S= > xPi=1..n
J=N(—-1)+1
Now, it can be seen, that
N(I)—N(i—1)
sE > xPi=1..n
j=1

and S is compound Poisson distributed. Proposition 7.2.4 implies that the total
claim amount of the first n years is again compound Poisson distributed, where

Ny
S(n) = Si+.+823 Y
i=1
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Ny~ Pois(u(n))
d n
}/i = ]I{le}Xl(l) + + ]I{J:n}Xl( )
, p(i) — p(i — 1)
P(J =1 = —
(/=19 ()

Hence the total claim amount S(n) in the first n years (with possibly different
claim size distributions in each year) has a representation as a compound Poisson
random variable.

Second application

We can interpret the random variables
N; )
Si =XV, Ni ~ Pois(\;), i=1,...n,
j=1

as the total claim amounts of n independent portfolios for the same fixed period
of time. The (XJ(-Z))jzl in the i-th portfolio are ii.d, but the distributions
may differ from portfolio to portfolio (one particular type of car insurance, for
example). Then

Ny
S(n)=51+..+5 L3 Y
=1

is again compound Poisson distributed with

Ny
Y;

Pois(A1 + ... + An)
]I{le}Xl(l) + ...+ ]I{J:n}Xl(n)

[l

and P(J =1) = 3L

7.2.3 The Panjer recursion: an exact numerical procedure
to calculate Fg,
Let

N
S:E:&,
=1

N:Q —{0,1,...} and (X;);>1 1i.d, N and (X;) independent. Then, setting
S0:=0,8,=X14+..+X,, n>1 yields

P(S<z) = iP(SSx,N:n)
n=0

= i]P’(S < z|N =n)P(N =n)

n=0
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= Y P(S, <x)P(N =n)
n=0

o0
= Y F¥(2)P(N =n),
n=0
where Fg7(z) is the n-th convolution of Fx,, i.e.
F3(x) = P(X1 4+ Xo <) = Elyx, 4 x,<a)
X1,X2 independen
2t [ 4 s (o1, 52)d By, ()4, (22)
R JR

= //]I{zlgx—m}(ffl,$2)dFX1(9C1)dFX2($2)
R JR

- / Fx,(x — x2)dFx, (z2)
R

and by recursion using F'x, = Fx,,

FEHD*(g) = / F2 (2 — y)dFy, (y).

But the computation of Fg¥(z) is numerically difficult. However, there is a
recursion formula for P(S < z) that holds under certain conditions:

Theorem 7.2.5 (Panjer recursion scheme). Assume the following conditions:
(C1) X;:Q—={0,1,...}
(C2) for N it holds that

for some a,b € R.

Then for p, :=P(S =n), n=0,1,2,... one has

9o P(X;1=0)=0
bpo = N ‘ (1)
EP(X, =0)" : otherwise
1 - bi
br 1—aIP>(X1—0)Z<“+n) (X1 =i)pn—i, n = (2)

i=1
Proof. First we observe

po = P(S=0)=P(S=0,N=0)+P(S=0,N>0)
= P(So=0)P(N =0)+P(5=0,N >0)
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= P(N=0)+P(S=0,N >0)

% +3 P(X1+ .+ Xy =0,N =k)
k=1

]P’(Xl :O)O]P’(NZO) ]P’(Xlzo)k IP)(N — k)
N—_——

L

which implies (1). For p,, n > 1,

= PS=n)= iP(Sk =n)qx

k=1

(€2 ZP(Sk, =n)(a+ %)Qk—y 3)
k=1

Assume P(S; = n) > 0. Now, because Q = P(-|S; = n) is a probability measure

the following holds.

zn: (a + l;f) P(X, =[S, = n)

=0 Q(X1=1)

b
= —EgX
CLJrnQ 1

b
= —Eo(X1+...+ X
a+ s o(X1+ ...+ Xi)

b
= — EgS
aJrnk\@,_]i

=n

b
a+E7 (4>

where the last equation yields from the fact that Q(Sx =n) = 1. On the other
hand, we can express the term a + % also by

Zn: <a + Z)P(Xl =1|Sk = n)

(=)

s bl P(X1=1,S — X1 =n-1)
;(a * n) P(Sk =n)
s bl P(X, = DP(Sp_1 =n—1)
(at3) P05, = ) ' ®)

0

Thanks to (4) we can now replace the term a+% in (3) by the RHS of (5) which
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yields
Pn = iz": <a+bl>]}”(X1 = DP(Sk-1=n—1)qr—1
k=11=0 "
= zn: (a+ bl)IP)(Xl :l)i]P’(Sk 1= n—l)qk 1
1=0 " k=1

which will give the equation (2)

R (X1 = -
Pn = 1faIP’X1—0 ;(H > L=

Remark 7.2.6.

(1) The Panjer recursion only works for distributions of X; on {0,1,2,...} i.e.
> reoPx, (k) =1 (or, by scaling, on a lattice {0,d, 2d, ...} for d > 0 fixed).

(2) Traditionally, the distributions used to model X; have a density, and
f{o 1,2, s (x)dxz = 0. But on the other hand, claim sizes are expressed in

terms of prices, so they take values on a lattice. The density hx,(z) could
be approximated to have a distribution on a lattice, but how large would
the approximation error then be?

(3) N can only be Poisson, binomially or negative binomially distributed.

7.2.4 Approximation of Fs) using the Central Limit The-
orem

Assume, that the renewal model is used, and that

N(t)

=Y X;, t>0
i=1

In Theorem 3.2.3 the Central Limit Theorem is used to state that if var(W;) <
oo and var(X;) < oo, then

P(S@—ES@ <m> _ o)

t—o0
sup — 0.

z€R

var(S(t)) —
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Now, by setting

.- Y- ESQ)
©var(S(t))
for large ¢t the approximation
P(S =~ y —ES(t) >
Bt <v) ( var(S(1))

can be used.

Warning: This approximation is not good enough to estimate P(S(¢) > y) for
large y, see [7], Section 3.3.4.

7.2.5 Monte Carlo approximations of Fg

a) The Monte Carlo method

If the distributions of N(¢) and X; are known, then an i.i.d. sample of
Niy ooy Ny, (N ~N(t), k=1,...,m)
and i.i.d. samples of

1 1
XL Xy '
X~ Xy, i=1,.,N;, j=1,...,m

XML Xy

can be simulated on a computer and the sums

N, N,
S1=> X!\ Sm=> X"
=1 =1

calculated. Then it follows that S; ~ S(t), and the S;’s are independent. By
the Strong Law of Large Numbers,

1 m s
Dyp, i= — 1 i) =P = :
pm = — ;,1 4(Si) (S(t) e A)=p, asm — o0

It can be shown that this does not work well for small values of p (see [7],
section 3.3.5 for details).

b) The bootstrap method

The bootstrap method is a statistical simulation technique, that doesn’t require
the distribution of X;’s. The term ”bootstrap” is a reference to Miinchhausen’s
tale, where the baron escaped from a swamp by pulling himself up by his own
bootstraps. Similarly, the bootstrap method only uses the given data.
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Assume, there’s a sample, i.e. for some fixed w € €2 we have the real numbers
1 = X1 (W), ooy = Xp(w),

of the random variables X1, ..., X,,, which are supposed to be i.i.d. Then, a
draw with replacement can be made as illustrated in the following example:
Assume n = 3 and z; = 4,22 = 1,23 = 10 for example. Drawing with
replacement means we choose a sequence of triples were each triple consists
of the randomly out of {1,4,10} chosen numbers. For example, we could get:

r1 T2 I3

T2 T1 X1 T3 T1 X2 T3 T2 X2

We denote the k-th triple by X*(k) = (X7 (k), X5(k), X5(k)), k€ {1,2,...}.
Then, for example, the sample mean of the k-th triple
XG(R) + X3 () + X5 (k)
3
has values between min{z1, x2, z3} = 1 and max{x1, z2, 23} = 10, but the values

near % = 5 are more likely than the minimum or the maximum, and it

holds the SLLN

X*(k) -

N
. 1 S 1+ T2 + 23
N

Moreover, it holds in general

- X
var(X*(i)) = Y X).
n
Verifying this is left as an exercise. B
In insurance, the sum of the claim sizes X7 + ... + X,, = nX,, is the target of

interest and with this, the total claim amount

N(t) © [/ n
S(t) = Z X = Z (Z Xi) LN (ty=n}-
i=1

n=0 \i=1

Here, the bootstrap method is used to calculate confidence bands for (the pa-
rameters of) the distributions of the X;’s and N(t).

Warning

The bootstrap method doesn’t always work! In general, simulation should only
be used, if everything else fails. Often better approximation results can be
obtained by using the Central Limit Theorem.
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So all the methods represented should be used with great care, as each of them
has advantages and disadvantages. After all, "nobody is perfect” also applies

to approximation methods.
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