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1 Introduction

Why should one study Markov processes? The class of Markov processes
contains the

e Brownian motion,
e Lévy process,

e Feller processes,

where these classes are contained in each other, the class of Brownian motions
is the smallest class. Moreover,

e solutions to certain SDEs are Markov processes.

Looking from another perspective we will see useful relations between Markov
processes and

e martingale problems,
e diffusions,
e second order differential and integral operators.

The Markov processes are named after the Russian mathematician ANDREY
ANDREYEVICH MARKOV (14 June 1856 — 20 July 1922).



2 Definition of a Markov process
For the following we let
(1) (@, F,P) be a complete probability space,
(2) (E,&) be a measurable space,
(3) TCRU{oo}U{—o0} with T # 0.
Let us fix some notation:
o We call X = {X;;t € T} a stochastic process if

X (2, F)— (E)E) forall teT.

The map t — X;(w) is called a path of X.

We say that F = {F;;t € T} is a filtration if F; C F is a sub-c-algebra
for any t € T and it holds F, C F; for s < t.

The process X is adapted to F if X, is F; measurable for all t € T.

The natural filtration F* = {FX;t € T} of X = {X;;t € T} is given
by FX :=0(Xys <t seT).

Obviously, X is always adapted to its natural filtration FX = {F*;t € T}.
Now we turn to our main definition:

Definition 2.1 (Markov process). The stochastic process X is called a
Markov process w.r.t. F if and only if

(1) X is adapted to TF,
(2) forallt € T, A€ F, and B € 0(X,; s > t) one has
P(AN B|X;) = P(A|X,)P(B|X;) a.s.,

i.e. the o-algebras F; and o(X;s > t, s € T) are conditionally indepen-
dent given X;.



Remark 2.2.

(1) We recall that we define the conditional probability using conditional
expectation as

P(C|X:) == P(Clo(X:)) = E[Lc|o(Xy)].

(2) If X is a Markov process w.r.t. F, then X is a Markov process w.r.t. F¥X.

(3) If X is a Markov process w.r.t. its natural filtration FX, then the Markov
property is preserved if one reverses the order in T.

The following result is our first main result:

Theorem 2.3. Let X be F-adapted. Then the following conditions are equiv-
alent:

(1) X is a MARKOV process w.r.t. F.

(2) For each t € T and each bounded o(Xs;s > t,s € T)-measurable Y :
2 — R one has

E[Y|F] = E[Y|X] a.s. (2.1)

(3) If s,t € T and t < s, then
E[f(X,)|F) = E[f(X,)|X] s
for all bounded f : (E,&) — (R, B(R)).

Proof. (1) = (2) We can decompose Y = YT — Y~ into the positive and
negative part, and each part can be approximated from below point-wise by
0(Xs;s > t,s € T)-measurable simple functions. Therefore it suffices to
show (2.1) for Y = 15 where B € 0(X5;s > t,s € T). In fact, for A € F,
we have, a.s.,

EE[Y|F]1s) = Elalp
= P(ANB)
= EP(AN B|X;)
= EP(A[X)P(B|X:)
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EE[1L4] X, JB(B|X,)

= EL.P(B|X))

= E(E[Y[Xi]14)
which implies (2).
(2) = (1) IfAe Fand B € 0(X,;5s >t,s € T), then, as.,

P(ANB|X:) = E[lanp|X{]

E[E[Lanp|Fi]| Xi]
E[LAE[L 5| ][ X:]
E[T 4| X JE[1 5] Xi],

which implies (1).
(2) = (3) is trivial. (3) = (2) To apply the Monotone Class Theorem
for functions we let

H:={Y; Y is bounded and o(X;;s > t,s € T) — measurable
such that (2.1) holds}.

Then H

— is a vector space,

— contains the constants,

— is closed under bounded and monotone limits.
(a) For bounded f; : (F,€) — (R,B(R)) and ¢t < 51 < ... < 8, n > 1, we
show that

YV =TI, fil(Xs) € (2.2)

We show (2.2) by induction over n. The case n = 1 is assertion (3).
n > 1: Assume that the statement is true for n — 1. Then we get, a.s.,

EY|F] = EEY|F, 7]
= E[T5 fi(X0)E[fa( X, )| Fs, o 1R
B[S fi(X ) Elfa(X5,) 1 X, ] F)-
By the Factorization Lemma A.1 there exists a h: (E, &) — (R, B(R)) such

that E[f,(Xs,)|Xs,_,] = h(Xs, ;) a.s. By the induction hypothesis we get,
a.s.,

Sn—1

BT fi (X ) (X, )] = B[S £i( X (X, )X



And finally, by the tower property, since o(X;) C Fs, _,, a.s.,
E[S fi(Xo) (X, D)IXe] = E[MLSfi(Xo ) Elfo (X, )| Fs, 11X

= E[E[LL fi(Xs,) fu(Xo, )| Fe, ]1X4]
— E[H?:lfi(Xsi)Xt].

(b) Now we apply the Monotone Class Theorem A.2. From step (a) we know
that 14 € H for any A € A with

A={{w et X, (w) e L, ... X, (w) € In} : Iy € B(R), s, € T, s > t,n > 1}
where o(A) = 0(Xy; s > t,s € T). Therefore

{Y;Y is bounded and o(Xg;s > t,s € T) — measurable} C H.



3 Transition functions

In this section we assume that T = [0, c0).
Definition 3.1 (MARKOV transition function).

(1) A family (P;s)o<t<s<oo is called MARKOV transition function on (E,E)
if all P,;: E x & — [0,1] satisfy that
(a) A— P, (z,A) is a probability measure on (E, ) for each (¢, s, x),
(b) z +— P, 4(x, A) is E-measurable for each (¢, s, A),

(¢) Pri(z, A) = 02(A),

(d) if 0 <t < s < u, then the CHAPMAN-KOLMOGOROV equation

¢
d

Py, A) = / Prou(ys A)Pru(z. dy)
E
holds for all z € E and A € &£.

(2) The MARKOV transition function (P;s)s<; is homogeneous if and only if
Pg=Fysforal 0<t<s<o0.

(3) We say that a MARKOV process X w.r.t. [F is associated to the MARKOV
transition function (P, s)o<i<s<oo provided that

ELf(X,)|F] = /E F(0) (X, dy) as. (3.1)

for all 0 <t < s < oo and all bounded f : (E,€) — (R, B(R)).

(4) Let p be a probability measure on (E, &) such that pu(A) = P(X, € A).
Then p is called initial distribution of X.

Remark 3.2.

(1) There exist MARKOV processes which do not possess transition functions
(see [2, Remark 1.11, page 446]).

(2) Using monotone convergence one can check that the map
o [ JWPatady
E
is (€, B(R))-measurable for a bounded f : (E,€) — (R, B(R)).
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Proposition 3.3. A MARKOV process w.r.t. ' having (P, s)i<s as transition
function satisfies for 0 < t; < ty < ... < t,, and bounded [ : (E",E®") —
(R, B(R)) the relation

Ef(th, ...,th) —
/u(dl'o)/P07t1($0,d$1).../Ptn_htn(ﬂjn1,dxn)f($1,...,l’n).
E E E



4 Existence of Markov processes

Given a distribution x4 and MARKOV transition functions {P; s(x, A)}, does
there always exist a MARKOV process with initial distribution p and transi-
tion function {P; s(z, A)}?

Definition 4.1.
(1) For a measurable space (F, ) and a non-empty index set T we let
Q:=ET F=T=0(X;teT),
where X; : 0 — E is the coordinate map

Xi(w) =w(t) where w = (w(t))er € Q.

(2) Let Fin(T) := {J € T;0 < |J| < oo} where in J all elements are pair-
wise distinct.

(3) For J ={ty,...,t,} € Fin(T) we define the projections 7 : @ — E’ by

Tr(w) = (w(t1),...,w(ty)) = (X4, ... Xy,) € B,

(4) A set {P; : P is a probability measure on (E”/,£7),J € Fin(T)} is
called a set of finite-dimensional distributions.

(5) A set of of finite-dimensional distributions {P; : J € Fin(T)} is called
Kolmogorov consistent (or compatible or projective) provided that the
following holds.

(a) Symmetry: One has
(AJ(l) X ... X AO’(’VL)) = Pt1 77777 tn(Al X ... X An)

for any permutation o : {1,...,n} — {1,...,n}.

(b) Projection property: One has
PJ :PKO (7TJ |EK>_1

for all J C K with J, K € Fin(T).



Theorem 4.2 (KOLMOGOROV’s extension theorem, DANIELL-KOLMOGOROV
Theorem). Let E be a complete, separable metric space and € = B(E). Let
T be a non-empty set. Suppose that for each J € Fin(T) there exists a
probability measure Py on (E7,E7) and that

{P,;J € Fin(T)}

1s Kolmogorov consistent. Then there exists a unique probability measure P
on (ET ET) such that

P,=Por,' on (E,&).

For the proof see, for example [5, Theorem 2.2 in Chapter 2]. The main
result of this section is the following existence theorem that will be deduced
from Theorem 4.2.

Theorem 4.3 (Existence of MARKOV processes). Let E = R% & = B(RY),
and T C [0,00). Assume that p is a probability measure on (E,E) and that

{Ps(r,A);0<t<s<oo,z€F, A€}

is @ MARKOV transition function (Definition 3.1). If J = {t;,...,t,} C T
and {s1, ..., $n} = {t1, ..., tn} with s1 < ... < sy, i.e. the t}'s are re-arranged
according to their size, we define

PJ(Al X ... / / ILA1>< X An {L‘l,..,[En),lt(dl‘o)PO’Sl(fL‘o,dCL’l)
Sn 15n(xn 17dxn) (41)

Then there exists a probability measure P on (E™,EY) such that the coordi-
nate mappings, i.e.
X, ET 5 R w = w(t),

form a Markov process w.r.t. FX with the MARKOV transition function

(Pt,s)0§t§s<oo .

Remark 4.4. Using the monotone convergence one can show that (4.1)

implies that for any bounded f: (E", ") — (R, B(R)) it holds

Ef(Xsl,..., / / f T1y.., L dx0>P051<x0,d$1)
Sn 1,5n ($n 1>dxn) (42)
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Proof of Theorem 4.3. (a) By construction, P is a probability measure on
(E7,E7). We show that the set {P;;J € Fin(T)} is KOLMOGOROV con-
sistent. The symmetry follows by construction, we only need to verify the
projection property. Consider K C J with

K={s;, <--<s,} CJ={s1<...<sn}
and 1 < k <n, and
Pyx: E7 — EX (21, ...,20) = (24, -.75,)

We have P (By X ... x By) = Ay X ... X A, with A; € {By, ..., By, E}. Let
us assume, for example, that £ =n — 1 and

Ay x ... xA,=B; X..xB,_9axEXxXB,.
Then
PJA]_X )

/ /]lle XBp_ 2><E><Bn<xla"'7 )

(dl’o)P@}Sl (513'0, dxl)---Psn_Lsn (.Tn,l, dl'n)
= P{81,...,Sn—2,8n}(B1 X ... X Bn_g X Bn)

since, by the CHAPMAN-KOLMOGOROV equation, we have
/ Psn72asn71(xn_27 dxn_l)Psnflysn (In—lﬂ dxn) = Psn72ysn (In—Qv d]?n)
E

(b) Now we check that the process is a MARKOV process. According to
Definition 2.1 we need to show that

P(AN B|X,) = P(A|X,)P(B|X,) as. (4.3)

for A€ F* =o(X,;u <t)and B € 0(Xs;s > t). We only prove the special
case

P(X, € By, X, € Bs, | X;) =P(X, € B1|X;)P(X, € B3| X;) a.s
for u <t < s and B; € £. For this we show that it holds

E 15, (X)L, (X)1p,(Xy)] = E[P(Xy € Bi|X)P(Xs € By Xi)1p,(Xy)]

11



Indeed, by (4.1),

]EﬂBl(X )]133( ]le Xt ////ﬂlengBg 96’17952,353)

p(do) Pou (o, dx1) Pyt (21, d2o) Py o (22, dx3).
Using the tower property we get

E[P(X, € B3| X,)P(X, € Bi|X;)15,(X;)]

— E[(E[Lp, (X,)| X)) Lp, (X)L, (X))
— E[P(X, By, (X,) 1, (X0)].

To see that E[1p,(Xs)|X:]) = P.s(Xy, Bs) we write

Elp,(Xs)1p(X:) = ///]lB,3 xo)L (1) p(dxg) Po (o, dzy) Py s (21, das)

= ///]13 p(dxo) Po¢(zo, dr1) Prs(71, Bs)

= EP,(X,, By)15(X)).

where we used (4.2) for f(z1) = 1g(x1)FP; (21, Bs). Again by (4.2), now for

F(Xu, Xt) = P s(Xt, Bs)1p, (Xyu)1p,(X:), we get that
EP, (X;, Bs)1p, (Xu)1p,(X;)
= / / / P, (22, B3)1 g, « B, (z1, 2) pt(dxo) Pou (2o, dxy) Py (21, dxs)
eJEJE

:////1le32x33($1,$271’3)
eJeJelJE

p(dxg) Pou(xo, dxy) Py (21, dee) Py s(22, dzs).

12



5 A reminder on stopping and optional times

For (2, F) we assume a filtration F = {F;;t € T} where T = [0, 00) U {c0}
and F=F =0 (Use[o,oo) .7-"3). Moreover, we set

Ft+izﬂfs, tG[0,00), Fw+::Fm,
s>t
Fi_ =0 < U .7:S> , t€(0,00], Fo_:=Fo.
0<s<t

Therefore, for all t € T one has that
Fio C©F C Figt.
Definition 5.1.
(1) Amap 7:Q — T is called a stopping time w.r.t. F provided that

{r<t}eF foral te][0,00).

(2) The map 7: — T is called an optional time w.r.t F provided that

{r<t}eF forall te]|0,00).

(3) For a stopping time 7: Q — T w.r.t. F we define

F.={AeF: An{r<t}eF Vte[0,0)}.

(4) For an optional time 7: ) — T w.r.t. F we define

Frp={AeF: An{r<t}eF Vte|0,00)}.

Remark 5.2.

(1) For a stopping time we have that {7 = oo} = {7 < 00} € F,, because

{r<oo}=|J{r <n}eF.

neN
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(2) For an optional time we have that {7 < co} € F.

(3) F; and F,, are o algebras.

Definition 5.3. The filtration {F;;t € T} is called right-continuous if F, =
Fiy forall t € [0, 00).

Lemma 5.4. If 7 and o are stopping times w.r.t. IF, then
(1) 740,

(2) 7 Ao =min{r, 0o},

(3) 7V o =max{r, o},

are stopping times w.r.t. .

Lemma 5.5.

(1) Forty € T the map 7(w) = to for all w € Q is a stopping time and one
has Fy, = Fr.

(2) Ewvery stopping time is an optional time.

(3) If {Fi;t € T} is right-continuous, then every optional time is a stopping
time.

(4) The map 7 is an {Fy;t € T} optional time if and only if T is an {Fy;t €
T} stopping time.

Proof. (1) follows from

Q; to <t

(2) Let 7 be a stopping time. Then



n=1

—_—

E‘Ft+%

M
t+l = <zf+i € F
Q T < o= T Vi tL

we get that {7 <t} € Fiyr VM € N* and hence {r <t} € Fiy = F; since
{Fi;t € T} is right-continuous.

1
(3) We have that {T <t} = - {T <t+ —} . Because of
n

(4) = 1If 7 is an {F;;t € T} optional time, then {7 < ¢t} € F;, implies

{r <t} € Fiq because F; C (\,o;Fs = Fiy. This means that 7 is an

{Fis;t € T} optional time. Since {Fiy;t € T} is right-continuous, we
conclude from (3) that 7 is an {F;y;t € T} stopping time.

< If 7 is an {F;;;t € T} stopping time, then

o0

1
{T<t}:U {r<t—-} € F.
n
n=1 —
EF—1/m)+=Nsst—1/n FsEFt
O

Lemma 5.6. For stopping times o, T, T1, Ty, ... w.r.t. F the following holds:
(1) 7 is Fr-measurable.
(2) If T < o, then F, C F,.
(B) Fru ={AeF: An{r<t}eFy Vte[0,00)}.
(4)

4) The map sup, 7, : 2 — T is a stopping time w.r.t. F.

15



6 Strong Markov processes

6.1 Strong Markov property

Definition 6.1 (progressively measurable). Let E be a complete, separable
metric space and £ = B(E).

(1) Aprocess X = {Xy;t € [0,00)}, with X; : Q — E'is called F-progressively
measurable if for all ¢ > 0 it holds

X ([0, x Q,B(0,4]) ® F) — (E, ).

(2) We will say that a stochastic process X is right-continuous (left-continuous),
if for all w € Q2 the functions

[0,00) 5t~ Xy(w) € F
are right-continuous (left-continuous).
We will start with a technical lemma:
Lemma 6.2.
(1) If X is F-progressively measurable, then X is F-adapted,

(2) If X is F-adapted and right-continuous (or left-continuous), then X is
F-progressively measurable.

(3) If T is an F-stopping time and X is F- progressively measurable, then
X, {1 <00} = E is Fr|{r<oo}-measurable.

(4) For an F-stopping time T and a F- progressively measurable process X
the stopped process X given by

Xg(w) = Xt/\T(CU)
15 - progressively measurable,

(5) If 7 is an F-optional time and X is F- progressively measurable, then
X, {r <o} —= E is ]:T+|{T<oo}‘mea3umble.

16



Proof. The assertions (1), (2) and (5) are exercises.
(3) For s € [0, 00) it holds

Q, s>t

{r<s}, s<t € 7

{T/\tSS}Z{TSS}U{tgs}:{

Hence 7 At is Fi-measurable. Next we observe that h(w) := (7(w) A t,w) is
measurable as map

(2, F2) — ([0, 1] x 2, B([0, 1]) ® F2).
Also, since X is F- progressively measurable, we have that
X : ([0,t] x Q,B(]0,t]) ® F) = (E,E) (6.1)
and therefore
Xoh:(Q,F)— (EE). (6.2)
It holds that (3) is equivalent to
{X;eB}n{r<theF forall tel0,00).
Indeed this is true as
{X;eBIn{r <t} ={X;ns € B} n{r <t}

which is in F; because of (6.2) and since 7 is a stopping time.

(4) It holds that the map H(s,w) := (7(w) A 5,w) is measurable as map
([0, 4] x 2, B([0,]) ® F) — ([0, 4] x , B(0,£]) ® F)
for t > 0 since, for r € [0, 1],
{(5,0) € 10,8 x Q1 7(w) As € 0,71} = (10,7] x Q) U (1] x {7 < 1)),

Because of (6.1) we have for the composition (X o H)(s,w) := X rs(w) =
X7 (w) the measurability

X o H :([0,t] x Q,B([0,t]) ® F;) — (E,E).

17



Definition 6.3 (strong MARKOV process). Assume that {X; : ¢ > 0} is an
F-progressively measurable MARKOV process with homogeneous transition
function (P;);>o in the sense that P, = Py;. The process X is called a strong
Markov process if

P(XT—H S A|f7+) = H(XT, A) a.s.
for allt > 0, A € £ and all F-optional times 7 : Q — [0, 00).
One can formulate the strong Markov property without transition functions:

Proposition 6.4. Let X be an F-progressively measurable process. Then,
provided X is a Markov process with transition function, the following asser-
tions are equivalent to Definition 6.5:

(1) For all For allt € T and A € € one has
P(X, € AlFry) =P(Xr4t € AlX) aes.
for all F-optional times T : Q — [0, 00).
(2) For allty,....t, € T and Ay, ..., A, € € one has
P(X,i4, € A1y, Xy, € AplFry) = P(Xouy, € Ay, o, Xy, € AnlX5) acs.

for all F-optional times 7 : Q2 — [0, 00).

6.2 Lévy processes are strong Markov processes

Definition 6.5. A process X = {X, : t > 0} is called LEVY process if the
following holds:

(1) Xo=0.

(2) The paths of X are cadlag (i.e. they are right-continuous and have left
limits).

(3) For all 0 < s <t < oo one has X; — X 4 X
(4) For all 0 < s <t < oo one has that X; — X, is independent of F.

The strong MARKOV property of a LEVY process will be obtained as follows:

18



Theorem 6.6. Let X be a Lévy process. Assume that 7 : Q) — [0,00) is an
FX-optional time. Define the process X = {X;;t > 0} by

Xt - (Xt+T - X’T‘)a t Z O

Then the process X is independent of F. + and X has the same distribution
as X.

Proof. The finite dimensional distributions determine the law of a stochastic
process. Hence it is sufficient to show for arbitrary 0 =ty < t; < ... < t,, <
oo that

Xtm - Xtm,p ---,th — Xto and JF,, are independent.
Let G € F,. . We define a sequence of random times

n S k
7-( ) :kZQ_n]l{kgnl<T<2]$L}.
=1

We have that 7" < co. Then for 64, ...,6,, € R, using tower property,

Eexp {z Z O/ (X4, — XT(n)+tl_1)}]lG
=1

et ZEGXP {7/ Z QZ(XT(n)+tl - XT(n)+tll)}]1'Gﬂ{T(n)21§«l}
k=1 =1

= e {0~ X ) Pl
k=1 =1
- ZE]le{TWk}E{exp{ i 0Kk = Xk 1)} ]—"2;%}

=1
m
= ZEﬂGm{T(m_;}EeXP{ Zel(XQ’%H X;fﬁ—tz 1)}
k=1 !

=1
= Z E]IGO{T(n)ZQLn}E eXp {Z Z 01( Xy, — th1)}
k=1

=1

— P(G)Eexp {z g 01(Xy, — Xt,l)}

19



since GN{r™ = £} = Gn{E<r< X} € Fi. Because we have
7 (w) | 7(w) and X is right-continuous, we get

lim X.,.(n)(w) 4s — NAr(w)+s

n—oo

for all s > 0 and

E exp {ZZ QZ(XT+tl - XT+tll>}]lG = Eexp { Zel Xy, — Xy 1)}
=1

by dominated convergence. Specialising to 2 = G yields to

Eexp {i Z 91(X7'+tz - X‘r+tl1)} = Eexp {Z Z el(th - thl)}?
=1 =1

which implies that X and X have the same finite-dimensional distributions.
In turn, this also gives

[E exp {Z Z 91(X7+t,— r+tll)}]1G = Eexp { Z 91 Tt T T+tll>}'
=1

which means that X is independent from }"T)i. n
Theorem 6.7. A LEVY process is a strong MARKOV process.

Proof. Assume that 7 : © — [0,00) is an FX-optional time. Since by
Lemma 6.2 we have that X, is ]—"T)fr measurable and from Theorem 6.6 we
have that X;,, — X, is independent from ]-'T)Sr, we get that for any A € £ it
holds, a.s.,

IP)(X7-+t E A|.F7-+) - EI:IL(Xt+T—X7—)+XT€A}“FT+]

= (El(x,y,—x1)4yeay) ly=x,

The assertion from Theorem 6.6 that X,,, — X, = X, allows us to write
El(x,., X )+yeay = Elix,yeay = Pi(y, A).

Consequently, we have shown that

P(X, 4+ € A|Fry) = P(X,, A) as. O
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7 The semi-group and infinitesimal generator
approach

7.1 Contraction semi-groups

Definition 7.1 (semi-group).

(1) Let B be a real Banach space with norm || - ||. A one-parameter family
{T'(t);t > 0} of bounded linear operators 7'(t) : B — B is called a
semi-group if

(a) T(0) = Id,
(b) T(s+1t)="T(s)T(t) for all s,t> 0.

(2) A semi-group {T'(t);t > 0} is called strongly continuous (or Cj semi-
group) if, for all f € B,

ImT(t)f = f.

£10

(3) The semi-group {T'(t);t > 0} is a contraction semi-group if, for all
t>0,

1T = Sup [T fl < 1.

Example 7.2. Let B := R? and let A be a d x d matrix. For ¢t > 0 define

with A° being the identity matrix. As norm we take the operator norm of
A, ie.
[All := sup{| Az : [z] < 1},

where |(z1,...,d)| == (2% + -+ + xfl)%. Then one has that
(1) etFD4 = es4et4 for all s,¢ > 0,
(2) {e!;t > 0} is strongly continuous, and

(3) ||t < et for ¢ > 0.
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Definition 7.3. Let E be a complete separable metric space and let B(FE)
be the BOREL-o-algebra generated by the open sets of EF. By Br we denote
the space of bounded measurable functions

f:(E,B(E)) = (R,B(R))
and equip this space with the norm || f|| := sup,cpg | f(2)]-

Theorem 7.4. Let EE be a complete separable metric space and X be a ho-
mogeneous Markov process with transition function {P,(xz,A)}. Then the
following s true:

(1) The space By defined in Definition 7.3 is a Banach space.

(2) The family of operators {T'(t);t > 0} with

T(t) () := /E fW)Pr.dy), | € B,

15 a contraction semi-group.
Proof. (1) We realise that B is indeed a Banach space:

— Measurable and bounded functions form a vector space.

— |If|| == sup,eg | f(2)| is a norm.

— Bg is complete w.r.t. this norm.
(2) We show that T'(t) : Bg — Bg: To verify that
T@)f:(E,B(E)) = (R,B(R))
we can restrict ourself to f > 0 and find simple (measurable!) functions

fo= S @y, A} € B(E),a; 2 0 such that f, 1 f. Then

T(t)fulr) = /E S 6 Lag (0) Py, dy)

k=1

Ny
=Y ap / 142 (4) Py, dy)
k=1 E
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Ny,
= > apP(z, Ap).
k=1

Since

B A7) - (B, B(E)) = (R, B(R)),

we have this measurability for T'(¢)f,, and by dominated convergence also
for T'(t) f. Moreover, we have

1T fl] = igg!T(t)f(x)!
< sup / F@)\ P, dy)
z€E JE
< igg!\f!lPt(x,E)szH- (7.1)

Hence T'(t)f € Bg.
(c) {T'(t);t > 0} is a semi-group: We first observe that

T(0)f(x) = /E F(9) ol dy) = /E F()5a(dy) = f(2)

which implies that 7'(0) = Id. From the CHAPMAN-KOLMOGOROV equation
we derive

T(s)T(t)f(x) = T(s)(T(t)f)(x)
= 76 ([ swrc.an) @
_ /E/Ef(y)Pt(z,dy)Ps(%dz)
_ /E F)Prya(@, dy) = T(t + 5)  (x).
(d) We have already seen in (7.1) that {7'(¢);¢ > 0} is a contraction. [

7.2 Infinitesimal generator

Definition 7.5 (infinitesimal generator). Let {T'(¢);t > 0} be a contraction
semi-group on Bg. Define D(A) to be the set of all f € Bg such that there
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exists a g € B such that

T@t)f—f
t

lim
10

~of =0 (72)

and

A:D(A) — B by Af:= l}g%.

The operator A is called infinitesimal generator of {T'(t);t > 0} and D(A)
the domain of A.

Example 7.6. If W = (W});>¢ is the one-dimensional Brownian motion and

C%(R) := {f : R — R : twice continuously differentiable and

/" is uniformly continuous and bounded},
then C2(R) C D(A) and for f € C?(R) we have that Af = %%f.
Proof. We have P,(z, A) = P(x + W; € A) and

Tt)f(x) =Ef(z+W,).
By ITO’s formula,
t 1 t
fat W) = f@)+ [ Flarwyawsg [ e woas
0 0
Since f’ is bounded, we have E fot(f’(x + W5))?ds < oo and therefore
t
IE/ £z + W,)dW, = 0.
0

For t > 0 this implies

limEf(x+Wt)_f< :—hmE /f” + Wy)d
10 t 2 tlo
:—Ehm /f”x+W
t10 t
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1 "
:Ef (z)

where we use dominated convergence as

1 t
‘— / Iz +Wy)ds
t Jo

< sup | (y)] < o0
Y

and the continuity of the paths s — Wy (w). It remains to estimate uniformly
in x the expression

11 [t 1
'%E/O P+ Wads = 3 1(@)|.

Given € > 0 we find an > 0 such that |z — y| < n implies that |f"(z) —
f"(y)| < e. Then

1 t
‘ZIE/O P+ Wds — ()

1 [ " 1
< 'El{supse[o,t] [Ws|<n} |:¥/0 f (1’ + W8>ds - f (93):| ‘

+ 2P(sup [W| > n)sup | f"(z)]
s€[0,t] x

2
<e+ —E sup (W|?sup | £ ()]
n s€[0,¢] T
8
<e+ §E|Wt\2 sup | f" ()]
8t
<e+ 2 5P 1" ()]

where we applied DOOB’s maximal inequality. Therefore, given € > 0, we
can take ¢ty > 0 small enough such that, for ¢ € (0,t,], we have

4t
e+ —sup|f’(z)| < 2e. O
n =z

Theorem 7.7. Let {T'(t);t > 0} be a contraction semi-group and A its
infinitesimal generator with domain D(A). Then
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(1) If f € By is such that limy o T'(t) f = f, then fort > 0 it holds
/tT(s)fds € D(A) and A (/tT(s)fds) =T f - f.
0 0

(2) If f € D(A) andt > 0, then T(t)f € D(A) and

i LE+ ) =TOf _ 4
sJ0 S

) f =T@)AS.
(3) If f € D(A) and t > 0, then fot T(s)fds € D(A) and

T —f=A[ T(s)fds= | AT(s)fds= | T(s)Afds.
0f == [ Tepas= [ arpas= [ T6)afas
Proof. (1) If limy o T'(¢) f = f, then

ImT'(s)f = l}fng(u +t)f = 1}{51 Tw)Tt)f=T(uw)limT(t)f =T(u)f,

slu tl0

where we used the continuity of T'(u) : Bg — Bg. This continuity from the
right also implies that the Riemann integral

/tT(s +u) fdu
0

exists for all ¢, s > 0 if we use in the discretizations the right-hand end point:
for example if we set ¢ := £, then

n t
ST~ ) > [ T, 0o
i=1 0
and therefore

1) [ T = T() ( / T(U)fdu—ZT(t?)f(t?—t?_1)>

+ D TETEFE — b
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This implies

M/;T(u)fdu =

S

(/Ot T(s + ) fdu — /OtT(u)fdu)
( / ) fu - /0 ") fdu>
( /t () fu - /0 "T(w) fdu)

T)f—f, sd0.
Since the RHS converges to T'(t)f — f € Bg we get fot T(u)fdu € D(A) and
t

W= »w|= »|~=

5
~
-
s

Al T)fdu=T(t)f - f.

0

(2) If f € D(A), then
TOTWf -TO)f _ TOTEf =) T(H)ASf, s10.

s s
Hence T'(t)f € D(A) and AT(t)f = T(t)Af.

(3) If f € D(A), then % — Af and therefore T'(s)f — f — 0 for s | 0.
Then, by (1), we get fot T(u)fdu € D(A). From (2) we get by integrating

/Ot i L8 +u)f = T(u)fdu = /Ot AT (u) fdu = /OtT(u)Afdu.

sd0 S

On the other hand, in the proof of (1) we have shown that

/t T(s+u)f — T(U)fdu _ M /tT(u)fdu.

S S

Since w converges in Br we may interchange limit and integral:

/t lim Ts+u)f = T(u)fdu = lim M /t T'(u) fdu

50 S 510 s

— A /0 t T(u) fdu.
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7.3 Martingales and Dynkin’s formula

Definition 7.8 (martingale). An F-adapted stochastic process X = {X;;t >
0} such that E|X;| < oo for all t > 0 is called F-martingale (submartingale,
supermartingale) if for all 0 < s <t < oo it holds

E[X|F] = (2, 9)Xs  as.

Theorem 7.9 (Dynkin’s formula). Let X be a homogeneous Markov pro-
cess with cadlag paths for all w € Q and transition function {P,(xz, A)}. Let
{T'(t);t > 0} denote its semi-group

T(t)f(x) = /E f)Pie.dy) for feBg

and (A, D(A)) its generator. Then, for each g € D(A) the stochastic process
{My;t >0} is an {FX;t > 0} martingale, where

M, = g(X,) — 9(Xo) - / Ag(X.)ds. (7.3)

Remark 7.10. The integral fot Ag(Xs)ds is understood as a Lebesgue-integral
where for each w € , i.e.

/0 Ag(X,)(w)ds = / Ag(X.)(w)A(ds),

where A denotes the Lebesgue measure.

Proof. Since by Definition 7.5 we have A : D(A) — B, it follows Ag € B,
which means especially

Ag: (E,B(F)) — (R, B(R)).

Since X has cadlag paths and is adapted, it is (see Lemma 6.2) progressively
measurable, i.e.

X ([0,4] x Q,B([0,4]) ® F) — (B, B(E)).
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Hence for the composition we have
Ag(X) : ([0,4] x Q,B([0,]) @ F) — (R, B(R)).

Moreover, Ag is bounded as it is from Bg. So the integral

/0 Ag(X,(w))A(ds),

w.r.t. the Lebesgue measure A\ is well-defined for w € €). Fubini’s theorem
implies that M; is F/* - measurable. Since g and Ag are bounded we have
that E|M;| < co. From (7.3) we get, a.s.,

E[Me|F] + 9(Xo)

= & fotn - [ asxasiz]

= E Kg(Xt+h) - /:M Ag(Xs)dS)

The Markov property from Definition 3.1 (equation (3.1)) implies that

_ / ' Ag(X.)ds.

0

fgf}

E [g(Xin)| F¥] = /E 9(y) Pa( X, dy).

We show next that E {f“h Ag(XS)ds‘]:tX} = tt+h]E[Ag(XS)|}"tX]ds, where

t

we take as version for E[Ag(X,)|F;*] the expressiom [, Ag(y)Ps_i(Xy, dy)
which is possible due to the MARKOV property of X. Since g € D(A) we
know that Ag is a bounded function so that we can use Fubini’s theorem to
show that for any G € F;* it holds

t+h t+h
// Ag(Xs)dslgdP = / /Ag(XS)]lngP’ds
QJt t Q
t+h
= / //Ag(y)Pst(Xt,dy)]lngP’ds
t QJE

E Kg(Xt+h) - /:M Ag(Xs)dS)
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fﬂ -/ ' Ag(X,)ds
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- [E g(y) Pu(X,, dy) — /t - /E Ag(y) Pe—e (X, dy)ds

—/tAg(X d

The previous computations and relation T'(h f 1 [ (W) Pr(Xy, dy) im
ply

E[M;4| FX] + 9(Xo)
= [Eg(y)Ph(Xndy)—/t /EAg<y)d5Ps—t(Xt7dy)d5_/0 Ag(X)ds

t+h t
= T(h)g(X,) - / T(s — ) Ag(X,)ds — / Ag(X.)ds

h
— T(h)g(X,) / T(u) Ag(X)du — / Ag(X.)ds

= T(h)g(X) — T(h)g(X,) + g(X0) — / Ag(X,)ds

= g(Xy) — / Ag(X

= M, + g(Xo),

where we used Theorem 7.7(3).
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8 Weak solutions of SDEs and martingale prob-
lems

We recall the definition of a weak solution of an SDE.

Definition 8.1. Assume that o, b; : (R, B(RY)) — (R, B(R)) are locally
bounded. A weak solution of

dX; = o(Xy)dB; + b(Xy)dt, Xo==x, t>0, (8.1)
is a triplet (X, By)i>o, (2, F,P), (Fi)i>0, such that the following holds:
(1) (2, F,P, (Fi)e>0) satisfies the usual conditions:
o (Q, F,P) is complete.
e All null-sets of F belong to Fy.

e The filtration is right-continuous.
(2) X is a d-dimensional continuous and (F;);>0 adapted process.
(3) (Bt)t>0 is an m-dimensional (F3);>o-Brownian motion.

(4) For t > 0 and 1 < i < d one has

¢
)+Z/Uz dBJ)—i-/b(X)duas
0

Let a;;(x) := Y 1", oix(z)ojr(x), i.e. in the matrix notation a(x) := o(z)o’ (z).
Consider the differential operator

AS) = 2 3 aylr) 5 a0+ b

D(A) = CZ(R),

the twice continuously differentiable functions with compact support in R
Then it follows from It6’s formula that

£ = fx0) - [ AF(X()ds = / Y F(X.)o(X.)dB, as
is a martingale.
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Definition 8.2 (canonical path-space). (1) By Q := Cra([0,00)) we denote
the space of continuous functions w : [0, 00) — R

(2) For w,w € 2 we let

d(w, D) = f: 1 SuPp<i<n |w(t) —w(t)]
T 2" 1+ SuPg<y<,, [w(t) — @ (F)]

n=1
(3) We set
FXi=0{X,,s€[0,t]} where X,:Cgra([0,00)) = R®:w = w(s)
is the coordinate mapping.

Remark 8.3. (1) [Cra([0,0)),d] is a complete separable metric space, see
[5, Problem 2.4.1].

(2) For 0 <t < u we have F¥ C FX C B(Cga([0,0))), see [5, Problem
2.4.2].

We define local martingales to introduce the concept of a martingale problem:

Definition 8.4 (local martingale). For a stochastic basis (2, F,P, (F¢)i>0)
satisfying the usual conditions, a continuous (F;)¢>o adapted process M =
(My)i>o with My = 0 is a local martingale if there exists a sequence of
stopping times 7, : @ — [0,00] with 13 < 75 < 73 < ... 1T oo such that the
stopped process M™ given by M := M, »; is a martingale for each n > 1.

n

Example 8.5 ([6]). Let o > 1. Then the process which solves
t
X, =1+ / X°dB,
0

is a local martingale but not a martingale.

Definition 8.6 (Cga([0,00))- martingale problem). Given (s,z) € [0,00) X
R?, a solution to the Cra(]0, 00))- martingale problem for the operator A is

a probability measure P on (Cga([0, 00)), B(Cra([0, oo)))P), where

o)

B(Cra([0,00)))
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is the P-completion of B(Cra(]0,00))), satisfying
Plw e :w(t)=2, 0<t<s})=1

such that for each f € C°(R?) the process {M/;t > s} with
t
M = X0~ F06) = [ A )du

is a P-martingale with respect to ((F;")4)iss, where (F");50 is the aug-

mentation under P of (F;¥),50, and (F;*7); = .o, FXF.

Theorem 8.7. Given by a probability measure P on
(Cra([0, 00)), B(CRal0, 00)))
the following assertions are equivalent:

(1) P is a solution to the Cra([0,00))- martingale problem for the operator

(4, D(A)).

(2) There is an extension of the stochastic basis

(CRd([O’ OO))? B(CRd([Ov OO)))Pv P, ((‘EXP)—F)tZO)

such that the process (X)i>o becomes a weak solution to (8.1).

Proof. (2) = (1) follows from Itd’s formula as explained above.

(1) = (2) We will show this direction only for the case d = m, see [5,
Proposition 5.4.6] for the general case. We assume that X is a solution of
the Cra([0, 00))- martingale problem for the operator A.

(a) We observe that for any ¢ = 1,...,d and f(x) := xz; the process {M; :=
Mtf ;t > 0} is a continuous, local martingale. This can be seen as follows:
We define the stopping times for n > max{|z("|, ..., |z@|} by

7 o= inf{t > 0 : max{|X"], .., | X'} = n}.
Then we can find a function g, € C°(R%) such that

(M) = (o).
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By assumption M9 is a continuous martingale and it follows from the op-
tional sampling theorem that the stopped process (M9")™ is also a continuous
martingale. In particular we have

M= X — 20 —/ bi(X,)ds.
0
Since X is continuous and b locally bounded, it holds

/ 1b;(Xs(w))|ds < oo forall weQandt>0.
(b) Also for f(x) := x;z; for fixed 7, j the process M .= M/ defined by
M7 = xPx9 / X0b,(X,) + XDby(X,) + aij(X,)ds

is a continuous, local martingale by the same reasoning as in step (a). We
notice that

t
MM — / ai;(X)ds = M — 2 OM) — 29 M — R,
0

where
t , L ;
Riom [ (X0 = X0 (Xds+ [ (X0 - X0 (X)ds
0 t . 0
+/ bi(Xs)ds/ b;i(X)ds.
0 0
Indeed,

t
MM} — / ai;(X,)ds
0

. ’ ¢ . ' ¢ ¢
= (Xt(z) —z® —/ bi(Xs)ds) (Xt(j) — 20 —/ bj(Xs)ds) —/ a;;(Xs)ds
0 0 0

_ Xt(z)Xt(J)_Xt(z) 20 +/ bj(Xs)ds> _ (x(l) _|_/ bi(Xs)dS)Xt(J)
0

0

—i—(x(j)—i-/otbj(Xs)d )< (Z)+/Otbz-(Xs)ds> —/Otaij(Xs)ds
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—Xg0) — /X D0i(X,) + Xb;(X,)ds

¢ ¢
—i—x(i)x(j)er(j)/ bi(X,)ds + 2t / dS—i-/ bj (Xs)ds/ bi(Xs)ds
0

0

S

A ¢
— W (—xm +x9 —/0 bj(Xs)ds)

J/

t
= MY+ / (XD — XNb, (X)) + (XY — XIbi(X,)ds
0

-~

M
) t t t
—x(j)(—x(i)+X§Z)—/ bi(Xs)dS) +/ bj<Xs)d3/ bi(Xs)dS'
0 0 0

Since X{" — Xt(i) = M! — M} + f b; (X, )du it follows by Itd’s formula that

Re = [0 = xOmxpds+ [0 = X0 (x )
0 0

+ /0 t bi(X,)ds /0 t b;(X,)ds

t

- /t(Mi M))b; (X)ds+/(Mj M)b;(X,)ds

= / / w)dudM! — / / w)dudM? .

Since R; is a continuous, local martingale and a process of bounded variation
at the same time, R; = 0 a.s. for all ¢. Then

t
MM — / ai;(X,)ds
0
is a continuous, local martingale, and

t
(M, MY, = / a;;(X,)ds.
0
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By the Martingale Representation Theorem A.3 we know that there exists an
extension (Q, F,P) of (Q, F,P) carrying a d-dimensional (F;) Brownian mo-
tion B such that (.7:}) satisfies the usual conditions, and measurable, adapted
processes 49,47 = 1,...,d, with

B([epas <o) -1

d t
;=Y [ evan,
j=1"0

such that

We have now
¢ ¢
Xy=z+ / b(X,)ds + / £,dB,.
0 0

It remains to show that there exists an d-dimensional (F;) Brownian motion
B on (Q, F,P) such that P a.s.

t t
/ £,dB, = / o(X,)dB, t€]0,00).
0 0
For this we will use the following lemma.
Lemma 8.8. Let
D :={(£,0);€ and o are d x d matrices with €7 = oo’}

On D there exists a Borel-measurable map R : (D, DAB(RY) — (RY, B(RT))
such that

o =¢(R(E,0), RENRT(Eo)=1; (&0)€D.
We set .
B, = / RT(&,,0(X,))dB,.
0

Then B is a continuous local martingale and
t
(BW, By, = / R(&s, o(X)RY (&5, 0(X,))ds = 6.
0

Lévy’s theorem (see [5, Theorem 3.3.16]) implies that B is a Brownian mo-
tion. [
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Usig Theorem 8.7 one can derive the following statement, which is the second
main result of this section:

Theorem 8.9 (KOLMOGOROV 1965, STROOCK- VARADHAN 1969). Ifb;, 0yj

R? — R are continuoius and bounded and if yu is an initial distribution on
(R4, B(R?)) such that

/ |z[Pu(dx) < oo for some p € (2,00),
]Rd
then there is a weak solution to the SDE

t t
X; =X —l—/ o(Xs)dBs —|—/ b(X,)ds with law(Xy) = p.
0 0
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9 Feller processes

9.1 Feller semi-groups, Feller transition functions and
Feller processes

Definition 9.1.

(1) Co(R?) :={f:R* - R : f continuous, lim;« |f(z)] = 0} is equipped
with the norm £l = | fllcy(et = Subsera | F@)

(2) {T(t);t > 0} is a Feller semi-group if

(a) T(t) : Co(RY) — Cy(RY) is positive for all ¢ > 0, i.e. T(t)f(x) >0
Va if f: R — [0, 00),

(b) {T'(t);t > 0} is a strongly continuous contraction semi-group.

(3) A FELLER semi-group is conservative if for all z € R it holds

sup  |T(1)f(2)] = 1.
FECo(®)[f]=1

Remark 9.2.
(1) [Co(RY), | - [|cpray] is & Banach space.

(2) The subspace C,(RY) of compactly supported functions is dense in
Co(R?).

Definition 9.3. If F is a locally compact HAUSDORFF space, a BOREL
measure on (E, B(E)) is a Radon measure provided that

(1) u(K) < oo for all compact sets K,
(2) p(A) =inf{u(U): U 2 A,U open} for all A € B(E),

(3) uw(B) =sup{u(K): K C B, K compact} for all open set B.

We recall the RIESZ representation theorem (see, for example, [3, Theorem
7.2]): If E' is a locally compact Hausdorff space, L a positive linear functional
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on C.(E) :={F : E — R : continuous function with compact support}, then
there exists a unique Radon measure p on (F, B(E)) such that

LF = /E F(y)u(dy).

We use this theorem to prove the following:

Theorem 9.4. Let {T'(t);t > 0} be a conservative FELLER semi-group on

Co(R%). Then there exists a homogeneous transition function {P, : t > 0},
P : R? x B(RY) — [0,1], such that

Tt)f(x) = » f)Pi(z,dy) forall =€ R and f € Co(RY).

Proof. By the RIESZ representation theorem we get for each z € R? and each
t > 0 a measure Py(z,-) on (R? B(R?)) such that

(T@)f)(x) = Rdf(:‘/)Pt(x:dy)? Vf € Co(RY).

We need to show that this family of measures {P;(z,-); t > 0,z € R?} has
all properties of a transition function.

(a) The map A — Pi(z, A) is a probability measure: Since {P;(z,-) is a
measure, we only need to check whether P;(x,R%) = 1, which will be an
exercise.

(b) For A € B(R?Y) we have to show that
v s Py(x, A) : (R BRY) - (R, B(R)). (9.1)
We let

H :={f:R? = R : B(R?) measurable and bounded,
T(t)f is B(R?) measurable},
A ={[a1,b1] X ... X [an,b,); —00 < ap < b < o0} UD.

By definition we have that o(A) = B(RY). Now we check the assumptions
(1), (2), and (3) of Theorem A.2.
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— The assumption (2), that H is a linear space, is obvious.

— The assumption (3), that H is a monotone class, follows from monotone
convergence.

— 14 € H for all A € A is verified as follows:

First we assume that —oo < ap < by < oco. In this case we approximate 1 4
by fn € C.(R?) as follows: let f,(z1,...2n) := fn1(x1)... fna(zq) with linear,
continuous functions

nk\Tk) = xgak—%oerbk—i—%.

Then f,, | 14. Since T(t)f,, € Co(R?) because f,, € C.(R?) C Cy(RY), we get
T(t)fn: (R, BR?)) — (R, B(R)).
It holds

T(t)fu(x) = g fu(y) Pz, dy) — Pz, A) for n — oo.

Hence Bi(-, A) : (R4, B(R?Y)) — (R, B(R)), which means 14 € H. Further-
more, the case ay = —o0 and by = oo can be done by monotone convergence
again. Applying Theorem A.2, we obtain that H contains all bounded and
B(R?)-measurable functions.

(c) The CHAPMAN-KOLMOGOROV equation for {P; : t > 0} we conclude
from T'(t + s) = T'(t)T(s) for all s,t > 0, which can be again done by ap-
proximating 14, A € A and using dominated convergence and the Monotone
Class Theorem.

(d) T(0) = Id gives that Py(z, ) is the measure g such that

f(@) = (MO = [ f)Pe.dy)

But this implies that Py(x, A) = d,(A), which will be an exercise. O
Definition 9.5.

(1) A transition function associated to a conservative FELLER semi-group
is called a Feller transition function.
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(2) A MARKOV process having a FELLER transition function is called a
Feller process.

In general we have the following implications:
Theorem 9.6.
(1) Every cadlag FELLER process is a strong MARKOV process.

(2) Ewvery strong MARKOV process is a MARKOV process.

Now we characterize FELLER transition functions:

Theorem 9.7. A transition function {P;(z, A)} is FELLER if and only if
(1) fRd fW)Pi(-, dy) € Co(RY) for f € Co(RY) and all t > 0,

(2) limyyg fRd f()Pi(x,dy) = f(x) for all f € Co(R?) and x € R?.

Proof. = is easy to see so that we turn to <= and will show that (1) and
(2) imply that {7'(t);t > 0} with

T(t)f(x) = » f(y) Pz, dy)

is a FELLER semi-group.

(a) We know by Theorem 7.4 that {T'(t); t > 0} is a contraction semi-group.
By (1) we have that T'(t) : Co(R?) — Co(R?). And of course, any T(t) is
positive. So we only have to show that

1%1 IT#)f - f| =0 forall feCyR?).

which is the strong continuity.
Since by (1) we have that T'(t)f € Co(R?) we conclude by (2) that

hng(t +8)f(x) =T(t)f(z) forall zeR%

Hence we have that

— t = T(t)f(x) is right-continuous,
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— x+— T(t)f(x) is continuous.

This implies (similarly to the proof of the fact that right-continuity and
adaptedness implies progressive measurability) that

(t,z) = T(t)f(z) : ([0,00) x RY, B([0,00)) @ B(RY)) — (R, B(R)).
(b) By FuBINI’s theorem we have for any p > 0, that
r— R,f(z) = /000 e PIT(t) f(2)dt - (RY, B(RY)) — (R, B(R)),

where the map f +— R, f is called the resolvent of order p of {T'(t); t > 0}.
It holds

lim pR,f(z) = f(x).
p—r00
Indeed, since {T'(t);¢ > 0} is a contraction semi-group, it holds [[T'(3) f|| <

|| f|| for v > 0. Hence we can use dominated convergence in the following
expression, and it follows from (2) that

pRof0) = [ e = [T e (g) F@)du - () (92)

for p — oco. Moreover, one can show that R, f € Cy(R?), so that
R, : Co(RY) — Co(RY).
For p,q > 0 it holds
(@ —P)RyRef = (PR, /0 T fat
= (¢g—p) /O N e T (s) /0 N e "T(t) fdtds
= (¢—p) /OO e~ (pa)s /OO e 1TIT(t 4 5) fdtds
0 0
= (¢-p) /O o / " T () fduds
= (¢—p) /000 e_q“T(u)f/Ou e~ P03 dsdy,
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— ) | T

- —qu—i-/oo e PT(u) fdu
0
= R,f — Ryf.

(e_(p_q)“ — 1)du

This also implies that

((] - p)Rquf = Rpf - qu = (q - p)Rquf'

Now, let
Im(Rp) = {Rpf§ IS CO<]Rd)}'

If g € Im(R,), then there exists f € Cy(R?) such that g = R, f and we have
9=Rpf =Ref + (@ —=P)RRyf =Ry(f + (¢ = P)R,f) € Im(Ry).

Hence Im(R,) C Im(R,) and by symmetry, Im(R,) = Im(R,). Let E :=
Im(R,). By (9.2) we have

IR Sl < IIfII

(c) We show that E C Cy(R?) is dense. We follow [3, Section 7.3] and notice
that Co(R?) is the closure of C.(R?) with respect to || f|| := sup,cga |f()].

Assume that £ C Cy(R?) is not dense. By the HAHN-BANACH theorem
there is linear and continuous functional L : Co(R?) — R such that Lf =0
if f € FE and positive for an fy € Cy(R?) which is outside the closure of F
and given by

L(f) = f(x)u(dzr) for some signed measure .
Rd

However, by dominated convergence we have

L(fo) = /R ol)utdz) = im | pR,fo(@yu(dr) = o

p—o0

which is a contradiction so that D must be dense.

(d) Now we have
TR f(@) = T0) [ e T fa)du
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= ept/ e PT(s)f(z)ds.
t
Now we fix p = 1 and consider f € E so that f = R,g for some g € Cy(R?).
This implies
IT()R1g — Ry
et/ e *T(s)g(x)du — / e “T(u)g(z)du
t 0

= sup
z€R4

=0 [Tt [ T

= sup
z€R4

<l -+ [Teas| ol o, 1o

So we have shown that {7'(t);t > 0} is strongly continuous on E. Since
D C Cy(R?) is dense, we have also show strong continuity on Cp(R?). O]

9.2 Cadlag modifications of Feller processes

In Definition 6.5 we defined a LEVY process as a stochastic process with
a.s. cadlag paths. In Theorem 6.7 we have shown that a Lévy process (with
cadlag paths) is a strong MARKOV process. By the DANIELL-KOLMOGOROV
Theorem we know that MARKOV processes exist by Theorem 4.3. But this
Theorem does not say anything about path properties.

We will proceed with the definition of a Lévy process in law (and leave it as
an exercise to show that such a process is a FELLER process). We will prove
then that any FELLER process has a cadlag modification.

Definition 9.8 (LEVY process in law). A stochastic process X = {X;;t > 0}
on (Q, F,P) with X; : (Q, F) — (RY, B(R?)) is a LEVY process in law if

(1) X is continuous in probability, i.e. for all ¢ > 0 and £ > 0 one has

lim P(|.X, — Xi| > ¢) =0,

(2) P(Xo=0) =1,
(3) for all 0 < s <t one has X; — X A X,
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(4) for all 0 < s <t one has X; — X, is independent of FX.
Theorem 9.9. A Lévy process in law is a FELLER process.
We shall prove this as an exercise.

Theorem 9.10. Let X be an {F;;t > 0}-submartingale. Then the following
holds:

(1) For any countable dense subset D C [0,00) there is a Q* € F with
P(Q*) =1 such that for every w € Q* one has

Xt (w) == sﬁtl,?ElD Xs(w) and X; (w):= 5%1;161[) Xs(w)

exists for allt >0 (t > 0, respectively).
(2) {Xig;t >0} is an {Fip;t > 0} submartingale with a.s. cadlag paths.

(3) Assume that {Fy;t > 0} satisfies the usual conditions. Then X has a
cadlag modification if and only if t — EX; is right-continuous.

The proof can be found in [5, Proposition 1.3.14 and Theorem 1.3.13].
Lemma 9.11. Let X be a FELLER process. For any p > 0 and any
f € Co(R%[0,00)) := {f € Co(R") : f > 0}

the process
{e™ R, f(X1):t > 0}

is a supermartingale w.r.t. the natural filtration {FX;t > 0} and for any
initial distribution P,(X, € B) = v(B) for B € B(R?).

Proof. Recall that for p > 0 we defined in the proof of Theorem 9.7 the
resolvent

FrsRyf = / T fdt, f e Co(RY).
0
(a) We show that R, : Cp(R?) — Cy(R?): Since
Rl = | [ el < [T e
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and || 7(t) f]| < |If]], we may use dominated convergence, and since T'(t)f €
Co(R?) it holds

lim R,f(z,) = lim e T (t) f () dt
Ty —T TnT J
_ / e lim T(t) f()dt
0 Ty —T
= Rpf(x).

In the same way we verify that limj,,|eo Rpf(2n) = 0.

(b) For x € RY, f € Cy(R%[0,00)), and h > 0 one has
e P"T(W)R,f(x) = e P"T(h) /0 h e PT(t) f () dt
_ /0 T e (4 b))t
_ /h () f(2)du

< /000 e P (u) f(x)du
= R,f(x).

(c) The process {e P'R,f(X;);t > 0} is a supermartingale: Let 0 < s < t.
Since X is a FELLER process, it has a transition function, and by Defini-
tion 3.1 we may write

B e PRy FXIF] = e [ Ryf()Pe(Xidy)
T R X).
From step (b) we conclude
e P'T(t — 5)R,f(Xs) < e PRy f(X,).
[

Lemma 9.12. Let Y} and Yy be random variables on (2, F,IP) with values
in R%. Then the following holds:

Yi=Y, as. << Efi(V1)fe(Ys) =Efi(Y1)f2(Y1)
for all f1, fo € Co(RY)
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Proof. The direction =— is evident. We will use the Monotone Class
Theorem A.2 to verify <—=. Let

H:={h:R*xR*-R: hbounded and measurable,
Eh(Y1,Y2) = Eh(Y1, Y1)}

As before we can approximate L, p]x..x[agabsq] fOT —00 < @; < by < 00
by continuous functions with values in [0, 1]. Since by the Monotone Class
Theorem the equality

Eh(Yi,Ya) = ER(Y:, V1)
holds for all 4 : R? x R? — R which are bounded and measurable, we choose
h(l’, y) = ]1{(x,y)€Rd><Rd:x;£y} and infer

P(Y, #Y,) =P(Y1 #Y1) =0. O

Theorem 9.13. If X is a FELLER process such that there is a dense set
D C [0,00) such that

]P( sup |Xt|<oo>:1 forall T >0,

t€[0,T)ND
then it has a cadlag modification.

Sketch of the proof. (a) One-point compactification (ALEXANDROFF exten-
sion) of R Let @ be a point not in R? and denote by O the open sets of R%.
We define a topology O on (R%)? :=R?U {9} as
O :={AcC (RH?: either A € O
or € Aand A°is a compact subset of R%}.

Then ((R%)?, ') is a compact HAUSDORFF space. Any function f € Cy(R?)
will be extended to f € Co((R9)?) by f(9) := 0.

(b) Let ()22, C Co(R%[0,00)) be a sequence which separates the points,
i.e. for any z,y € (R%)? with x # y there exists n € N such that f,(x) #
fn(y), where we set f,,(0) := 0. Such a sequence exists, which we will not
prove here. We want to show that then also

={R,fn:p,n € N}
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is a countable set (which is clear) and separates the points: in fact, it holds
for any p > 0 that

u

w0 =p [T = [T (*

) f(a)du.

This implies

sup [pR,f(z) — f(z)] = sup

E(R)? e /0 e (T (%) f) (z) — f(z))du
s O

by dominated convergence since ||T° (%) f—fll <2||f|| and the strong con-

du — 0, p— o0,

p>f—f|| — 0 for p — oo. Then, if
x # y there exists a function f, with f,(z) # f.(y) and can find a p € N
such that R, f.(x) # R, fn(y).

(c) We fix a set D C [0,00) which is countable and dense. We show that
there exists * € F with P(Q*) = 1 and such that for all w € Q* and for all
n,p € N one has

tinuity of the semi-group implies ||T°

[0,00) 2t = R, fu(Xi(w)) (9.3)
has right and left (for ¢ > 0) limits along D. From Lemma 9.11 we know that
{e 'R, fu(Xs);t >0} isan {F;t >0} supermartingale.

By Theorem 9.10 (1) we have for any p,n € Naset (2, ) € F with P(Q2; ) =1
such that for all w € €, and for all £ > 0 (¢ > 0, respectively) the limits

i PR (X)) (Jim R (X))

sdt,seD sTt,seD

exist. Since s — €P® is continuous we get assertion (9.3) by setting

Q=) (%,

n=1p=1
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(d) We show that for all w € Q* the map ¢t — X;(w) has right limits along
D: If the limit lim,j; scp X,(w) does not exist, then there are z,y € (R%)?
and sequences (S,)n, (Sm)m € D with s, | t, ., | t, such that

lim X, (w)=2 and lim X; (w)=y.

n—oo m—r0o0
But there are p, k € N such that R, fx(x) # R, fx(y) which is a contradiction
to the fact that s — R, fi(Xs(w)) has right limits along D.

(e) Construction of a right-continuous modification: For w € Q* we
set for all £ >0

Xi(w) == s¢1ti£relD Xs(w),

and for w & Q* we set X,(w) := x, where z € R? is arbitrary and fixed. Then

we have that .
Xt = Xt a.s.

where we argue as follows: Since for f, g € Cy(R?) we have

Ef(X)g(X:) = lim Ef(X;)g(X;)

slt,seD

= lim EE[f(X,)g(X,)|F]

slt,seD

= lim Ef(X)E[g(X,)|FX]

slt,seD

= lim Ef(X;)7T(s —t)g(Xy)

slt,seD

= Ef(Xy)g(Xy),

where we used the Markov property for the second last equation while the
last equation follows from the fact that ||T'(s —t)h — h|| — t for s | 0. By
Lemma 9.12 we conclude X; = X; a.s.

It is an exercise to verify that ¢ — X, is right-continuous for all w € Q.

(f) Cadlag modifications: We use [5, Theorem 1.3.8(v)] which states that
almost every path of a right-continuous submartingale has left limits for any
t € (0,00). Since {—e "R, f,(X;);t > 0} is a right-continuous submartin-
gale, we can proceed as above (using the fact that S separates the points) so
show that ¢ — X (w) is cadlag for almost all w € Q. ]
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Remark 9.14. For a LEVY process in law it can be shown (see [4, Theorem
I1.2.68]) that the assumption

P(sup{|X;| :t € [0,T]N D} <o0) =1

is satisfied for all T" > 0.
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A Appendix

Lemma A.1 (Factorization Lemma). Assume Q # 0, (E, &) be a measurable
space, maps g : L — E and F : Q - R, and o(g) = {9 '(B) : B€ £}. Then
the following assertions are equivalent:

(1) The map F is (2,0(g)) — (R, B(R)) is measurable.
(2) There exists a measurable h : (E,E) — (R, B(R)) such that F' = hog.
For the proof see [1, p. 62].

Theorem A.2 (Monotone Class Theorem for functions). Let A C 22 be a
m-system that contains Q and assume H C {f; f: Q — R} such that

(1) 14 €H for Ae A,

(2) H is a linear space,

(3) If (fn)22y € H such that 0 < f, 1 f and f is bounded, then f € H.
Then H contains all bounded functions that are o(A) measurable.

For the proof see [4].

Theorem A.3. Suppose a stochastic basis (Q, F, P, (F)i>0) salisfying the
usual assumptions and continuous, local martingales (M})i>0, . .., (M)¢>o-
If for 1 < i,j < d and all w € Q the processes (M', M7),(w) are abso-
lutely continuous in t, then there exists an extension (Q, F,P,(F)o)) of
(Q, F, P, (F)i=0) satisfying the usual conditions and an d-dimensional (F)eso-

Brownian motion (B;)i>o and progressively measurable processes (X;”)i>o
i,7=1,...,d with

¢
IP(/ (X;;J)2ds<oo) =1, 1<i,j<d;0<t< o0,

0

such that P-a.s.

d t
M;:Z/Oxgﬂng, 1<i<d0<t<oo,
7=1

d t
(M, M), = Z/O XHXFds 1<4,j<d;0<t<o0.
k=1
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For the proof see [5, Theorem 3.4.2].

A continuous adapted process is an Ito process provided that

X(t)==x +/0 p(s)ds +/0 o(s)dB(s), t>0,

where p and o are progressively measurable and satisfy

t t
/ p(s)ds < oo, / o(s)’ds < ocoa.s. forall t>0.
0 0

Theorem A.4 (Ito’s formula). If B(t) = (Bi(t), ..., B4(t)) is a d-dimensional
(F:) Brownian motion and

Xlt) =i+ [ Juls)ds + Z / o (5)B,(5),

are Ité processes, then for any C? function f : R? — R we have

d t (9
FX(t), . Xq(t) = flar,mza) + > /0 o F(X1(s), . Xa(s))dX,(s)
%;; /0 aafaxj FX1(s), . Xa())d(X;, X,

and d(X;, X;)s = 2221 Oik0jrds.
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