Bridging socioeconomic pathways of carbon emission and credit risk

Ying Jiao (Université Claude Bernard - Lyon 1)

Joint work with Florian Bourgey (Bloomberg) and Emmanuel Gobet (Ecole Polytechnique)

> 25 November 2022 International Seminar on SDEs and Related Topics

> > ◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction

- The climate change such as global warming and extreme events has become an imminent worldwide challenge.
- Climate risks in finance
 - Physical risks : economic cost and financial losses resulting from the increasing severity and frequency of extreme climate change-related weather events
 - Transition risks : risks related to the process of adjustment towards a low-carbon economy, it concerns social and political instability of policiesas well as technological changes
- Banks are encouraged to transition their portfolios to low-carbon assets
 - Network for Greening Financial System (NGFS)
 - Which quantitative methodology for an ecological portfolio transition? Which variables?
 - Which optimization criterion for better transition paths?
- This talk: modelling of the transmission channel "transition risk" to "credit risk", and aggregate in a large portfolio (on-going work)

RCP Projections of greenhouse gas emissions

- Intergovernmental Panel on Climate Change (IPCC) published RCPs (Representative Concentration Pathways) by summarizing different potential scenario of global warming.
- The increase of global mean surface temperature by 2100 : 0.3°C-1.7°C under RCP2.6; 1.1°C-2.6°C under RCP4.5; 1.4°C-3.1°C under RCP6.0; and 2.6°C-4.8°C under RCP8.5.

Figure: Source: Fifth Assessment Report (AR5) of IPCC

EU climate action and target

- The Paris Agreement has set the idealized objective for a global warming around only 1.5°C before 2100.
- The European Union commission has planed to cut emissions by at least 55% by 2030 and aims to become the world's first climate-neutral continent by 2050.
- A series of legislation and policies have been adopted to achieve the climate-neutrality objective, including European Climate Law and Pact, and the EU Emissions Trading System (ETS).
- In this context, many other possible scenarios, such as the Shared Socioeconomic Pathways (SSPs) for the CMIP6 project, are developed in scientific literature according to more detailed socio-economic and ecological criteria, and also for different sectors, countries etc.

Shared Socioeconomic Pathways (SSPs)

Figure: Historical and scenario-based CO2 emission, from 1980 to 2100, in Mt/yr in the OECD, according to the activity sectors: Energy (top left), Industry (top right), Residential Commercial (bottom left), Transportation (bottom right).

Our work

- We consider firms who are facing climate transition risks (no physical risk here) towards a low-carbon production pattern.
- Main objective: model and quantify how different SSPs projection scenarios impact the credit risk.
- Given an emission scenario (by SSP), a firm aims to determine its effective emission level under the double criteria of maximizing the profit and respecting the emission target.
- Firm's climate-related value process is deduced and the default is modelled by the Merton model
- Compute the (semi-explicit) default probability and analyse the impact of input SSPs scenarios.
- Allow for large portfolio extension for cumulative losses.

Model Setup

- Let the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ represent the market.
- Consider a firm whose production is given by the SDE

$$dP_t = P_t \left(\mu \left(t, P_t, \gamma_t \right) dt + \sigma dW_t \right), \quad P_0 > 0,$$

where $\sigma > 0$ and

- γ_t is the instantaneous emission rate
- $\mu : (t, x, y) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ satisfies the local Lipschitz condition on x and is of classe C^1 on (x, y)
- $\partial \mu_x < 0$: overproduction will reduce the production rate
- $\partial \mu_y > 0$: empirical studies show that the effect of emissions on production growth is positive.

Emission benchmark

- Let $t \to e_t$ be an emission trajectory for the firm (e.g. a SSP projection). It will serve as a benchmark of the effective emission $t \to \gamma_t$.
- Exceeding the benchmark can induce penalty or losses to the firm (carbon taxes or purchase of extra allowance through ETS)
- The penalty constraints are specified by using loss functions related to risk measures
- Let l: R → R be a loss function which is increasing and convex with initial value l(0) = 0 and quadratic growth, i.e.,
 l(x) = O(|x|²) as |x| → +∞.

Production profit vs emission constraint

 Firm's goal: maximize its production profit and manage the effective emission with trajectory constraints

$$J_{\infty}(\gamma) \coloneqq \mathbb{E}\left[\int_{0}^{\infty} e^{-rt} \left(\pi(P_{t}) - \mathcal{C}(\gamma_{t}) - \ell(\gamma_{t} - e_{t})\right) dt\right] \quad (1)$$

where

- r ≥ 0 a constant discount rate
- $\pi : \mathbb{R}_+ \to \mathbb{R}$: profit function increasing and concave, of class C^1 , and satisfying the Inada conditions $\lim_{x\to 0^+} \pi'(x) = +\infty$ and $\lim_{x\to+\infty} \pi'(x) = 0$
- C: ℝ₊ → ℝ₊: emission-related cost function increasing and convex meaning that higher emissions induce over-usage deterioration.

(日) (伊) (日) (日) (日) (0) (0)

Optimization problem

Aim to solve

$$\widehat{J} = \sup_{\gamma \in \mathcal{A}} J_{\infty}(\gamma)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where \mathcal{A} is the admissible strategy set such that $\mathbb{E}[(\int_0^\infty e^{-\eta t} \gamma_t dt)^2] < +\infty$ for some $\eta \in (0, r)$.

 \blacktriangleright Find the optimal effective emission strategy $\widehat{\gamma}$ of the firm.

Resolution by Pontryagin's maximum principle

- The optimisation problem can be solved by adopting the Pontryagin's maximum principle for the optimal strategy by using the method of Lagrange multipliers applied to a constrained optimization problem.
- Introduce the following change of variables: the log-production p_t := log P_t which solves

$$dp_t = \overline{\mu}(t, p_t, \gamma_t)dt + \sigma dW_t,$$

with $\overline{\mu}(t,x,y)\coloneqq \mu(t,e^x,y)-\frac{1}{2}\sigma^2$ and the auxiliary cost function

$$\overline{\pi}(x) \coloneqq \pi(e^x)$$

Optimal effective emission

- We characterize the solution of the infinite problem $J_{\infty}(\widehat{\gamma})$.
- Let

$$Y_t = \mathbb{E}\left[\int_t^\infty e^{-ru + \int_t^u \partial_x \overline{\mu}(t, p_s, \gamma_s) ds} \,\overline{\pi}'(p_u) du \middle| \mathcal{F}_t\right]$$

 \blacktriangleright The optimal effective emission $\widehat{\gamma}$ is then given as the solution of the following equation

$$\mathcal{C}'(\widehat{\gamma}_{t}) + \ell'\left(\widehat{\gamma}_{t} - e_{t}\right) = e^{rt}\partial_{y}\overline{\mu}\left(t,\widehat{p}_{t},\widehat{\gamma}_{t}\right)\widehat{Y}_{t}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Note that $\lim_{t\to+\infty} Y_t = 0$.

Alternative formulation with finite horizon

- Consider a final horizon time T > 0 (e.g. 2050) and include an extra cumulative emission penalty.
- Define cumulative benchmarked and effective emission

$$E_t = \int_0^t e_s ds, \qquad \Gamma_t = \int_0^t \gamma_s ds.$$

The objective function is

$$J_{\mathcal{T}}(\gamma) \coloneqq \mathbb{E}\left[\int_{0}^{T} e^{-rt} \left(\pi(P_{t}) - \mathcal{C}(\gamma_{t}) - \ell_{1}(\gamma_{t} - e_{t})\right) dt - e^{-rT} \ell_{2} \left(\Gamma_{T} - E_{T}\right)\right]$$

Solve

$$\widehat{J}_{\mathcal{T}} = \sup_{\gamma \in \mathcal{A}} J_{\mathcal{T}}(\gamma)$$

where \mathcal{A} is the admissible strategy set such that $\mathbb{E}[\Gamma^2_T] < +\infty$

ション ふゆ く 山 マ チャット しょうくしゃ

Optimal emission with finite time horizon

- The finite horizon problem can be solved in a similar way. The difference lies in the extra terminal constraint.
- The solution for $\widehat{J}_{\mathcal{T}} = J_{\mathcal{T}}(\widehat{\gamma})$ is characterized by the following linear BSDE

$$\begin{cases} dY_t^1 &= -\left(e^{-rt}\overline{\pi}'\left(p_t\right) + \partial_x\overline{\mu}\left(t, p_t, \gamma_t\right)Y_t^1\right)dt + dM_t^1, \\ Y_T^1 &= 0 \end{cases}$$

where M^1 is an \mathbb{F} -martingale, so that

$$\widehat{Y}_t^1 = \mathbb{E}\left[\left.\int_t^T e^{-ru + \int_t^u \partial_x \overline{\mu}(t,\widehat{p}_s,\widehat{\gamma}_s) ds} \,\overline{\pi}'(\widehat{p}_u) du\right| \mathcal{F}_t\right]$$

- The optimal emission $\widehat{\gamma}$ satisfies

$$e^{-rt}\left[\mathcal{C}'(\widehat{\gamma}_{t})+\ell_{1}'(\widehat{\gamma}_{t}-e_{t})\right]+\mathbb{E}\left[\left.e^{-r\mathcal{T}}\ell_{2}'\left(\widehat{\Gamma}_{\mathcal{T}}-E_{\mathcal{T}}\right)\right|\mathcal{F}_{t}\right]=\partial_{y}\overline{\mu}\left(t,\widehat{p}_{t},\widehat{\gamma}_{t}\right)\widehat{Y}_{t}^{1}$$

Emission-related credit risk

- Credit risk means the possibility and potential losses due to the incapacity of the firm to reimburse its debt obligations.
- In the structural approach of credit modelling, a firm defaults if its value is not sufficient to repay the debt liability.
- Our aim: analyse the emission impact on default probability.
- Describe the firm's value at a given date t by $V_t^{\widehat{\gamma}}$ and denote by L_t the liability value which will serve as the default barrier.
- > The default probability in Merton model is defined as

$$DP_t = \mathbb{P}(V_t^{\widehat{\gamma}} < L_t)$$

closed-form formula can be obtained for certain model specifications.

Firm's value process

 Define the value process of the firm by the so-called "discounted cash flow" approach

$$V_t^{\gamma} = \mathbb{E}\left[\int_t^{\infty} e^{-r(u-t)} \left(\pi(P_u) - \mathcal{C}(\gamma_u) - \ell(\gamma_u - e_u)\right) du | \mathcal{F}_t\right].$$

which is the conditional discounted value of all future cash flows depending on the effective emission γ .

- The firm will produce according to the optimal emission $\widehat{\gamma}$ and production \widehat{P} from the optimization procedure.
- The value process $V_t^{\widehat{\gamma}}$ associated to the emission $\widehat{\gamma}$ achieves the firm's optimal value $\widehat{V}_t = \operatorname{ess\,sup}_{\gamma \in \mathcal{A}(t,\nu)} V_t^{\gamma}$

Application with an explicit model

 To compute explicitly the value process, we choose respectively the profit, cost and penalty functions as

$$\pi(x) = Nx,$$
 $\mathcal{C}(x) = \frac{x^2}{2}$ and $\ell(x) = \omega \frac{(x_+)^2}{2},$

where

- ▶ $N \ge 0$ the average price for one unit of production
- $\omega \ge 0$ and the quadratic penalty to accentuate higher quantities of over-emission.
- Let the drift coefficient of the log-production p_t be

$$\overline{\mu}(t,x,y) = a + bx + cy,$$

where

- $a \ge 0$ corresponds to an average production level
- b ≤ 0 mean-reverting parameter that over-production may decrease the production ability
- ► $c \ge 0$ describes the dependence of production w.r.t. emission

Optimal emission

From the constrained infinite horizon optimization and supposing r – b > 0, we have

$$\widehat{\gamma}_{t} = \left(\mathcal{C}'(\cdot) + \ell'(\cdot - e_{t})\right)^{-1} \left(c \int_{t}^{\infty} e^{(b-r)(u-t)} du\right)$$
$$= \min\left\{\frac{c}{r-b}, \frac{1}{1+\omega}\left(\omega e_{t} + \frac{c}{r-b}\right)\right\}$$

The critical value

$$\overline{\gamma} \coloneqq \frac{c}{r-b}$$

is attained when $\omega = 0$, in case without penalty.

- If $e_t \ge \overline{\gamma}$, optimal emission remains at the constant level $\overline{\gamma}$ (no effort for the company).
- If e_t < 7, meaning a stricter mitigation plan, the optimal emission is an affine function of the benchmark.</p>

Default probability

 Given a SSP emission scenario and the associated optimal emission γ
 , the firm's value is

$$V_{t}^{\widehat{\gamma}} = N \int_{t}^{\infty} e^{-r(u-t)} \mathbb{E}[\widehat{P}_{u}|\mathcal{F}_{t}] du - \int_{t}^{\infty} e^{-r(u-t)} (\mathcal{C}(\widehat{\gamma}_{u}) + \ell(\widehat{\gamma}_{u} - e_{u})) du$$

=: $h(t, \widehat{p}_{t})$

where $h(\cdot, \cdot)$ is a deterministic function.

The default probability rewrites as

$$\mathbb{P}(V_t^{\widehat{\gamma}} \leq L_t) = \mathbb{P}(\widehat{p}_t \leq (h(t, \cdot))^{-1}(L_t))$$

= $\Phi\left(\frac{(h(t, \cdot))^{-1}(L) - e^{bt}p_0 - m_{t,0}}{\sigma_{t,0}}\right),$

since the optimal log-production \hat{p}_t is a Gaussian process $\hat{p}_t \sim \mathcal{N}(e^{bt}p_0 + m_{t,0}, \sigma_{t,0}^2)$ and Φ is the c.d.f. of $\mathcal{N}(0,1)$.

Numerical illustration

- ▶ We illustrate relevant results for the Energy sector.
- The input are SSPs annual historical and future projection of CO2 emissions from 2015 to 2100
- We consider 5 different emission benchmark scenarios (including 3 baseline scenarios and 2 new pathways) and deduce corresponding default probability.
- The liability boundary L_t is specified at the level where there is no climate impact by

$$\mathbb{P}(\widehat{V}_t^{\text{ref}} \leq L_t) = 1 - e^{-\lambda_{\text{ref}}t},$$

where $\lambda_{\rm ref}$ is a reference value for default intensity chosen to be 3%, and $\widehat{V}_t^{\rm ref}$ corresponds to the optimal value without emission constraint, i.e., $\omega = 0$.

Energy sector

Figure: SSPs emission scenarios e_t up to 2100 (top left), Optimal effective emission $\widehat{\gamma}_t$ (top right), Production difference $\overline{P}_t(\omega = 0) - \widehat{P}_t$ (bottom left), Value process difference $\widehat{V}_t(\omega = 0) - \widehat{V}_t$ (bottom right).

★@ ▶ ★ 臣 ▶ ★ 臣 ▶ → 臣 → の Q @

Default probability and intensity for Energy sector

Figure: Default probability up to 2050 (left), Default intensity (right).

- The emission reduction projection has an instantaneous impact on default probability and intensity of the firm:
 - a larger mitigation scenario may imply an increase in the default intensity
 - facing a stricter constraint, the firm chooses to reduce its production and the firm's value decreases accordingly
 - without emission effort, the default intensity remains at the initial level

The aggregation of loss distribution

The cumulative loss of a portfolio is given by

$$\mathcal{L} = \sum_{i=1}^{n} \ell_i Y_i$$

- *n*: number of obligors $(n \ge 10^5 \text{ or } 10^6)$
- ℓ_i : loss given default of the *i*th obligor
- $Y_i = 1$ if the *i*th obligor defaults or 0 otherwise
- ▶ In previous model, $Y = 1_{\{\hat{p}_t \le (h(t, \cdot))^{-1}(L(t))\}}$ with optimal log-production \hat{p}_t a Gaussian process

Our objective:

 Extend the previous model for multiple default times which depend on SSP scenarios

Compute the loss distribution for credit risk measures
 Difficulty: any Monte-Carlo (MC) simulation scheme is hugely
 time-consuming.

Gaussian factor model

- For large credit portfolio, defaults are generically modeled by $Y_i = 1_{\{X_i \le c_i\}}$
 - c_i the default threshold for the *i*th obligor
 - Dependence between obligors achieved through the correlated stochastic factors X_i
- More precisely, for one-factor Gaussian copula,

$$X_i = \rho_i Z + \sqrt{1 - \rho_i^2} \epsilon_i$$

- $Z \sim \mathcal{N}(0, 1)$ systemic risk factor (economy).
- $(\epsilon_i)_{i=1\cdots n} \sim \mathcal{N}(0,1)$ idiosyncratic risks i.i.d and independent from Z.
- ρ_i : correlation parameter.
- For multi-factors: as many Z as different sectors
- ► To simplify now: single factor and positive correlation.

Extension of SSP-related credit model

 We generalize the previous model to *n* firms whose production is given by

$$dP_t^i = P_t^i \Big(\mu_i(t, P_t^i, \gamma_t^i) dt + \sigma_i dW_t^i \Big), \quad P_0^i > 0$$

and decompose $dW_t^i = \rho_i dB_t + \sqrt{1 - \rho_i^2} dB_t^i$

Using previous optimization results, the total loss rewrites as

$$\mathcal{L}_{t} = \sum_{i=1}^{n} \ell_{i} \, \mathbb{1}_{\{\hat{p}_{t}^{i} \leq (h^{i}(t, \cdot))^{-1}(L_{i}(t))\}}$$
$$= \sum_{i=1}^{n} \ell_{i} \, \mathbb{1}_{\{m_{t}^{i} + \int_{0}^{t} a_{s}^{i} dB_{s}^{i} \leq \int_{0}^{t} b_{s}^{i} dB_{s}\}}$$

ション ふゆ アメリア メリア しょうくの

with m^i , a^i and b^i some explicit and adapted processes

The Wiener (polynomial) chaos expansion

• Let $Z \sim \mathcal{N}(0,1)$ and a measurable function $\varphi : \mathbb{R} \to \mathbb{R}$, s.t. $\mathbb{E}[\varphi^2(Z)] < +\infty$. Then $\varphi(Z)$ can be decomposed into L_2 as

$$\varphi(Z) = \sum_{k=0}^{\infty} \alpha_k \operatorname{He}_k(Z), \quad \alpha_k = \mathbb{E}\left[\varphi(Z)\operatorname{He}_k(Z)\right]/k!.$$

where He_k : Probabilistic Hermite polynomial of degree $k \in \mathbb{N}$.

Three-term recurrence relation :

 $\operatorname{He}_0(x)=1, \, \operatorname{He}_1(x)=x, \, \operatorname{He}_{k+2}(x)=x \operatorname{He}_{k+1}(x)-(k+1) \operatorname{He}_k(x).$

Theorem

The indicator function has an explicit Wiener chaos expansion: for any $c \in \mathbb{R}$,

$$1_{c\leq Z} = \sum_{k=0}^{\infty} \alpha_k(c) \operatorname{He}_k(Z), \quad \alpha_0(c) = \Phi(-c), \quad \alpha_k(c) = \frac{e^{-\frac{c^2}{2}} \operatorname{He}_{k-1}(c)}{\sqrt{2\pi}k!}.$$

The equality holds for all $Z \neq c$ and the convergence is uniform on compact set excluding c (Uspensky theorem).

Chaos expansion of the loss

- Denote the loss by $\mathcal{L} = \sum_{i=1}^{n} \ell_i \mathbf{1}_{\{a_i \in i + b_i \leq Z\}}$.
- Applying the chaos expansion :

$$\mathcal{L} = \sum_{i=1}^{n} \ell_i \sum_{k=0}^{\infty} \alpha_k (a_i \epsilon_i + b_i) \operatorname{He}_k(Z) = \sum_{k=0}^{\infty} \epsilon_{n,k} \operatorname{He}_k(Z),$$

where : $\epsilon_{n,k} = \sum_{i=1}^{n} \ell_i \alpha_k (a_i \varepsilon_i + b_i).$

• The truncation up to $I \in \mathbb{N}$ gives the *I*-chaos decomposition :

$$\mathcal{L}_{I} = \sum_{k=0}^{I} \epsilon_{n,k} \operatorname{He}_{k}(Z).$$

- There exists C > 0 s.t. $\mathbb{E}\left[\left|\mathcal{L} \mathcal{L}_{I}\right|^{2}\right] \leq C \frac{\left(\sum_{i=1}^{n} \ell_{i}\right)^{2}}{\sqrt{I}}$.
- ▶ The approximation is better for larger number of obligors *n*.

Conclusion

So far :

- Quantitative model of the impact of emission transition risk on credit risk, while accounting for the adaptation of the firm to climate policies
- Flexible model setup that takes future emission projection pathways as input and computes the associated default probability
- Large portfolio loss via Polynomial Chaos Expansion allows to significantly reduce computational time (many Gaussian characteristics can be computed off-line)

What's next?

- Needs for multidimensional PCE for different sectors (experiments in progress)
- Needs for physical risks too
- Needs for more accurate financial statements and balance sheet of the firm.

Thank you for your attention!