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1 Introduction

Why should one study Markov processes? The class of Markov processes
contains the

• Brownian motion,

• Lévy process,

• Feller processes,

where these classes are contained in each other, the class of Brownian motions
is the smallest class. Moreover,

• solutions to certain SDEs are Markov processes.

Looking from another perspective we will see useful relations between Markov
processes and

• martingale problems,

• diffusions,

• second order differential and integral operators.

The Markov processes are named after the Russian mathematician Andrey
Andreyevich Markov (14 June 1856 – 20 July 1922).

2



2 Definition of a Markov process

For the following we let

(1) (Ω,F ,P) be a complete probability space,

(2) (E, E) be a measurable space,

(3) T ⊆ R ∪ {∞} ∪ {−∞} with T 6= ∅.

Let us fix some notation:

• We call X = {Xt; t ∈ T} a stochastic process if

Xt : (Ω,F)→ (E, E) for all t ∈ T.

• The map t 7→ Xt(ω) is called a path of X.

• We say that F = {Ft; t ∈ T} is a filtration if Ft ⊆ F is a sub-σ-algebra
for any t ∈ T and it holds Fs ⊆ Ft for s ≤ t.

• The process X is adapted to F if Xt is Ft measurable for all t ∈ T.

• The natural filtration FX = {FXt ; t ∈ T} of X = {Xt; t ∈ T} is given
by FXt := σ(Xs; s ≤ t, s ∈ T).

Obviously, X is always adapted to its natural filtration FX = {FXt ; t ∈ T}.
Now we turn to our main definition:

Definition 2.1 (Markov process). The stochastic process X is called a
Markov process w.r.t. F if and only if

(1) X is adapted to F,

(2) for all t ∈ T, A ∈ Ft, and B ∈ σ(Xs; s ≥ t) one has

P(A ∩B|Xt) = P(A|Xt)P(B|Xt) a.s.,

i.e. the σ-algebras Ft and σ(Xs; s ≥ t, s ∈ T) are conditionally indepen-
dent given Xt.
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Remark 2.2.

(1) We recall that we define the conditional probability using conditional
expectation as

P(C|Xt) := P(C|σ(Xt)) = E[1C |σ(Xt)].

(2) If X is a Markov process w.r.t. F, then X is a Markov process w.r.t. FX .

(3) If X is a Markov process w.r.t. its natural filtration FX , then the Markov
property is preserved if one reverses the order in T.

The following result is our first main result:

Theorem 2.3. Let X be F-adapted. Then the following conditions are equiv-
alent:

(1) X is a Markov process w.r.t. F.

(2) For each t ∈ T and each bounded σ(Xs; s ≥ t, s ∈ T)-measurable Y :
Ω→ R one has

E[Y |Ft] = E[Y |Xt] a.s. (2.1)

(3) If s, t ∈ T and t ≤ s, then

E[f(Xs)|Ft] = E[f(Xs)|Xt] a.s.

for all bounded f : (E, E)→ (R,B(R)).

Proof. (1) =⇒ (2) We can decompose Y = Y + − Y − into the positive and
negative part, and each part can be approximated from below point-wise by
σ(Xs; s ≥ t, s ∈ T)-measurable simple functions. Therefore it suffices to
show (2.1) for Y = 1B where B ∈ σ(Xs; s ≥ t, s ∈ T). In fact, for A ∈ Ft
we have, a.s.,

E(E[Y |Ft]1A) = E1A1B
= P(A ∩B)

= EP(A ∩B|Xt)

= EP(A|Xt)P(B|Xt)
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= EE[1A|Xt]P(B|Xt)

= E1AP(B|Xt)

= E(E[Y |Xt]1A)

which implies (2).

(2) =⇒ (1) If A ∈ Ft and B ∈ σ(Xs; s ≥ t, s ∈ T), then, a.s.,

P(A ∩B|Xt) = E[1A∩B|Xt]

= E[E[1A∩B|Ft]|Xt]

= E[1AE[1B|Ft]|Xt]

= E[1A|Xt]E[1B|Xt],

which implies (1).
(2) =⇒ (3) is trivial. (3) =⇒ (2) To apply the Monotone Class Theorem
for functions we let

H := {Y ; Y is bounded and σ(Xs; s ≥ t, s ∈ T)−measurable

such that (2.1) holds}.

Then H

– is a vector space,

– contains the constants,

– is closed under bounded and monotone limits.

(a) For bounded fi : (E, E) → (R,B(R)) and t ≤ s1 < ... < sn, n ≥ 1, we
show that

Y = Πn
i=1fi(Xsi) ∈ H. (2.2)

We show (2.2) by induction over n. The case n = 1 is assertion (3).

n > 1: Assume that the statement is true for n− 1. Then we get, a.s.,

E[Y |Ft] = E[E[Y |Fsn−1 ]|Ft]
= E[Πn−1

i=1 fi(Xsi)E[fn(Xsn)|Fsn−1 ]|Ft]
= E[Πn−1

i=1 fi(Xsi)E[fn(Xsn)|Xsn−1 ]|Ft].

By the Factorization Lemma A.1 there exists a h : (E, E)→ (R,B(R)) such
that E[fn(Xsn)|Xsn−1 ] = h(Xsn−1) a.s. By the induction hypothesis we get,
a.s.,

E[Πn−1
i=1 fi(Xsi)h(Xsn−1)|Ft] = E[Πn−1

i=1 fi(Xsi)h(Xsn−1)|Xt].
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And finally, by the tower property, since σ(Xt) ⊆ Fsn−1 , a.s.,

E[Πn−1
i=1 fi(Xsi)h(Xsn−1)|Xt] = E[Πn−1

i=1 fi(Xsi)E[fn(Xsn)|Fsn−1 ]|Xt]

= E[E[Πn−1
i=1 fi(Xsi)fn(Xsn)|Fsn−1 ]|Xt]

= E[Πn
i=1fi(Xsi)|Xt].

(b) Now we apply the Monotone Class Theorem A.2. From step (a) we know
that 1A ∈ H for any A ∈ A with

A = {{ω ∈ Ω;Xs1(ω) ∈ I1, ..., Xsn(ω) ∈ In} : Ik ∈ B(R), sk ∈ T, sk ≥ t, n ≥ 1}

where σ(A) = σ(Xs; s ≥ t, s ∈ T). Therefore

{Y ;Y is bounded and σ(Xs; s ≥ t, s ∈ T)−measurable} ⊆ H.
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3 Transition functions

In this section we assume that T = [0,∞).

Definition 3.1 (Markov transition function).

(1) A family (Pt,s)0≤t≤s<∞ is called Markov transition function on (E, E)
if all Ps,t : E × E → [0, 1] satisfy that

(a) A 7→ Pt,s(x,A) is a probability measure on (E, E) for each (t, s, x),

(b) x 7→ Pt,s(x,A) is E-measurable for each (t, s, A),

(c) Pt,t(x,A) = δx(A),

(d) if 0 ≤ t < s < u, then the Chapman-Kolmogorov equation

Pt,u(x,A) =

∫
E

Ps,u(y, A)Pt,s(x, dy)

holds for all x ∈ E and A ∈ E .

(2) The Markov transition function (Pt,s)s≤t is homogeneous if and only if
Pt,s = P0,s−t for all 0 ≤ t ≤ s <∞.

(3) We say that a Markov process X w.r.t. F is associated to the Markov
transition function (Pt,s)0≤t≤s<∞ provided that

E[f(Xs)|Ft] =

∫
E

f(y)Pt,s(Xt, dy) a.s. (3.1)

for all 0 ≤ t ≤ s <∞ and all bounded f : (E, E)→ (R,B(R)).

(4) Let µ be a probability measure on (E, E) such that µ(A) = P(X0 ∈ A).
Then µ is called initial distribution of X.

Remark 3.2.

(1) There exist Markov processes which do not possess transition functions
(see [2, Remark 1.11, page 446]).

(2) Using monotone convergence one can check that the map

x 7→
∫
E

f(y)Pt,s(x, dy)

is (E ,B(R))-measurable for a bounded f : (E, E)→ (R,B(R)).
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Proposition 3.3. A Markov process w.r.t. F having (Pt,s)t≤s as transition
function satisfies for 0 ≤ t1 < t2 < ... < tn and bounded f : (En, E⊗n) →
(R,B(R)) the relation

Ef(Xt1 , ..., Xtn) =∫
E

µ(dx0)

∫
E

P0,t1(x0, dx1)...

∫
E

Ptn−1,tn(xn−1, dxn)f(x1, ..., xn).
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4 Existence of Markov processes

Given a distribution µ and Markov transition functions {Pt,s(x,A)}, does
there always exist a Markov process with initial distribution µ and transi-
tion function {Pt,s(x,A)}?

Definition 4.1.

(1) For a measurable space (E, E) and a non-empty index set T we let

Ω := ET, F := ET := σ(Xt; t ∈ T),

where Xt : Ω→ E is the coordinate map

Xt(ω) = ω(t) where ω = (ω(t))t∈T ∈ Ω.

(2) Let Fin(T) := {J ⊆ T; 0 < |J| < ∞} where in J all elements are pair-
wise distinct.

(3) For J = {t1, ..., tn} ∈ Fin(T) we define the projections πJ : Ω→ EJ by

πJ(ω) := (ω(t1), ..., ω(tn)) = (Xt1 , ..., Xtn) ∈ EJ .

(4) A set {PJ : PJ is a probability measure on (EJ , EJ), J ∈ Fin(T)} is
called a set of finite-dimensional distributions.

(5) A set of of finite-dimensional distributions {PJ : J ∈ Fin(T)} is called
Kolmogorov consistent (or compatible or projective) provided that the
following holds.

(a) Symmetry: One has

Ptσ(1),...,tσ(n)(Aσ(1) × ...× Aσ(n)) = Pt1,...,tn(A1 × ...× An)

for any permutation σ : {1, ..., n} → {1, ..., n}.
(b) Projection property: One has

PJ = PK ◦ (πJ |EK )−1

for all J ⊆ K with J,K ∈ Fin(T).
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Theorem 4.2 (Kolmogorov’s extension theorem, Daniell-Kolmogorov
Theorem). Let E be a complete, separable metric space and E = B(E). Let
T be a non-empty set. Suppose that for each J ∈ Fin(T) there exists a
probability measure PJ on (EJ , EJ) and that

{PJ ; J ∈ Fin(T)}

is Kolmogorov consistent. Then there exists a unique probability measure P
on (ET, ET) such that

PJ = P ◦ π−1
J on (EJ , EJ).

For the proof see, for example [5, Theorem 2.2 in Chapter 2]. The main
result of this section is the following existence theorem that will be deduced
from Theorem 4.2.

Theorem 4.3 (Existence of Markov processes). Let E = Rd, E = B(Rd),
and T ⊆ [0,∞). Assume that µ is a probability measure on (E, E) and that

{Pt,s(x,A); 0 ≤ t ≤ s <∞, x ∈ E, A ∈ E}

is a Markov transition function (Definition 3.1). If J = {t1, ..., tn} ⊆ T
and {s1, ..., sn} = {t1, ..., tn} with s1 < ... < sn, i.e. the tk

′s are re-arranged
according to their size, we define

PJ(A1 × ...× An) :=

∫
E

...

∫
E

1A1×...×An(x1, .., xn)µ(dx0)P0,s1(x0, dx1)

...Psn−1,sn(xn−1, dxn). (4.1)

Then there exists a probability measure P on (ET, ET) such that the coordi-
nate mappings, i.e.

Xt : ET → Rd : ω 7→ ω(t),

form a Markov process w.r.t. FX with the Markov transition function
(Pt,s)0≤t≤s<∞.

Remark 4.4. Using the monotone convergence one can show that (4.1)
implies that for any bounded f : (En, En)→ (R,B(R)) it holds

Ef(Xs1 , ..., Xsn) =

∫
E

...

∫
E

f(x1, .., xn)µ(dx0)P0,s1(x0, dx1)

...Psn−1,sn(xn−1, dxn). (4.2)
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Proof of Theorem 4.3. (a) By construction, PJ is a probability measure on
(EJ , EJ). We show that the set {PJ ; J ∈ Fin(T)} is Kolmogorov con-
sistent. The symmetry follows by construction, we only need to verify the
projection property. Consider K ⊆ J with

K = {si1 < · · · < sik} ⊆ J = {s1 < ... < sn}

and 1 ≤ k < n, and

PJ,K : EJ → EK : (x1, ..., xn) 7→ (xi1 , ..xik).

We have P−1
J,K(B1 × ...× Bk) = A1 × ...× An with Ai ∈ {B1, ..., Bk, E}. Let

us assume, for example, that k = n− 1 and

A1 × ...× An = B1 × ...×Bn−2 × E ×Bn.

Then

PJ(A1 × ...× An)

=

∫
E

...

∫
E

1B1×...×Bn−2×E×Bn(x1, ..., xn)

µ(dx0)P0,s1(x0, dx1)...Psn−1,sn(xn−1, dxn)

= P{s1,...,sn−2,sn}(B1 × ...×Bn−2 ×Bn)

since, by the Chapman-Kolmogorov equation, we have∫
E

Psn−2,sn−1(xn−2, dxn−1)Psn−1,sn(xn−1, dxn) = Psn−2,sn(xn−2, dxn).

(b) Now we check that the process is a Markov process. According to
Definition 2.1 we need to show that

P(A ∩B|Xt) = P(A|Xt)P(B|Xt) a.s. (4.3)

for A ∈ FXt = σ(Xu;u ≤ t) and B ∈ σ(Xs; s ≥ t). We only prove the special
case

P(Xu ∈ B1, Xs ∈ B3, |Xt) = P(Xu ∈ B1|Xt)P(Xs ∈ B3|Xt) a.s.

for u < t < s and Bi ∈ E . For this we show that it holds

E [1B1(Xu)1B3(Xs)1B2(Xt)] = E [P(Xu ∈ B1|Xt)P(Xs ∈ B3|Xt)1B2(Xt)] .
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Indeed, by (4.1),

E1B1(Xu)1B3(Xs)1B2(Xt) =

∫
E

∫
E

∫
E

∫
E

1B1×B2×B3(x1, x2, x3)

µ(dx0)P0,u(x0, dx1)Pu,t(x1, dx2)Pt,s(x2, dx3).

Using the tower property we get

E [P(Xs ∈ B3|Xt)P(Xu ∈ B1|Xt)1B2(Xt)]

= E [(E[1B3(Xs)|Xt])1B1(Xu)1B2(Xt)]

= E [Pt,s(Xt, B3)1B1(Xu)1B2(Xt)] .

To see that E[1B3(Xs)|Xt]) = Pt,s(Xt, B3) we write

E1B3(Xs)1B(Xt) =

∫
E

∫
E

∫
E

1B3(x2)1B(x1)µ(dx0)P0,t(x0, dx1)Pt,s(x1, dx2)

=

∫
E

∫
E

∫
E

1B(x1)µ(dx0)P0,t(x0, dx1)Pt,s(x1, B3)

= EPt,s(Xt, B3)1B(Xt).

where we used (4.2) for f(x1) = 1B(x1)Pt,s(x1, B3). Again by (4.2), now for
f(Xu, Xt) := Pt,s(Xt, B3)1B1(Xu)1B2(Xt), we get that

EPt,s(Xt, B3)1B1(Xu)1B2(Xt)

=

∫
E

∫
E

∫
E

Pt,s(x2, B3)1B1×B2(x1, x2)µ(dx0)P0,u(x0, dx1)Pu,t(x1, dx2)

=

∫
E

∫
E

∫
E

∫
E

1B1×B2×B3(x1, x2, x3)

µ(dx0)P0,u(x0, dx1)Pu,t(x1, dx2)Pt,s(x2, dx3).
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5 A reminder on stopping and optional times

For (Ω,F) we assume a filtration F = {Ft; t ∈ T} where T = [0,∞) ∪ {∞}
and F = F∞ = σ

(⋃
s∈[0,∞)Fs

)
. Moreover, we set

Ft+ :=
⋂
s>t

Fs, t ∈ [0,∞), F∞+ := F∞,

Ft− := σ

( ⋃
0≤s<t

Fs

)
, t ∈ (0,∞], F0− := F0.

Therefore, for all t ∈ T one has that

Ft− ⊆ Ft ⊆ Ft+.

Definition 5.1.

(1) A map τ : Ω→ T is called a stopping time w.r.t. F provided that

{τ ≤ t} ∈ Ft for all t ∈ [0,∞).

(2) The map τ : Ω→ T is called an optional time w.r.t F provided that

{τ < t} ∈ Ft for all t ∈ [0,∞).

(3) For a stopping time τ : Ω→ T w.r.t. F we define

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ∈ [0,∞)}.

(4) For an optional time τ : Ω→ T w.r.t. F we define

Fτ+ := {A ∈ F : A ∩ {τ < t} ∈ Ft ∀t ∈ [0,∞)}.

Remark 5.2.

(1) For a stopping time we have that {τ =∞} = {τ <∞}c ∈ F∞ because

{τ <∞} =
⋃
n∈N

{τ ≤ n} ∈ F∞.
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(2) For an optional time we have that {τ <∞} ∈ F∞.

(3) Fτ and Fτ+ are σ algebras.

Definition 5.3. The filtration {Ft; t ∈ T} is called right-continuous if Ft =
Ft+ for all t ∈ [0,∞).

Lemma 5.4. If τ and σ are stopping times w.r.t. F, then

(1) τ + σ,

(2) τ ∧ σ = min{τ, σ},

(3) τ ∨ σ = max{τ, σ},

are stopping times w.r.t. F.

Lemma 5.5.

(1) For t0 ∈ T the map τ(ω) ≡ t0 for all ω ∈ Ω is a stopping time and one
has Ft0 = Fτ .

(2) Every stopping time is an optional time.

(3) If {Ft; t ∈ T} is right-continuous, then every optional time is a stopping
time.

(4) The map τ is an {Ft; t ∈ T} optional time if and only if τ is an {Ft+; t ∈
T} stopping time.

Proof. (1) follows from

{τ ≤ t} =

{
Ω; t0 ≤ t
∅; t0 > t

.

(2) Let τ be a stopping time. Then

{τ < t} =
∞⋃
n=1

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸
∈F

t− 1
n
⊆Ft

∈ Ft.
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(3) We have that {τ ≤ t} =
⋂∞
n=1

{
τ < t+

1

n

}
︸ ︷︷ ︸

∈F
t+ 1
n

. Because of

M⋂
n=1

{
τ < t+

1

n

}
=

{
τ < t+

1

M

}
∈ Ft+ 1

M

we get that {τ ≤ t} ∈ Ft+ 1
M
∀M ∈ N∗ and hence {τ ≤ t} ∈ Ft+ = Ft since

{Ft; t ∈ T} is right-continuous.

(4) =⇒ If τ is an {Ft; t ∈ T} optional time, then {τ < t} ∈ Ft implies
{τ < t} ∈ Ft+ because Ft ⊆

⋂
s>tFs = Ft+. This means that τ is an

{Ft+; t ∈ T} optional time. Since {Ft+; t ∈ T} is right-continuous, we
conclude from (3) that τ is an {Ft+; t ∈ T} stopping time.

⇐= If τ is an {Ft+; t ∈ T} stopping time, then

{τ < t} =
∞⋃
n=1

{τ ≤ t− 1

n
}︸ ︷︷ ︸

∈F(t−1/n)+=
⋂
s>t−1/n Fs⊆Ft

∈ Ft.

Lemma 5.6. For stopping times σ, τ, τ1, τ2, ... w.r.t. F the following holds:

(1) τ is Fτ -measurable.

(2) If τ ≤ σ, then Fτ ⊆ Fσ.

(3) Fτ+ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft+ ∀t ∈ [0,∞)}.

(4) The map supn τn : Ω→ T is a stopping time w.r.t. F.
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6 Strong Markov processes

6.1 Strong Markov property

Definition 6.1 (progressively measurable). Let E be a complete, separable
metric space and E = B(E).

(1) A processX = {Xt; t ∈ [0,∞)}, withXt : Ω→ E is called F-progressively
measurable if for all t ≥ 0 it holds

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (E, E).

(2) We will say that a stochastic processX is right-continuous (left-continuous),
if for all ω ∈ Ω the functions

[0,∞) 3 t 7→ Xt(ω) ∈ E

are right-continuous (left-continuous).

We will start with a technical lemma:

Lemma 6.2.

(1) If X is F-progressively measurable, then X is F-adapted,

(2) If X is F-adapted and right-continuous (or left-continuous), then X is
F-progressively measurable.

(3) If τ is an F-stopping time and X is F- progressively measurable, then
Xτ : {τ <∞} → E is Fτ |{τ<∞}-measurable.

(4) For an F-stopping time τ and a F- progressively measurable process X
the stopped process Xτ given by

Xτ
t (ω) := Xt∧τ (ω)

is F- progressively measurable,

(5) If τ is an F-optional time and X is F- progressively measurable, then
Xτ : {τ <∞} → E is Fτ+|{τ<∞}-measurable.
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Proof. The assertions (1), (2) and (5) are exercises.

(3) For s ∈ [0,∞) it holds

{τ ∧ t ≤ s} = {τ ≤ s} ∪ {t ≤ s} =

{
Ω, s ≥ t
{τ ≤ s}, s < t

∈ Ft.

Hence τ ∧ t is Ft-measurable. Next we observe that h(ω) := (τ(ω) ∧ t, ω) is
measurable as map

(Ω,Ft)→ ([0, t]× Ω,B([0, t])⊗Ft).

Also, since X is F- progressively measurable, we have that

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (E, E) (6.1)

and therefore

X ◦ h : (Ω,Ft)→ (E, E). (6.2)

It holds that (3) is equivalent to

{Xτ ∈ B} ∩ {τ ≤ t} ∈ Ft for all t ∈ [0,∞).

Indeed this is true as

{Xτ ∈ B} ∩ {τ ≤ t} = {Xτ∧t ∈ B} ∩ {τ ≤ t}

which is in Ft because of (6.2) and since τ is a stopping time.

(4) It holds that the map H(s, ω) := (τ(ω) ∧ s, ω) is measurable as map

([0, t]× Ω,B([0, t])⊗Ft)→ ([0, t]× Ω,B([0, t])⊗Ft)

for t ≥ 0 since, for r ∈ [0, t],

{(s, ω) ∈ [0, t]× Ω : τ(ω) ∧ s ∈ [0, r]} = ([0, r]× Ω) ∪ ((r, t]× {τ ≤ r}).

Because of (6.1) we have for the composition (X ◦H)(s, ω) := Xτ(ω)∧s(ω) =
Xτ
s (ω) the measurability

X ◦H : ([0, t]× Ω,B([0, t])⊗Ft)→ (E, E).
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Definition 6.3 (strong Markov process). Assume that {Xt : t ≥ 0} is an
F-progressively measurable Markov process with homogeneous transition
function (Pt)t≥0 in the sense that Pt = P0,t. The process X is called a strong
Markov process if

P(Xτ+t ∈ A|Fτ+) = Pt(Xτ , A) a.s.

for all t ≥ 0, A ∈ E and all F-optional times τ : Ω→ [0,∞).

One can formulate the strong Markov property without transition functions:

Proposition 6.4. Let X be an F-progressively measurable process. Then,
provided X is a Markov process with transition function, the following asser-
tions are equivalent to Definition 6.3:

(1) For all For all t ∈ T and A ∈ E one has

P(Xτ+t ∈ A|Fτ+) = P(Xτ+t ∈ A|Xτ ) a.s.

for all F-optional times τ : Ω→ [0,∞).

(2) For all t1, ..., tn ∈ T and A1, ..., An ∈ E one has

P(Xτ+t1 ∈ A1, ..., Xτ+tn ∈ An|Fτ+) = P(Xτ+t1 ∈ A1, ..., Xτ+tn ∈ An|Xτ ) a.s.

for all F-optional times τ : Ω→ [0,∞).

6.2 Lévy processes are strong Markov processes

Definition 6.5. A process X = {Xt : t ≥ 0} is called Lévy process if the
following holds:

(1) X0 ≡ 0.

(2) The paths of X are càdlàg (i.e. they are right-continuous and have left
limits).

(3) For all 0 ≤ s ≤ t <∞ one has Xt −Xs
d
= Xt−s.

(4) For all 0 ≤ s ≤ t <∞ one has that Xt −Xs is independent of FXs .

The strong Markov property of a Lévy process will be obtained as follows:

18



Theorem 6.6. Let X be a Lévy process. Assume that τ : Ω→ [0,∞) is an
FX-optional time. Define the process X̃ = {X̃t; t ≥ 0} by

X̃t = (Xt+τ −Xτ ), t ≥ 0.

Then the process X̃ is independent of FXτ+ and X̃ has the same distribution
as X.

Proof. The finite dimensional distributions determine the law of a stochastic
process. Hence it is sufficient to show for arbitrary 0 = t0 < t1 < ... < tm <
∞ that

X̃tm − X̃tm−1 , ..., X̃t1 − X̃t0 and Fτ+ are independent.

Let G ∈ Fτ+. We define a sequence of random times

τ (n) =
∞∑
k=1

k

2n
1{ k−1

2n
≤τ< k

2n
}.

We have that τ (n) <∞. Then for θ1, ..., θm ∈ R, using tower property,

E exp

{
i
m∑
l=1

θl(Xτ (n)+tl
−Xτ (n)+tl−1

)

}
1G

=
∞∑
k=1

E exp

{
i
m∑
l=1

θl(Xτ (n)+tl
−Xτ (n)+tl−1

)

}
1G∩{τ (n)= k

2n
}

=
∞∑
k=1

E exp

{
i
m∑
l=1

θl(X k
2n

+tl
−X k

2n
+tl−1

)

}
1G∩{τ (n)= k

2n
}

=
∞∑
k=1

E1G∩{τ (n)= k
2n
}E
[

exp

{
i
m∑
l=1

θl(X k
2n

+tl
−X k

2n
+tl−1

)

}∣∣∣∣F k
2n

]
=

∞∑
k=1

E1G∩{τ (n)= k
2n
}E exp

{
i
m∑
l=1

θl(X k
2n

+tl
−X k

2n
+tl−1

)

}
=

∞∑
k=1

E1G∩{τ (n)= k
2n
}E exp

{
i
m∑
l=1

θl(Xtl −Xtl−1
)

}
= P(G)E exp

{
i
m∑
l=1

θl(Xtl −Xtl−1
)

}
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since G ∩ {τ (n) = k
2n
} = G ∩

{
k−1
2n
≤ τ < k

2n

}
∈ F k

2n
. Because we have

τ (n)(ω) ↓ τ(ω) and X is right-continuous, we get

lim
n→∞

Xτ (n)(ω)+s = Xτ(ω)+s

for all s ≥ 0 and

E exp

{
i
m∑
l=1

θl(Xτ+tl −Xτ+tl−1
)

}
1G = P(G)E exp

{
i
m∑
l=1

θl(Xtl −Xtl−1
)

}
by dominated convergence. Specialising to Ω = G yields to

E exp

{
i
m∑
l=1

θl(Xτ+tl −Xτ+tl−1
)

}
= E exp

{
i
m∑
l=1

θl(Xtl −Xtl−1
)

}
,

which implies that X and X̃ have the same finite-dimensional distributions.
In turn, this also gives

E exp

{
i
m∑
l=1

θl(Xτ+tl−Xτ+tl−1
)

}
1G = P(G)E exp

{
i
m∑
l=1

θl(Xτ+tl−Xτ+tl−1
)

}
.

which means that X̃ is independent from FXτ+.

Theorem 6.7. A Lévy process is a strong Markov process.

Proof. Assume that τ : Ω → [0,∞) is an FX-optional time. Since by
Lemma 6.2 we have that Xτ is FXτ+ measurable and from Theorem 6.6 we
have that Xt+τ −Xτ is independent from FXτ+, we get that for any A ∈ E it
holds, a.s.,

P(Xτ+t ∈ A|Fτ+) = E[1(Xt+τ−Xτ )+Xτ∈A}|Fτ+]

= (E1(Xt+τ−Xτ )+y∈A}) |y=Xτ

The assertion from Theorem 6.6 that Xt+τ −Xτ =
d
Xt allows us to write

E1{(Xt+τ−Xτ )+y∈A} = E1{Xt+y∈A} = Pt(y, A).

Consequently, we have shown that

P(Xτ+t ∈ A|Fτ+) = Pt(Xτ , A) a.s.
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7 The semi-group and infinitesimal generator

approach

7.1 Contraction semi-groups

Definition 7.1 (semi-group).

(1) Let B be a real Banach space with norm ‖ · ‖. A one-parameter family
{T (t); t ≥ 0} of bounded linear operators T (t) : B → B is called a
semi-group if

(a) T (0) = Id,

(b) T (s+ t) = T (s)T (t) for all s, t ≥ 0.

(2) A semi-group {T (t); t ≥ 0} is called strongly continuous (or C0 semi-
group) if, for all f ∈ B,

lim
t↓0

T (t)f = f.

(3) The semi-group {T (t); t ≥ 0} is a contraction semi-group if, for all
t ≥ 0,

‖T (t)‖ = sup
‖f‖=1

‖T (t)f‖ ≤ 1.

Example 7.2. Let B := Rd and let A be a d× d matrix. For t ≥ 0 define

T (t) := etA :=
∞∑
k=0

tk

k!
Ak

with A0 being the identity matrix. As norm we take the operator norm of
A, i.e.

‖A‖ := sup{|Ax| : |x| ≤ 1},

where |(x1, . . . , d)| := (x2
1 + · · ·+ x2

d)
1
2 . Then one has that

(1) e(s+t)A = esAetA for all s, t ≥ 0,

(2) {etA; t ≥ 0} is strongly continuous, and

(3) ‖etA‖ ≤ et‖A‖ for t ≥ 0.
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Definition 7.3. Let E be a complete separable metric space and let B(E)
be the Borel-σ-algebra generated by the open sets of E. By BE we denote
the space of bounded measurable functions

f : (E,B(E))→ (R,B(R))

and equip this space with the norm ‖f‖ := supx∈E |f(x)|.

Theorem 7.4. Let E be a complete separable metric space and X be a ho-
mogeneous Markov process with transition function {Pt(x,A)}. Then the
following is true:

(1) The space BE defined in Definition 7.3 is a Banach space.

(2) The family of operators {T (t); t ≥ 0} with

T (t)f(x) :=

∫
E

f(y)Pt(x, dy), f ∈ BE,

is a contraction semi-group.

Proof. (1) We realise that BE is indeed a Banach space:

– Measurable and bounded functions form a vector space.

– ‖f‖ := supx∈E |f(x)| is a norm.

– BE is complete w.r.t. this norm.

(2) We show that T (t) : BE → BE: To verify that

T (t)f : (E,B(E))→ (R,B(R))

we can restrict ourself to f ≥ 0 and find simple (measurable!) functions
fn =

∑Nn
k=1 a

n
k1Ank , A

n
k ∈ B(E), ank ≥ 0 such that fn ↑ f . Then

T (t)fn(x) =

∫
E

Nn∑
k=1

ank1Ank (y)Pt(x, dy)

=
Nn∑
k=1

ank

∫
E

1Ank (y)Pt(x, dy)
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=
Nn∑
k=1

ankPt(x,A
n
k).

Since
Pt(·, Ank) : (E,B(E))→ (R,B(R)),

we have this measurability for T (t)fn, and by dominated convergence also
for T (t)f . Moreover, we have

‖T (t)f‖ = sup
x∈E
|T (t)f(x)|

≤ sup
x∈E

∫
E

|f(y)|Pt(x, dy)

≤ sup
x∈E
‖f‖Pt(x,E) = ‖f‖. (7.1)

Hence T (t)f ∈ BE.

(c) {T (t); t ≥ 0} is a semi-group: We first observe that

T (0)f(x) =

∫
E

f(y)P0(x, dy) =

∫
E

f(y)δx(dy) = f(x)

which implies that T (0) = Id. From the Chapman-Kolmogorov equation
we derive

T (s)T (t)f(x) = T (s)(T (t)f)(x)

= T (s)

(∫
E

f(y)Pt(·, dy)

)
(x)

=

∫
E

∫
E

f(y)Pt(z, dy)Ps(x, dz)

=

∫
E

f(y)Pt+s(x, dy) = T (t+ s)f(x).

(d) We have already seen in (7.1) that {T (t); t ≥ 0} is a contraction.

7.2 Infinitesimal generator

Definition 7.5 (infinitesimal generator). Let {T (t); t ≥ 0} be a contraction
semi-group on BE. Define D(A) to be the set of all f ∈ BE such that there
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exists a g ∈ BE such that

lim
t↓0

∥∥∥∥T (t)f − f
t

− g
∥∥∥∥ = 0 (7.2)

and

A : D(A)→ BE by Af := lim
t↓0

T (t)f − f
t

.

The operator A is called infinitesimal generator of {T (t); t ≥ 0} and D(A)
the domain of A.

Example 7.6. If W = (Wt)t≥0 is the one-dimensional Brownian motion and

C2
u(R) := {f : R→ R : twice continuously differentiable and

f ′′ is uniformly continuous and bounded},

then C2
u(R) ⊆ D(A) and for f ∈ C2

u(R) we have that Af = 1
2
d2

dx2
f .

Proof. We have Pt(x,A) = P(x+Wt ∈ A) and

T (t)f(x) = Ef(x+Wt).

By Itô’s formula,

f(x+Wt) = f(x) +

∫ t

0

f ′(x+Ws)dWs +
1

2

∫ t

0

f ′′(x+Ws)ds.

Since f ′ is bounded, we have E
∫ t

0
(f ′(x+Ws))

2ds <∞ and therefore

E
∫ t

0

f ′(x+Ws)dWs = 0.

For t > 0 this implies

lim
t↓0

Ef(x+Wt)− f(x)

t
=

1

2
lim
t↓0

E
1

t

∫ t

0

f ′′(x+Ws)ds

=
1

2
E lim

t↓0

1

t

∫ t

0

f ′′(x+Ws)ds
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=
1

2
f ′′(x)

where we use dominated convergence as∣∣∣∣1t
∫ t

0

f ′′(x+Ws)ds

∣∣∣∣ ≤ sup
y
|f ′′(y)| <∞

and the continuity of the paths s 7→ Ws(ω). It remains to estimate uniformly
in x the expression ∣∣∣∣12 1

t
E
∫ t

0

f ′′(x+Ws)ds−
1

2
f ′′(x)

∣∣∣∣ .
Given ε > 0 we find an η > 0 such that |x − y| < η implies that |f ′′(x) −
f ′′(y)| < ε. Then∣∣∣∣1tE

∫ t

0

f ′′(x+Ws)ds− f ′′(x)

∣∣∣∣
≤
∣∣∣∣E1{sups∈[0,t] |Ws|<η}

[
1

t

∫ t

0

f ′′(x+Ws)ds− f ′′(x)

]∣∣∣∣
+ 2P( sup

s∈[0,t]

|Ws| ≥ η) sup
x
|f ′′(x)|

≤ ε+
2

η2
E sup
s∈[0,t]

|Ws|2 sup
x
|f ′′(x)|

≤ ε+
8

η2
E|Wt|2 sup

x
|f ′′(x)|

≤ ε+
8t

η2
sup
x
|f ′′(x)|

where we applied Doob’s maximal inequality. Therefore, given ε > 0, we
can take t0 > 0 small enough such that, for t ∈ (0, t0], we have

ε+
4t

η2
sup
x
|f ′′(x)| ≤ 2ε.

Theorem 7.7. Let {T (t); t ≥ 0} be a contraction semi-group and A its
infinitesimal generator with domain D(A). Then
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(1) If f ∈ BE is such that limt↓0 T (t)f = f, then for t ≥ 0 it holds∫ t

0

T (s)fds ∈ D(A) and A

(∫ t

0

T (s)fds

)
= T (t)f − f.

(2) If f ∈ D(A) and t ≥ 0, then T (t)f ∈ D(A) and

lim
s↓0

T (t+ s)f − T (t)f

s
= AT (t)f = T (t)Af.

(3) If f ∈ D(A) and t ≥ 0, then
∫ t

0
T (s)fds ∈ D(A) and

T (t)f − f = A

∫ t

0

T (s)fds =

∫ t

0

AT (s)fds =

∫ t

0

T (s)Afds.

Proof. (1) If limt↓0 T (t)f = f , then

lim
s↓u

T (s)f = lim
t↓0

T (u+ t)f = lim
t↓0

T (u)T (t)f = T (u) lim
t↓0

T (t)f = T (u)f,

where we used the continuity of T (u) : BE → BE. This continuity from the
right also implies that the Riemann integral∫ t

0

T (s+ u)fdu

exists for all t, s ≥ 0 if we use in the discretizations the right-hand end point:
for example if we set tni := ti

n
, then

n∑
i=1

T (tni )f(tni − tni−1)→
∫ t

0

T (u)fdu, n→∞,

and therefore

T (s)

∫ t

0

T (u)fdu = T (s)

(∫ t

0

T (u)fdu−
n∑
i=1

T (tni )f(tni − tni−1)

)

+
n∑
i=1

T (s)T (tni )f(tni − tni−1)
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→
∫ t

0

T (s+ u)fdu.

This implies

T (s)− I
s

∫ t

0

T (u)fdu =
1

s

(∫ t

0

T (s+ u)fdu−
∫ t

0

T (u)fdu

)
=

1

s

(∫ t+s

s

T (u)fdu−
∫ t

0

T (u)fdu

)
=

1

s

(∫ t+s

t

T (u)fdu−
∫ s

0

T (u)fdu

)
→ T (t)f − f, s ↓ 0.

Since the RHS converges to T (t)f − f ∈ BE we get
∫ t

0
T (u)fdu ∈ D(A) and

A

∫ t

0

T (u)fdu = T (t)f − f.

(2) If f ∈ D(A), then

T (s)T (t)f − T (t)f

s
=

T (t)(T (s)f − f)

s
→ T (t)Af, s ↓ 0.

Hence T (t)f ∈ D(A) and AT (t)f = T (t)Af.

(3) If f ∈ D(A), then T (s)f−f
s
→ Af and therefore T (s)f − f → 0 for s ↓ 0.

Then, by (1), we get
∫ t

0
T (u)fdu ∈ D(A). From (2) we get by integrating∫ t

0

lim
s↓0

T (s+ u)f − T (u)f

s
du =

∫ t

0

AT (u)fdu =

∫ t

0

T (u)Afdu.

On the other hand, in the proof of (1) we have shown that∫ t

0

T (s+ u)f − T (u)f

s
du =

T (s)− I
s

∫ t

0

T (u)fdu.

Since T (s+u)f−T (u)f
s

converges in BE we may interchange limit and integral:∫ t

0

lim
s↓0

T (s+ u)f − T (u)f

s
du = lim

s↓0

T (s)− I
s

∫ t

0

T (u)fdu

= A

∫ t

0

T (u)fdu.
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7.3 Martingales and Dynkin’s formula

Definition 7.8 (martingale). An F-adapted stochastic process X = {Xt; t ≥
0} such that E|Xt| < ∞ for all t ≥ 0 is called F-martingale (submartingale,
supermartingale) if for all 0 ≤ s ≤ t <∞ it holds

E[Xt|Fs] = (≥,≤)Xs a.s.

Theorem 7.9 (Dynkin’s formula). Let X be a homogeneous Markov pro-
cess with càdlàg paths for all ω ∈ Ω and transition function {Pt(x,A)}. Let
{T (t); t ≥ 0} denote its semi-group

T (t)f(x) :=

∫
E

f(y)Pt(x, dy) for f ∈ BE

and (A,D(A)) its generator. Then, for each g ∈ D(A) the stochastic process
{Mt; t ≥ 0} is an {FXt ; t ≥ 0} martingale, where

Mt := g(Xt)− g(X0)−
∫ t

0

Ag(Xs)ds. (7.3)

Remark 7.10. The integral
∫ t

0
Ag(Xs)ds is understood as a Lebesgue-integral

where for each ω ∈ Ω, i.e.∫ t

0

Ag(Xs)(ω)ds :=

∫ t

0

Ag(Xs)(ω)λ(ds),

where λ denotes the Lebesgue measure.

Proof. Since by Definition 7.5 we have A : D(A)→ BE, it follows Ag ∈ BE,
which means especially

Ag : (E,B(E))→ (R,B(R)).

Since X has càdlàg paths and is adapted, it is (see Lemma 6.2) progressively
measurable, i.e.

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (E,B(E)).
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Hence for the composition we have

Ag(X·) : ([0, t]× Ω,B([0, t])⊗Ft)→ (R,B(R)).

Moreover, Ag is bounded as it is from BE. So the integral∫ t

0

Ag(Xs(ω))λ(ds),

w.r.t. the Lebesgue measure λ is well-defined for ω ∈ Ω. Fubini’s theorem
implies that Mt is FXt - measurable. Since g and Ag are bounded we have
that E|Mt| <∞. From (7.3) we get, a.s.,

E[Mt+h|FXt ] + g(X0)

= E
[
g(Xt+h)−

∫ t+h

0

Ag(Xs)ds|FXt
]

= E
[(
g(Xt+h)−

∫ t+h

t

Ag(Xs)ds

) ∣∣∣∣FXt ]− ∫ t

0

Ag(Xs)ds.

The Markov property from Definition 3.1 (equation (3.1)) implies that

E
[
g(Xt+h)|FXt

]
=

∫
E

g(y)Ph(Xt, dy).

We show next that E
[∫ t+h

t
Ag(Xs)ds

∣∣∣∣FXt ] =
∫ t+h
t

E[Ag(Xs)|FXt ]ds, where

we take as version for E[Ag(Xs)|FXt ] the expressiom
∫
E
Ag(y)Ps−t(Xt, dy)

which is possible due to the Markov property of X. Since g ∈ D(A) we
know that Ag is a bounded function so that we can use Fubini’s theorem to
show that for any G ∈ FXt it holds∫

Ω

∫ t+h

t

Ag(Xs)ds1GdP =

∫ t+h

t

∫
Ω

Ag(Xs)1GdPds

=

∫ t+h

t

∫
Ω

∫
E

Ag(y)Ps−t(Xt, dy)1GdPds

so that

E
[(
g(Xt+h)−

∫ t+h

t

Ag(Xs)ds

) ∣∣∣∣FXt ]− ∫ t

0

Ag(Xs)ds
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=

∫
E

g(y)Ph(Xt, dy)−
∫ t+h

t

∫
E

Ag(y)Ps−t(Xt, dy)ds

−
∫ t

0

Ag(Xs)ds.

The previous computations and relation T (h)f(Xt) =
∫
E
f(y)Ph(Xt, dy) im-

ply

E[Mt+h|FXt ] + g(X0)

=

∫
E

g(y)Ph(Xt, dy)−
∫ t+h

t

∫
E

Ag(y)dsPs−t(Xt, dy)ds−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)−
∫ t+h

t

T (s− t)Ag(Xt)ds−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)−
∫ h

0

T (u)Ag(Xt)du−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)− T (h)g(Xt) + g(Xt)−
∫ t

0

Ag(Xs)ds

= g(Xt)−
∫ t

0

Ag(Xs)ds

= Mt + g(X0),

where we used Theorem 7.7(3).
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8 Weak solutions of SDEs and martingale prob-

lems

We recall the definition of a weak solution of an SDE.

Definition 8.1. Assume that σij, bi : (Rd,B(Rd)) → (R,B(R)) are locally
bounded. A weak solution of

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x, t ≥ 0, (8.1)

is a triplet (Xt, Bt)t≥0, (Ω,F ,P), (Ft)t≥0, such that the following holds:

(1) (Ω,F ,P, (Ft)t≥0) satisfies the usual conditions:

• (Ω,F ,P) is complete.

• All null-sets of F belong to F0.

• The filtration is right-continuous.

(2) X is a d-dimensional continuous and (Ft)t≥0 adapted process.

(3) (Bt)t≥0 is an m-dimensional (Ft)t≥0-Brownian motion.

(4) For t ≥ 0 and 1 ≤ i ≤ d one has

X
(i)
t = x(i) +

m∑
j=1

∫ t

0

σij(Xu)dB
(j)
u +

∫ t

0

bi(Xu)du a.s.

Let aij(x) :=
∑m

k=1 σik(x)σjk(x), i.e. in the matrix notation a(x) := σ(x)σT (x).
Consider the differential operator

Af(x) :=
1

2

∑
ij

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x),

D(A) := C2
c (Rd),

the twice continuously differentiable functions with compact support in Rd.
Then it follows from Itô’s formula that

f(Xt)− f(X0)−
∫ t

0

Af(X(s))ds =

∫ t

0

∇f(Xs)σ(Xs)dBs a.s.

is a martingale.
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Definition 8.2 (canonical path-space). (1) By Ω := CRd([0,∞)) we denote
the space of continuous functions ω : [0,∞)→ Rd.

(2) For ω, ω̄ ∈ Ω we let

d(ω, ω̄) :=
∞∑
n=1

1

2n
sup0≤t≤n |ω(t)− ω̄(t)|

1 + sup0≤t≤n |ω(t)− ω̄(t)|
.

(3) We set

FXt := σ{Xs, s ∈ [0, t]} where Xs : CRd([0,∞))→ Rd : ω 7→ ω(s)

is the coordinate mapping.

Remark 8.3. (1) [CRd([0,∞)), d] is a complete separable metric space, see
[5, Problem 2.4.1].

(2) For 0 ≤ t ≤ u we have FXt ⊆ FXu ⊆ B(CRd([0,∞))), see [5, Problem
2.4.2].

We define local martingales to introduce the concept of a martingale problem:

Definition 8.4 (local martingale). For a stochastic basis (Ω,F ,P, (Ft)t≥0)
satisfying the usual conditions, a continuous (Ft)t≥0 adapted process M =
(Mt)t≥0 with M0 = 0 is a local martingale if there exists a sequence of
stopping times τn : Ω → [0,∞] with τ1 ≤ τ2 ≤ τ3 ≤ ... ↑ ∞ such that the
stopped process M τn given by M τn

t := Mτn∧t is a martingale for each n ≥ 1.

Example 8.5 ([6]). Let α > 1. Then the process which solves

Xt = 1 +

∫ t

0

Xα
s dBs

is a local martingale but not a martingale.

Definition 8.6 (CRd([0,∞))- martingale problem). Given (s, x) ∈ [0,∞)×
Rd, a solution to the CRd([0,∞))- martingale problem for the operator A is

a probability measure P on (CRd([0,∞)),B(CRd([0,∞)))
P
), where

B(CRd([0,∞)))
P
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is the P-completion of B(CRd([0,∞))), satisfying

P({ω ∈ Ω : ω(t) = x, 0 ≤ t ≤ s}) = 1

such that for each f ∈ C∞c (Rd) the process {M f
t ; t ≥ s} with

M f
t := f(Xt)− f(Xs)−

∫ t

s

Af(Xu)du

is a P-martingale with respect to ((FX,Pt )+)t≥s, where (FX,Pt )t≥0 is the aug-
mentation under P of (FXt )t≥0, and (FX,Pt )+ =

⋂
s>tFX,Ps .

Theorem 8.7. Given by a probability measure P on

(CRd([0,∞)),B(CRd [0,∞)))

the following assertions are equivalent:

(1) P is a solution to the CRd([0,∞))- martingale problem for the operator
(A,D(A)).

(2) There is an extension of the stochastic basis(
CRd([0,∞)),B(CRd([0,∞)))

P
,P, ((FX,Pt )+)t≥0

)
such that the process (Xt)t≥0 becomes a weak solution to (8.1).

Proof. (2) ⇒ (1) follows from Itô’s formula as explained above.

(1) ⇒ (2) We will show this direction only for the case d = m, see [5,
Proposition 5.4.6] for the general case. We assume that X is a solution of
the CRd([0,∞))- martingale problem for the operator A.

(a) We observe that for any i = 1, ..., d and f(x) := xi the process {M i
t :=

M f
t ; t ≥ 0} is a continuous, local martingale. This can be seen as follows:

We define the stopping times for n > max{|x(1)|, ..., |x(d)|} by

τn := inf{t > 0 : max{|X(1)
t |, ..., |X

(d)
t |} = n}.

Then we can find a function gn ∈ C∞c (Rd) such that

(M i)τn = (M gn)τn .
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By assumption M gn is a continuous martingale and it follows from the op-
tional sampling theorem that the stopped process (M gn)τn is also a continuous
martingale. In particular we have

M i
t = X

(i)
t − x(i) −

∫ t

0

bi(Xs)ds.

Since X is continuous and b locally bounded, it holds∫ t

0

|bi(Xs(ω))|ds <∞ for all ω ∈ Ω and t ≥ 0.

(b) Also for f(x) := xixj for fixed i, j the process M
(ij)
t := M f

t , defined by

M ij
t = X

(i)
t X

(j)
t − x(i)x(j) −

∫ t

0

X(i)
s bj(Xs) +X(j)

s bi(Xs) + aij(Xs)ds

is a continuous, local martingale by the same reasoning as in step (a). We
notice that

M i
tM

j
t −

∫ t

0

aij(Xs)ds = M ij
t − x(i)M j

t − x(j)M i
t −Rt

where

Rt :=

∫ t

0

(X(i)
s −X

(i)
t )bj(Xs)ds+

∫ t

0

(X(j)
s −X

(j)
t )bi(Xs)ds

+

∫ t

0

bi(Xs)ds

∫ t

0

bj(Xs)ds.

Indeed,

M i
tM

j
t −

∫ t

0

aij(Xs)ds

=

(
X

(i)
t − x(i) −

∫ t

0

bi(Xs)ds

)(
X

(j)
t − x(j) −

∫ t

0

bj(Xs)ds

)
−
∫ t

0

aij(Xs)ds

= X
(i)
t X

(j)
t −X

(i)
t

(
x(j) +

∫ t

0

bj(Xs)ds

)
−
(
x(i) +

∫ t

0

bi(Xs)ds

)
X

(j)
t

+

(
x(j) +

∫ t

0

bj(Xs)ds

)(
x(i) +

∫ t

0

bi(Xs)ds

)
−
∫ t

0

aij(Xs)ds
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= M ij
t + x(i)︸︷︷︸x(j) +

∫ t

0

X(i)
s bj(Xs) +X(j)

s bi(Xs)ds

−X(i)
t x(j) −X(j)

t x(i)︸︷︷︸−∫ t

0

X
(i)
t bj(Xs) +X

(j)
t bi(Xs)ds

+x(i)x(j) + x(j)

∫ t

0

bi(Xs)ds+ x(i)︸︷︷︸ ∫ t

0

bj(Xs)ds+

∫ t

0

bj(Xs)ds

∫ t

0

bi(Xs)ds

= M ij
t +

∫ t

0

(X(i)
s −X

(i)
t )bj(Xs) + (X(j)

s −X
(j)
t )bi(Xs)ds

− x(i)︸︷︷︸(−x(j) +X
(j)
t −

∫ t

0

bj(Xs)ds︸ ︷︷ ︸
Mj
t

)

−x(j)

(
− x(i) +X

(i)
t −

∫ t

0

bi(Xs)ds

)
+

∫ t

0

bj(Xs)ds

∫ t

0

bi(Xs)ds.

Since X
(i)
s −X(i)

t = M i
s −M i

t +
∫ t
s
bj(Xu)du it follows by Itô’s formula that

Rt =

∫ t

0

(X(i)
s −X

(i)
t )bj(Xs)ds+

∫ t

0

(X(j)
s −X

(j)
t )bi(Xs)ds

+

∫ t

0

bi(Xs)ds

∫ t

0

bj(Xs)ds

=

∫ t

0

(M i
s −M i

t )bj(Xs)ds+

∫ t

0

(M j
s −M

j
t )bi(Xs)ds

= −
∫ t

0

∫ s

0

bj(Xu)dudM
i
s −

∫ t

0

∫ s

0

bi(Xu)dudM
j
s .

Since Rt is a continuous, local martingale and a process of bounded variation
at the same time, Rt = 0 a.s. for all t. Then

M i
tM

j
t −

∫ t

0

aij(Xs)ds

is a continuous, local martingale, and

〈M i,M j〉t =

∫ t

0

aij(Xs)ds.
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By the Martingale Representation Theorem A.3 we know that there exists an
extension (Ω̃, F̃ , P̃) of (Ω,F ,P) carrying a d-dimensional (F̃t) Brownian mo-
tion B̃ such that (F̃t) satisfies the usual conditions, and measurable, adapted
processes ξi,j, i, j = 1, ..., d, with

P̃
(∫ t

0

(ξi,js )2ds <∞
)

= 1

such that

M i
t =

d∑
j=1

∫ t

0

ξi,js dB̃
j
s .

We have now

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

ξsdB̃s.

It remains to show that there exists an d-dimensional (F̃t) Brownian motion
B on (Ω̃, F̃ , P̃) such that P̃ a.s.∫ t

0

ξsdB̃s =

∫ t

0

σ(Xs)dBs, t ∈ [0,∞).

For this we will use the following lemma.

Lemma 8.8. Let

D := {(ξ, σ); ξ and σ are d× d matrices with ξξT = σσT}.

On D there exists a Borel-measurable map R : (D,D∩B(Rd2)→ (Rd2 ,B(Rd2))
such that

σ = ξR(ξ, σ), R(ξ, σ)RT (ξ, σ) = I; (ξ, σ) ∈ D.

We set

Bt =

∫ t

0

RT (ξs, σ(Xs))dB̃s.

Then B is a continuous local martingale and

〈B(i), B(i)〉t =

∫ t

0

R(ξs, σ(Xs))R
T (ξs, σ(Xs))ds = tδij.

Lévy’s theorem (see [5, Theorem 3.3.16]) implies that B is a Brownian mo-
tion.
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Usig Theorem 8.7 one can derive the following statement, which is the second
main result of this section:

Theorem 8.9 (Kolmogorov 1965, Stroock-Varadhan 1969). If bi, σij :
Rd → R are continuoius and bounded and if µ is an initial distribution on
(Rd,B(Rd)) such that∫

Rd
|x|pµ(dx) <∞ for some p ∈ (2,∞),

then there is a weak solution to the SDE

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds with law(X0) = µ.
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9 Feller processes

9.1 Feller semi-groups, Feller transition functions and
Feller processes

Definition 9.1.

(1) C0(Rd) := {f : Rd → R : f continuous, lim|x|→∞ |f(x)| = 0} is equipped
with the norm ‖f‖ = ‖f‖C0(Rd) := supx∈Rd |f(x)|.

(2) {T (t); t ≥ 0} is a Feller semi-group if

(a) T (t) : C0(Rd) → C0(Rd) is positive for all t ≥ 0, i.e. T (t)f(x) ≥ 0
∀x if f : Rd → [0,∞),

(b) {T (t); t ≥ 0} is a strongly continuous contraction semi-group.

(3) A Feller semi-group is conservative if for all x ∈ Rd it holds

sup
f∈C0(Rd),‖f‖=1

|T (t)f(x)| = 1.

Remark 9.2.

(1) [C0(Rd), ‖ · ‖C0(Rd)] is a Banach space.

(2) The subspace Cc(Rd) of compactly supported functions is dense in
C0(Rd).

Definition 9.3. If E is a locally compact Hausdorff space, a Borel
measure on (E,B(E)) is a Radon measure provided that

(1) µ(K) <∞ for all compact sets K,

(2) µ(A) = inf{µ(U) : U ⊇ A,U open} for all A ∈ B(E),

(3) µ(B) = sup{µ(K) : K ⊆ B,K compact} for all open set B.

We recall the Riesz representation theorem (see, for example, [3, Theorem
7.2]): If E is a locally compact Hausdorff space, L a positive linear functional
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on Cc(E) := {F : E → R : continuous function with compact support}, then
there exists a unique Radon measure µ on (E,B(E)) such that

LF =

∫
E

F (y)µ(dy).

We use this theorem to prove the following:

Theorem 9.4. Let {T (t); t ≥ 0} be a conservative Feller semi-group on
C0(Rd). Then there exists a homogeneous transition function {Pt : t ≥ 0},
Pt : Rd × B(Rd)→ [0, 1], such that

T (t)f(x) =

∫
Rd
f(y)Pt(x, dy) for all x ∈ Rd and f ∈ C0(Rd).

Proof. By the Riesz representation theorem we get for each x ∈ Rd and each
t ≥ 0 a measure Pt(x, ·) on (Rd,B(Rd)) such that

(T (t)f)(x) =

∫
Rd
f(y)Pt(x, dy), ∀f ∈ Cc(Rd).

We need to show that this family of measures {Pt(x, ·); t ≥ 0, x ∈ Rd} has
all properties of a transition function.

(a) The map A 7→ Pt(x,A) is a probability measure: Since {Pt(x, ·) is a
measure, we only need to check whether Pt(x,Rd) = 1, which will be an
exercise.

(b) For A ∈ B(Rd) we have to show that

x 7→ Pt(x,A) : (Rd,B(Rd))→ (R,B(R)). (9.1)

We let

H :={f : Rd → R : B(Rd) measurable and bounded,

T (t)f is B(Rd) measurable},
A :={[a1, b1]× ...× [an, bn];−∞ ≤ ak ≤ bk ≤ ∞} ∪ ∅.

By definition we have that σ(A) = B(Rd). Now we check the assumptions
(1), (2), and (3) of Theorem A.2.
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– The assumption (2), that H is a linear space, is obvious.

– The assumption (3), thatH is a monotone class, follows from monotone
convergence.

– 1A ∈ H for all A ∈ A is verified as follows:

First we assume that −∞ < ak ≤ bk < ∞. In this case we approximate 1A
by fn ∈ Cc(Rd) as follows: let fn(x1, ...xn) := fn,1(x1)...fn,d(xd) with linear,
continuous functions

fn,k(xk) :=

{
1 ak ≤ xk ≤ bk,
0 x ≤ ak − 1

n
or x ≥ bk + 1

n
.

Then fn ↓ 1A. Since T (t)fn ∈ C0(Rd) because fn ∈ Cc(Rd) ⊆ C0(Rd), we get

T (t)fn : (Rd,B(Rd))→ (R,B(R)).

It holds

T (t)fn(x) =

∫
Rd
fn(y)Pt(x, dy)→ Pt(x,A) for n→∞.

Hence Pt(·, A) : (Rd,B(Rd)) → (R,B(R)), which means 1A ∈ H. Further-
more, the case ak = −∞ and bk =∞ can be done by monotone convergence
again. Applying Theorem A.2, we obtain that H contains all bounded and
B(Rd)-measurable functions.

(c) The Chapman-Kolmogorov equation for {Pt : t ≥ 0} we conclude
from T (t + s) = T (t)T (s) for all s, t ≥ 0, which can be again done by ap-
proximating 1A, A ∈ A and using dominated convergence and the Monotone
Class Theorem.

(d) T (0) = Id gives that P0(x, ·) is the measure µ0 such that

f(x) = (T (0)f)(x) =

∫
Rd
f(y)P0(x, dy).

But this implies that P0(x,A) = δx(A), which will be an exercise.

Definition 9.5.

(1) A transition function associated to a conservative Feller semi-group
is called a Feller transition function.
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(2) A Markov process having a Feller transition function is called a
Feller process.

In general we have the following implications:

Theorem 9.6.

(1) Every càdlàg Feller process is a strong Markov process.

(2) Every strong Markov process is a Markov process.

Now we characterize Feller transition functions:

Theorem 9.7. A transition function {Pt(x,A)} is Feller if and only if

(1)
∫
Rd f(y)Pt(·, dy) ∈ C0(Rd) for f ∈ C0(Rd) and all t ≥ 0,

(2) limt↓0
∫
Rd f(y)Pt(x, dy) = f(x) for all f ∈ C0(Rd) and x ∈ Rd.

Proof. =⇒ is easy to see so that we turn to ⇐= and will show that (1) and
(2) imply that {T (t); t ≥ 0} with

T (t)f(x) =

∫
Rd
f(y)Pt(x, dy)

is a Feller semi-group.

(a) We know by Theorem 7.4 that {T (t); t ≥ 0} is a contraction semi-group.
By (1) we have that T (t) : C0(Rd) → C0(Rd). And of course, any T (t) is
positive. So we only have to show that

lim
t↓0
‖T (t)f − f‖ = 0 for all f ∈ C0(Rd).

which is the strong continuity.

Since by (1) we have that T (t)f ∈ C0(Rd) we conclude by (2) that

lim
s↓0

T (t+ s)f(x) = T (t)f(x) for all x ∈ Rd.

Hence we have that

– t 7→ T (t)f(x) is right-continuous,
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– x 7→ T (t)f(x) is continuous.

This implies (similarly to the proof of the fact that right-continuity and
adaptedness implies progressive measurability) that

(t, x) 7→ T (t)f(x) : ([0,∞)× Rd,B([0,∞))⊗ B(Rd))→ (R,B(R)).

(b) By Fubini’s theorem we have for any p > 0, that

x 7→ Rpf(x) :=

∫ ∞
0

e−ptT (t)f(x)dt : (Rd,B(Rd))→ (R,B(R)),

where the map f 7→ Rpf is called the resolvent of order p of {T (t); t ≥ 0}.
It holds

lim
p→∞

pRpf(x) = f(x).

Indeed, since {T (t); t ≥ 0} is a contraction semi-group, it holds ‖T (u
p
)f‖ ≤

‖f‖ for u ≥ 0. Hence we can use dominated convergence in the following
expression, and it follows from (2) that

pRpf(x) =

∫ ∞
0

pe−ptT (t)f(x)dt =

∫ ∞
0

e−uT

(
u

p

)
f(x)du→ f(x) (9.2)

for p→∞. Moreover, one can show that Rpf ∈ C0(Rd), so that

Rp : C0(Rd)→ C0(Rd).

For p, q > 0 it holds

(q − p)RpRqf = (q − p)Rp

∫ ∞
0

e−qtT (t)fdt

= (q − p)
∫ ∞

0

e−psT (s)

∫ ∞
0

e−qtT (t)fdtds

= (q − p)
∫ ∞

0

e−(p−q)s
∫ ∞

0

e−q(t+s)T (t+ s)fdtds

= (q − p)
∫ ∞

0

e−(p−q)s
∫ ∞
s

e−quT (u)fduds

= (q − p)
∫ ∞

0

e−quT (u)f

∫ u

0

e−(p−q)sdsdu
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= (q − p)
∫ ∞

0

e−quT (u)f
1

q − p
(e−(p−q)u − 1)du

= −Rqf +

∫ ∞
0

e−puT (u)fdu

= Rpf −Rqf.

This also implies that

(q − p)RpRqf = Rpf −Rqf = (q − p)RqRpf.

Now, let
Im(Rp) := {Rpf ; f ∈ C0(Rd)}.

If g ∈ Im(Rp), then there exists f ∈ C0(Rd) such that g = Rpf and we have

g = Rpf = Rqf + (q − p)RqRpf = Rq(f + (q − p)Rpf) ∈ Im(Rq).

Hence Im(Rp) ⊆ Im(Rp) and by symmetry, Im(Rp) = Im(Rp). Let E :=
Im(Rp). By (9.2) we have

‖pRpf‖ ≤ ‖f‖.

(c) We show that E ⊆ C0(Rd) is dense. We follow [3, Section 7.3] and notice
that C0(Rd) is the closure of Cc(Rd) with respect to ‖f‖ := supx∈Rd |f(x)|.

Assume that E ⊆ C0(Rd) is not dense. By the Hahn-Banach theorem
there is linear and continuous functional L : C0(Rd) → R such that Lf = 0
if f ∈ E and positive for an f0 ∈ C0(Rd) which is outside the closure of E
and given by

L(f) =

∫
Rd
f(x)µ(dx) for some signed measure µ.

However, by dominated convergence we have

L(f0) =

∫
Rd
f0(x)µ(dx) = lim

p→∞

∫
Rd
pRpf0(x)µ(dx) = 0,

which is a contradiction so that D must be dense.

(d) Now we have

T (t)Rpf(x) = T (t)

∫ ∞
0

e−puT (u)f(x)du
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= ept
∫ ∞
t

e−psT (s)f(x)ds.

Now we fix p = 1 and consider f ∈ E so that f = R1g for some g ∈ C0(Rd).
This implies

‖T (t)R1g −R1g‖

= sup
x∈Rd

∣∣∣∣et ∫ ∞
t

e−sT (s)g(x)du−
∫ ∞

0

e−uT (u)g(x)du

∣∣∣∣
= sup

x∈Rd

∣∣∣∣(et − 1)

∫ ∞
t

e−sT (s)g(x)du−
∫ t

0

e−uT (u)g(x)du

∣∣∣∣
≤ [(ept − 1) + t]

[∫ ∞
0

e−sds

]
‖g‖ → 0, t ↓ 0.

So we have shown that {T (t); t ≥ 0} is strongly continuous on E. Since
D ⊆ C0(Rd) is dense, we have also show strong continuity on C0(Rd).

9.2 Càdlàg modifications of Feller processes

In Definition 6.5 we defined a Lévy process as a stochastic process with
a.s. càdlàg paths. In Theorem 6.7 we have shown that a Lévy process (with
càdlàg paths) is a strong Markov process. By the Daniell-Kolmogorov
Theorem we know that Markov processes exist by Theorem 4.3. But this
Theorem does not say anything about path properties.

We will proceed with the definition of a Lévy process in law (and leave it as
an exercise to show that such a process is a Feller process). We will prove
then that any Feller process has a càdlàg modification.

Definition 9.8 (Lévy process in law). A stochastic process X = {Xt; t ≥ 0}
on (Ω,F ,P) with Xt : (Ω,F)→ (Rd,B(Rd)) is a Lévy process in law if

(1) X is continuous in probability, i.e. for all t ≥ 0 and ε > 0 one has

lim
s↓t

P(|Xs −Xt| > ε) = 0,

(2) P(X0 = 0) = 1,

(3) for all 0 ≤ s ≤ t one has Xt −Xs
d
= Xt−s,
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(4) for all 0 ≤ s ≤ t one has Xt −Xs is independent of FXs .

Theorem 9.9. A Lévy process in law is a Feller process.

We shall prove this as an exercise.

Theorem 9.10. Let X be an {Ft; t ≥ 0}-submartingale. Then the following
holds:

(1) For any countable dense subset D ⊆ [0,∞) there is a Ω∗ ∈ F with
P(Ω∗) = 1 such that for every ω ∈ Ω∗ one has

Xt+(ω) := lim
s↓t,s∈D

Xs(ω) and Xt−(ω) := lim
s↑t,s∈D

Xs(ω)

exists for all t ≥ 0 (t > 0, respectively).

(2) {Xt+; t ≥ 0} is an {Ft+; t ≥ 0} submartingale with a.s. càdlàg paths.

(3) Assume that {Ft; t ≥ 0} satisfies the usual conditions. Then X has a
càdlàg modification if and only if t 7→ EXt is right-continuous.

The proof can be found in [5, Proposition 1.3.14 and Theorem 1.3.13].

Lemma 9.11. Let X be a Feller process. For any p > 0 and any

f ∈ C0(Rd; [0,∞)) := {f ∈ C0(Rd) : f ≥ 0}

the process
{e−ptRpf(Xt); t ≥ 0}

is a supermartingale w.r.t. the natural filtration {FXt ; t ≥ 0} and for any
initial distribution Pν(X0 ∈ B) = ν(B) for B ∈ B(Rd).

Proof. Recall that for p > 0 we defined in the proof of Theorem 9.7 the
resolvent

f 7→ Rpf :=

∫ ∞
0

e−ptT (t)fdt, f ∈ C0(Rd).

(a) We show that Rp : C0(Rd)→ C0(Rd): Since

‖Rpf‖ =

∥∥∥∥∫ ∞
0

e−ptT (t)fdt

∥∥∥∥ ≤ ∫ ∞
0

e−pt‖T (t)f‖dt
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and ‖T (t)f‖ ≤ ‖f‖, we may use dominated convergence, and since T (t)f ∈
C0(Rd) it holds

lim
xn→x

Rpf(xn) = lim
xn→x

∫ ∞
0

e−ptT (t)f(xn)dt

=

∫ ∞
0

e−pt lim
xn→x

T (t)f(xn)dt

= Rpf(x).

In the same way we verify that lim|xn|→∞Rpf(xn) = 0.

(b) For x ∈ Rd, f ∈ C0(Rd; [0,∞)), and h > 0 one has

e−phT (h)Rpf(x) = e−phT (h)

∫ ∞
0

e−ptT (t)f(x)dt

=

∫ ∞
0

e−p(t+h)T (t+ h)f(x)dt

=

∫ ∞
h

e−puT (u)f(x)du

≤
∫ ∞

0

e−puT (u)f(x)du

= Rpf(x).

(c) The process {e−ptRpf(Xt); t ≥ 0} is a supermartingale: Let 0 ≤ s ≤ t.
Since X is a Feller process, it has a transition function, and by Defini-
tion 3.1 we may write

EPν [e
−ptRpf(Xt)|FXs ] = e−pt

∫
Rd
Rpf(y)Pt−s(Xs, dy)

= e−ptT (t− s)Rpf(Xs).

From step (b) we conclude

e−ptT (t− s)Rpf(Xs) ≤ e−psRpf(Xs).

Lemma 9.12. Let Y1 and Y2 be random variables on (Ω,F ,P) with values
in Rd. Then the following holds:

Y1 = Y2 a.s. ⇐⇒ Ef1(Y1)f2(Y2) = Ef1(Y1)f2(Y1)

for all f1, f2 ∈ C0(Rd)
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Proof. The direction =⇒ is evident. We will use the Monotone Class
Theorem A.2 to verify ⇐=. Let

H := {h : Rd × Rd → R : h bounded and measurable,

Eh(Y1, Y2) = Eh(Y1, Y1)}

As before we can approximate 1[a1,b1]×...×[a2d,b2d] for −∞ < ai ≤ bi < ∞
by continuous functions with values in [0, 1]. Since by the Monotone Class
Theorem the equality

Eh(Y1, Y2) = Eh(Y1, Y1)

holds for all h : Rd×Rd → R which are bounded and measurable, we choose
h(x, y) := 1{(x,y)∈Rd×Rd:x 6=y} and infer

P(Y1 6= Y2) = P(Y1 6= Y1) = 0.

Theorem 9.13. If X is a Feller process such that there is a dense set
D ⊆ [0,∞) such that

P

(
sup

t∈[0,T ]∩D
|Xt| <∞

)
= 1 for all T > 0,

then it has a càdlàg modification.

Sketch of the proof. (a) One-point compactification (Alexandroff exten-
sion) of Rd: Let ∂ be a point not in Rd and denote by O the open sets of Rd.
We define a topology O′ on (Rd)∂ := Rd ∪ {∂} as

O′ := {A ⊂ (Rd)∂ : either A ∈ O
or ∂ ∈ A and Ac is a compact subset of Rd}.

Then ((Rd)∂,O′) is a compact Hausdorff space. Any function f ∈ C0(Rd)
will be extended to f ∈ C0((Rd)∂) by f(∂) := 0.

(b) Let (fn)∞n=1 ⊆ C0(Rd; [0,∞)) be a sequence which separates the points,
i.e. for any x, y ∈ (Rd)∂ with x 6= y there exists n ∈ N such that fn(x) 6=
fn(y), where we set fn(∂) := 0. Such a sequence exists, which we will not
prove here. We want to show that then also

S := {Rpfn : p, n ∈ N}
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is a countable set (which is clear) and separates the points: in fact, it holds
for any p > 0 that

pRpf(x) = p

∫ ∞
0

e−ptT (t)f(x)dt =

∫ ∞
0

e−uT

(
u

p

)
f(x)du.

This implies

sup
x∈(Rd)∂

|pRpf(x)− f(x)| = sup
x∈(Rd)∂

∣∣∣∣∫ ∞
0

e−u
(
T

(
u

p

)
f

)
(x)− f(x))du

∣∣∣∣
≤

∫ ∞
0

e−u
∥∥∥∥T (up

)
f − f

∥∥∥∥ du→ 0, p→∞,

by dominated convergence since ‖T
(
u
p

)
f − f‖ ≤ 2‖f‖ and the strong con-

tinuity of the semi-group implies ‖T
(
u
p

)
f − f‖ → 0 for p → ∞. Then, if

x 6= y there exists a function fn with fn(x) 6= fn(y) and can find a p ∈ N
such that Rpfn(x) 6= Rpfn(y).

(c) We fix a set D ⊆ [0,∞) which is countable and dense. We show that
there exists Ω∗ ∈ F with P(Ω∗) = 1 and such that for all ω ∈ Ω∗ and for all
n, p ∈ N one has

[0,∞) 3 t 7→ Rpfn(Xt(ω)) (9.3)

has right and left (for t > 0) limits along D. From Lemma 9.11 we know that

{e−ptRpfn(Xt); t ≥ 0} is an {FXt ; t ≥ 0} supermartingale.

By Theorem 9.10 (1) we have for any p, n ∈ N a set Ω∗n,p ∈ F with P(Ω∗n,p) = 1
such that for all ω ∈ Ω∗n,p and for all t ≥ 0 (t > 0, respectively) the limits

lim
s↓t,s∈D

e−psRpfn(Xs(ω))

(
lim

s↑t,s∈D
e−psRpfn(Xs(ω)

)
exist. Since s 7→ eps is continuous we get assertion (9.3) by setting

Ω∗ :=
∞⋂
n=1

∞⋂
p=1

Ω∗n,p.
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(d) We show that for all ω ∈ Ω∗ the map t → Xt(ω) has right limits along
D: If the limit lims↓t,s∈DXs(ω) does not exist, then there are x, y ∈ (Rd)∂

and sequences (sn)n, (s̄m)m ⊆ D with sn ↓ t, s̄m ↓ t, such that

lim
n→∞

Xsn(ω) = x and lim
m→∞

Xs̄m(ω) = y.

But there are p, k ∈ N such that Rpfk(x) 6= Rpfk(y) which is a contradiction
to the fact that s 7→ Rpfk(Xs(ω)) has right limits along D.

(e) Construction of a right-continuous modification: For ω ∈ Ω∗ we
set for all t ≥ 0

X̃t(ω) := lim
s↓t,s∈D

Xs(ω),

and for ω 6∈ Ω∗ we set X̃t(ω) := x, where x ∈ Rd is arbitrary and fixed. Then
we have that

X̃t = Xt a.s.

where we argue as follows: Since for f, g ∈ C0(Rd) we have

Ef(Xt)g(X̃t) = lim
s↓t,s∈D

Ef(Xt)g(Xs)

= lim
s↓t,s∈D

EE[f(Xt)g(Xs)|FXt ]

= lim
s↓t,s∈D

Ef(Xt)E[g(Xs)|FXt ]

= lim
s↓t,s∈D

Ef(Xt)T (s− t)g(Xt)

= Ef(Xt)g(Xt),

where we used the Markov property for the second last equation while the
last equation follows from the fact that ‖T (s − t)h − h‖ → t for s ↓ 0. By
Lemma 9.12 we conclude X̃t = Xt a.s.

It is an exercise to verify that t→ X̃t is right-continuous for all ω ∈ Ω.

(f) Càdlàg modifications: We use [5, Theorem 1.3.8(v)] which states that
almost every path of a right-continuous submartingale has left limits for any
t ∈ (0,∞). Since {−e−ptRpfn(X̃t); t ≥ 0} is a right-continuous submartin-
gale, we can proceed as above (using the fact that S separates the points) so
show that t 7→ X̃(ω) is càdlàg for almost all ω ∈ Ω.
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Remark 9.14. For a Lévy process in law it can be shown (see [4, Theorem
II.2.68]) that the assumption

P(sup{|Xt| : t ∈ [0, T ] ∩D} <∞) = 1

is satisfied for all T > 0.
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A Appendix

Lemma A.1 (Factorization Lemma). Assume Ω 6= ∅, (E, E) be a measurable
space, maps g : Ω→ E and F : Ω→ R, and σ(g) = {g−1(B) : B ∈ E}. Then
the following assertions are equivalent:

(1) The map F is (Ω, σ(g))→ (R,B(R)) is measurable.

(2) There exists a measurable h : (E, E)→ (R,B(R)) such that F = h ◦ g.

For the proof see [1, p. 62].

Theorem A.2 (Monotone Class Theorem for functions). Let A ⊆ 2Ω be a
π-system that contains Ω and assume H ⊆ {f ; f : Ω→ R} such that

(1) 1A ∈ H for A ∈ A,

(2) H is a linear space,

(3) If (fn)∞n=1 ⊆ H such that 0 ≤ fn ↑ f and f is bounded, then f ∈ H.

Then H contains all bounded functions that are σ(A) measurable.

For the proof see [4].

Theorem A.3. Suppose a stochastic basis (Ω,F ,P, (F)t≥0) satisfying the
usual assumptions and continuous, local martingales (M1

t )t≥0, . . . , (M
d
t )t≥0.

If for 1 ≤ i, j ≤ d and all ω ∈ Ω the processes 〈M i,M j〉t(ω) are abso-
lutely continuous in t, then there exists an extension (Ω̃, F̃ , P̃, (F̃)t≥0)) of
(Ω,F ,P, (F)t≥0) satisfying the usual conditions and an d-dimensional (F̃)t≥0-
Brownian motion (Bt)t≥0 and progressively measurable processes (X i,j

t )t≥0

i, j = 1, ..., d with

P̃
(∫ t

0

(X i,j
s )2ds <∞

)
= 1, 1 ≤ i, j ≤ d; 0 ≤ t <∞,

such that P̃-a.s.

M i
t =

d∑
j=1

∫ t

0

X i,j
s dB

j
s , 1 ≤ i ≤ d; 0 ≤ t <∞,

〈M i,M j〉t =
d∑

k=1

∫ t

0

X i,k
s Xk,j

s ds 1 ≤ i, j ≤ d; 0 ≤ t <∞.
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For the proof see [5, Theorem 3.4.2].

A continuous adapted process is an Itô process provided that

X(t) = x+

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dB(s), t ≥ 0,

where µ and σ are progressively measurable and satisfy∫ t

0

µ(s)ds <∞,
∫ t

0

σ(s)2ds <∞ a.s. for all t ≥ 0.

Theorem A.4 (Itô’s formula). If B(t) = (B1(t), ..., Bd(t)) is a d-dimensional
(Ft) Brownian motion and

Xi(t) = xi +

∫ t

0

µi(s)ds+
d∑
j=1

∫ t

0

σij(s)dBj(s),

are Itô processes, then for any C2 function f : Rd → R we have

f(X1(t), ..Xd(t)) = f(x1, .., xd) +
d∑
i=1

∫ t

0

∂

∂xi
f(X1(s), ..Xd(s))dXi(s)

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
f(X1(s), ..Xd(s))d〈Xi, Xj〉s,

and d〈Xi, Xj〉s =
∑d

k=1 σikσjkds.
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