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1. Problem

2 .
32(:2;’() — AU(t, X) + o(t, x, u(t, x))W, t>0,x€R.

2
A= 85’)(2 is the Laplacian and ¢ : R — R is a nice function

(Lipschitz).

@ initial condition u(0, x) = up(x) and gu(o,x) = v(x) are
nice.

o W= arax is centered Gaussian field with covariance

E(W(s,)W(t.y)) = o(s—t)}x—y[PH2.

Here1/4 < H<1/2
@ The product o(u) W is taken in Skorohod sense.



Stochastic integral

For a function ¢ : Ry x R — R, the Marchaud fractional
derivative D° is defined as:

DPo(t,x) = Isiingaqﬁ(t,x)

. B < o(t,x) — ¢(t, x +y)
B L T Al

The Riemann-Liouville fractional integral is defined by

Pt x) = r(1m / T ot )y — x)*dy.



Set

1_
H={¢:R,xR - R| 3 e AR, xR) s.t. p(t,x) = 2"

w(t, x)}-

Proposition

H is a Hilbert space equipped with the scalar product

(6,6} = Cr1 / Fols. &) Fi(s, €)|e|'2Mdeds

R+XR

1_H 1_H
— on [ D Ma(t0DE it Xt
R+XR

= &y /Rg[(b(x +¥) — o[ (x + y) — w(x)]|y 2" 2dxdy ,



where
1 .
Cl,H = Zr(2H+1)Sln(7rH),
N ([ H-1 _ H-112 1\
Cop = [F<H+2)] (/O (1 + 13— 4] dt+2H> ,
1 _
G5 = (E_B)BC&;B

The space D(R; x R) is dense in H.



Definition
An elementary process g is a process of the following form

n m
gt x)=>> " Xij1(an) (D (%),

i=1 j=1

where n and m are finite positive integers,

—oo< a <by<---<ap<by<oo, hj <l and X;; are
Fa-measurable random variables for i = 1,...,n. The
stochastic integral of such an elementary process with respect
to W is defined as

n m
/ / gt x)W(dx,at) = > XijW(1(a,61  1n0)
Ry JR i=1 j=1
n m
=YD X [W(bi, ) — W(a, ) — W(bi, hy) + W(ay, hy)].
i=1 j=1



Definition

Let Ay be the space of predictable processes g defined on

R, x R such that almost surely g € H and E[||g||2] < oc. Then,
the space of elementary processes defined as above is dense
in Ay.

For g € Ay, the stochastic integral fRMR a(t,x)W(dx, dt) is
defined as the L?(Q)-limit of stochastic integrals of the
elementary processes approximating g(t, x) in Ay, and we
have the following isometry equality

E ([ [ ettowiar dt)f) — = (lgl)

=y [ [ Blottx+y) — a(t. 0PIy P2yt



Definition (Strong solution)

(t, x) is a strong (mild random field) solution if for all t € [0, T]
and x € R the process {Gt—s(x — y)o(u(s,y¥))1j0,q(S)} is

integrable with respect to W, where Gi(x) := 21{|X‘<t} is heat
kernel, and

u(t,x) = h(t, x) / / Gr_s(x — y)o(s, v, u(s, y)) W(dy, ds)

(1)
almost surely, where

0
Io(t, x) := 52 G * Uo(X) + Gt * Vo(x)
1 X+t 1
=3 Vo(y)dy + 5[uo(x +1) + uo(x — 1)].
x—t



Definition (Weak solution)

We say the spde has a weak solution if there exists a
probability space with a filtration (Q, 7, P, 7;), a Gaussian noise
W identical to W in law, and an adapted stochastic process
{u(t,x),t>0,x € R} on this probability space (Q, F, P, F;)
such that u(t x) is a strong (mild) solution with respect to
(Q,7,P,F)and W.



Want to study the existence and uniqueness of the solution
(strong or weak).



2. Main results

Solution space

Let (B, || - |g) be a Banach space with the norm || - ||5 (we take
B =% — H). Let 8 € (0,1) be a fixed number. For any function
f: R — Bdenote

NEBH(x) = (/ 1f(x + h) — f(x)HZB]h‘1‘25dh>2 ., (2
R

if the above quantity is finite. When B = R, we abbreviate the
notation as N3f. With this notation, the norm of the
homogeneous Sobolev space H? can be given by using Npf:

1y, = IN3Flc2gmy-



We are particularly interested in the case B = LP(Q).
|
Npf() 1= ([ 180+ ) = H0) gy 120 )

Definition of the solution space ZP(T).

It consists of all continuous functions f from [0, T] x R to LP(Q)
such hat the following norm is finite:

1l zo(ry = 1l zo(r) + Il 227 (3)
= sup ||f(t,- + sup N7 (1),
o 17t )] e ) o M- (1)

where ||f(t, - HLP(QxR [ [RE[f tx)|p]dx] and

N‘ _uf [/ [#(t, -+ h) — £(t, HLp(QxR)WZH 2dh

It is proved that Z,(T) is a Banach space.



(1). o(t, x, u) is jointly continuous over [0, T] x R?,

U(ta X, 0) - 0
(2). Assume
sup EO-(Z"X7 U) <
t€[0,T],x€R,ueR 0
32
sup o t7 x,u)| <
te[0, T],xeR,uck | OXOU ( )

0 9
Fg0(LX,un) — 5 o(t, X, U2)

o ou

te[0,T],xeR




Theorem

Assume that o(t, x, u) satisfies the above hypothesis and that
lo(t, x) is in ZP(T) for some p > ;2. Then the nonlinear SWE
has a unique strong solution with sample paths in C([0, T] x R)
almost surely. Moreover, forany v < H — %, the process u(t, x)
is almost surely Hélder continuous of exponent v with respect
fo t and x on any compact sets in [0, T| x R.



Theorem

If the hyperbolic Anderson model has a solution in ZP(T) for

some p > 2 and for some T > 0, then the Hurst parameter H
must satisfy H > 1/4.



3. Difficulty

Naive application of Picard iteration (v = u"t! and u = u"):

t
v(tx) = b(t.) + [ [ Greslx—y)a(s.y.uls.y)) W(dy.ds)
Then following isometry equality
E (V(t,x)) = €(x)

t
sy [ [ BIGeslx—y - 2ols.y+ 2 u(s.y + 2)
0 JR
—Gt s(x—y)a(s,y, u(s,y))]?|z[*" 2 dydzds

c3H/ / EG? ((x — y)|u(s,y + z) — u(s, y)|?|z|*"2dydzds



This means that to make the Picard iteration work we need to
bound

// EG? 4(x — y)|u(s,y + z) — u(s, y)|?|z|*H~2dydzds

as well.



If o(t, x, u) = o(u), then we may bound E (|v(t, x + h) — v(x)|?)
by

o(v(s,y+h+2))—o(v(s,y+h)) —o(v(s,y + 2))+a(v(s,y))
If we want to consider

E (Jvi(t,x + h) — v4(x) — va(t, X + h) + v2(x)|?) then we need
to consider

the difference of
o(vi(s,y+h+2z))—o(vi(s,y+h))—o(vi(s, ¥y +2))+o(vi(s,¥))
and

o(va(s,y+h+2))—o(va(s,y+h)) —o(va(s,y +2))+o(va(s, y))
One difficulty is that we cannot no longer bound

lo(x1) — a(x2) — o(y1) + o(y2)| by a multiple of
|X1 — X2 — y1 + yo| (Which is possible only in the affine case).



4. Background

When H > 1/2 or when the noise is more regular, the equation
was studied by many researchers.

R. Dalang, M. Sanz, C. Mueller, D. Nualart,
o(u)=au+b: H>1/4.
Balan, R.; Jolis, M. and Quer-Sardanyons, L.

SPDEs with affine multiplicative fractional noise in space with
index § < H < J.

Electronic Journal of Probability 20 (2015).

Jian Song, Xiaoming Song, and Fangjun Xu

Fractional stochastic wave equation driven by a Gaussian noise
rough in space.



aug;X) = Au(t,x) + o(t, x,u(t, X)W, t>0,x€eR.

General o(u) but with ¢(0) = 0.

Hu, Yaozhong; Huang, Jingyu; Le, Khoa; Nualart, David;
Tindel, Samy

Stochastic heat equation with rough dependence in space.

Ann. Probab. 45 (2017), 4561-4616.



The condition (¢, x,0) = 0 is removed for the stochastic heat
equation in

Hu, Y. and Wang, X.
Stochastic heat equation with general rough noise.

Ann. Inst. Henri Poincaré Probab. Stat. 58 (2022), no. 1,
379-423.

Let uu(t, x) be the solution to the stochastic heat equation with
o(t,x,u) =1and up(x) = 0:

ou(t, x)
ot

= %Au(t,x)Jr W, t>0,xeR.



Then, there are two positive constants ¢y and Cy, independent
of T and L, such that

0<t<T
—L<x<L

CHP(T7 L) <E ( sup Uaff(t,X))

<E< sup Uaff(t7x)) < CHP(T7 L)a
0<t<T
_I[<x<L

where

H H

Tz + Tz, /logy || ifL2>T
aT.={ T o8 | fy] 12>,

Tz if[2<T.



5. Some ideas

We need to to use localization argument.

0<s<t,xeR

Tk:inf{te[o, T]; sup N%_Hypu(s,x)‘ zk} .

We need 74 1 T as k — oo. This imposes o(t, x,0) = 0.



To show this we need to bound

E
0<t<T xeR

p
sup |N%7H7pu(s,x| ] :

Because the equation satisfied by the mild solution u, we need
to bound

E

sup |AS Gs—r(X_Y)U(r7Ya u(ny))W(dr, dy)‘p] :

0<t<T ,xeR

But
*(sx) - | " Gar(x — y)o(r.y. u(r.y))W(d. dy)

is not a martingale. We cannot use the
Burkholder-Davis-Gundy inequality.



In the case of heat equation one can use the semigroup
property of the heat kernel.

o(t x) = SN // 1°1 G (x — 2)Y(r, 2)dzdr
with
Vo) - [ r =8y Grslz — y) (s, Wids. ).

Then

(L, x)| <C </Ot (/R(t_ r)p(a”Gfr(X—z)dz) dl’>1/p
(/ot/R 1Y(s, z)qdzdr>1/q ,



Of course we need to bound something like

|®(t, x + h) — d(t, x)|



The wave kernel Gi(x) = %1{‘X|<t} can be expressed as
Gi_s(x —y) —/Rcﬁ(t —r,X—2)S1_p(r—s,z—y)dz
+/RSa(t —r,Xx—2)Ci_o(r—s,z—y)az
+/RS(t—r,x—z)5(r—s,z—y)dz

+/E(t—r,x—z)S(r—s,z—y)dz,
R



where Oé,,B S (07 1), S(t,X) = S1(t,X) = Gt(X) = %1{\x|<t} and

EX) =
Salt,x) = r(12; ) cos [%} ((t+ PO
+san(t = et~ x| ).
Cralt,X) = réfr‘) [cos [ ] Tlt+ DXl =+ = 11

— 2cos [atan { |” [t2+x2]] (5)



Forany 0 € (0,1)andi=1,2,3,4, set

Jyi(r,z) = /Or/R(r —8) Ki(r — s,z — y)v(s,y)W(dy, ds),
(6)

where
K1 =Cq, Ko=8,, K3=38, and Iy = €£.

And we define K; to be the complements of K; according to (4),
namely,

/61 =S1_a, ’62 =Ci_a, /63 =¢&, and /64 =S.



(1, x)

:/t/ Gr_s(x — y)V(s, y) W(ds, dy)

_sin(fm) /// )~ dr 7)

x Gi—s(X — y)v(s,y)W(dy, ds)

24:5'"077//// s)'Ki(t —r,x — z)

i=1
Ki(r— s,z —y)dzdr x v(s,y)W(dy, ds)

4
> sin(0m / /(t— N Ki(t — r,x — z)J)(r, z)dzdr
: m 0 JR

4
Zcb,(t, x), (8)



where we have applied the identity

t T
/S(t—r)e r—9)for = oo 0e(0).0<s <t



By the Holder inequality with 1/p+1/q =1

sup  |®i(t, x)|
0<t<T,x€R
1

t
< sup / (t—r)?1 [/ \Ki(t—r,x — z)\qdz] ’
tx Jo R

x i (r, 2) | oy dr

1
t :
g[sup//rq<9_1)\15,-(r,z)|qdzdrr
t 0 JR
1
K; 4
[/ 5. 2) e ]

=)V x ([P, 9)



t
/1(1):sup/ /rqw_1)81_a(r,z)|qdzdr
t Jo Jr

S (sup /trq[9—1_a+;] dr>
t Jo

o0 o q
x/ 1+ 127 + sign(1 — |z)[1 — || " dz.
0

In order to make sure the above integrals converge, we need
1 1
ag<1, (a+1)g>1 & O<a<—-—=1-——, (10)
q p
and also

q[@—a—1+1]>—1 & 9>1_E+a_ (11)
q q

Do the same for other ones.



Use notation ©,®(t, x) := &(t, x + h) — &(t, x) and same
notations for ®,K;(t — r, 2), @hJ '(r,z). Then
)

Z// Ne=19,Ki(t —r,x — 2)
Jéc (r,z)dzadr

t
= Z/ /(f — )Rt —r,x — z)@hJéC"(r, z)dzdr,

—Jo Jr
(12)

D,0(1, x sm (07

By Minkowski’s inequality and then Holder’s inequality we get

1
sup [/ |®h¢(t,x)|2|h2""2dh] ’
R

t,x

<
Nstl,pr Z( R

(t—nr’"Ki(t—r,x — 2)




2 2
: \h|2H2dh>

X D hJéC" (r,z)dzadr

<supZ// N=Ki(t —r,x — z)|

1
, ;
x V Dndy(r.2) |h|2H—2dh]2 dzdr
R

1

t '

<Z(sup / /rq(9—1)‘lﬁ,-(r,z)‘qdzdr>q

t 0 JR
2 5 b
[ / / ( / ‘@hJéC’(r,z)‘ |h|2H‘2dh> dzdr]
R

= ()7 x (JP)s .

]




The first factor (J,-(”)fl? is finite under some appropriate choice
of parameters.

The proof of the following is more involved:

([t o o

under the conditions

w

p > —2/g+a<b<2H+a—-1, —2H<a<1—;.

2

T/-
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