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Itô’s formula

• Let X = (Xt)t≥0 be a (continuous) semi-martingale with
decomposition X = A + M, and u : R+ × Rd −→ R be in C 1,2,
then

u(t,Xt) = u(0,X0) +

∫ T

0
Du(s,Xs)dMX

s

+

∫ t

0
∂tu(s,Xs)dt +

∫ t

0
Du(s,Xs)dAX

s

+

∫ t

0

1
2
D2u(s,Xs)d〈X 〉s .
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Application 1 : Option pricing and replication

• Financial market with underlying B = (Bt)t∈[0,T ], which is a
Brownian motion, the interest rate r = 0. We consider a derivative
option with payoff g(BT ).

• Option pricing and replication : let

u(t, x) := E
[
g(BT )

∣∣Bt = x
]
, (t, x) ∈ [0,T ]× Rd ,

it solves the heat equation

∂tu +
1
2

∆2u = 0.
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Application 1 : Option pricing and replication

Theorem

Assume that u(t, x) := E[g(BT )|Bt = x ] ∈ C 1,2([0,T ]× R).
Then one can replicate the option g(BT ) with initial wealth
u(0,B0) and dynamic trading strategy Du(t,Bt).

Then by Itô’s formula,

du(t,Bt) = Du(t,Bt)dBt +
(
∂tu +

1
2

∆u
)

(t,Bt)dt

= Du(t,Bt)dBt .

Then one obtain a self-financial portfolio to replicate the option :

g(BT ) = u(0,B0) +

∫ T

0
HtdBt , Ht = Du(t,Bt).
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Application 2 : Optimal control and verification theorem

• An optimal control problem

sup
α

E
[ ∫ T

0
L(Xt , αt)dt + g(XT )

]
,

with
dXt = αtdt + dWt .

• The value function v : [0,T ]× Rd solves the HJB equation

∂tv(t, x) +
1
2

∆v(t, x) + H(x ,Dv(t, x)
)

= 0, v(T , ·) = g(·),

with Hamiltonian

H(x , p) := sup
a

(
L(x , a) + a · p

)
.
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Application 2 : Optimal control and verification theorem

Theorem (Verification Theorem)

Let v : [0,T ]× Rd −→ R be a smooth solution to the HJB
equation, and â(t, x) be the optimizer in the definition of the
Hamiltonian, then â(t,Xt) is an optimal (feedback) control.

• Proof : By Itô’s formula

v(T ,XT ) = v(0,X0) +

∫ T

0
∂tv(t,Xt) +

1
2

∆v(t,Xt) + Dv(t,Xt) · αtdt

+ Dv(t,Xt)dWt .

⇒ v(0,X0) = g(XT ) +

∫ T

0
L(Xt , αt)dt −

∫ T

0
Dv(t,Xt)dWt

+

∫ T

0

(
H(·,Dv(·))− αtDv − L(·, αt)

)
(t,Xt)dt.
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Application 3 : Super-hedging in incomplete market

•We consider an uncertain volatility model : let Ω := C ([0,T ],R)
be the canonical space with canonical process X ,

M(t, x) :=
{
P : Xt = x , dXs = σsdWs , a ≤ σ2

s ≤ a, P-a.s.
}
.

Let g(XT ) be the payoff of some derivatives, we define

v(t, x) := sup
P∈M(t,x)

EP[g(XT )].

Then v solves the HJB equation

∂tv + H(D2v) = 0, with H(D2v) :=
1
2

sup
a≤a≤a

a D2v .
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Application 3 : Super-hedging in incomplete market

Theorem (Pricing-hedging duality)

One has the pricing-hedging duality :

v(0, x0) = inf
{
y : y+

∫ T

0
HsdXs ≥ g(XT ), P-a.s. ∀P ∈M(0, x0)

}
.

and the optimal (dynamic) super-replication strategy is Dv(t,Xt).

• By Itô’s formula,

g(XT ) =v(T ,XT ) = v(0, x0) +

∫ T

0
Dv(t,Xt)dXt

+

∫ T

0

(
∂tv +

1
2
σ2
tD

2v(t,Xt)
)
dt

≤ v(0,X0) +

∫ T

0
Dv(t,Xt)dXt
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Itô’s formula of path-dependent functionals

• Let Ω := D(R+,Rd) be the space of càdlàg paths, for a
path-dependent functional F : R+ × Ω −→ R, we introduce the
horizontal derivative

∂tF (t, ω) := lim
h↘0

F (t + h, ωt∧·)− F (t, ω)

h
,

and the vertical derivative

∂ωF (t, ω) := lim
x→0

F (t, ω ⊕t x)− F (t, ω)

x
,

and the similarly the second order vertical derivative ∂2
ωωF (t, ω).
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Itô’s formula of path-dependent functionals

• Let X = AX + MX be a continuous semi-martingale and
F : Ω −→ R be in C 1,2. Then

dF (t,X ) = ∂tF (t,X )dt + ∂ωF (t,X )dAX
t +

1
2
∂2
ωωF (t,X )d〈MX 〉t

+ ∂ωF (t,X )dMX
t .

• Dupire (2009), Cont and Fournié (2013), etc.

• Peng (2010), Ekren, Keller, Touzi, Zhang (2014), etc.
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Itô’s formula along flows of conditional measures

• Let X be semi-martingale with dXt = αtdt + σdWt + σ0dBt , and
define

ρt := L(Xt |B), t ≥ 0.

Let F : R+ × P2(Rd) −→ R be in C 1,2. Then

dF (t, ρt) =
(
∂tF (t, ρt) + E

[
αt · DmF (t, ρt ,Xt)

∣∣B]
+

1
2

(σ2 + σ2
0)ρt

(
∂xDmF (t, ρt , x)

)
+

1
2
σ2

0 ρt ⊗ ρt
(
D2
mF (t, ρt , x , x

′)
) )

dt

+ E
[
σ0DmF (t, ρt ,Xt)

∣∣B]dBt .

See e.g. Buckdahn, Li, Peng and Rainer (2017), Carmona and
Delarue (2018).
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Itô calculus via regularization (Russo, Vallois, etc.)

• Let X be a càdlàg process, H ∈ L1([0,T ]), the forward integral of
H w.r.t. X is defined by∫ t

0
HsdXs := lim

ε↘0

1
ε

∫ t

0
Hs(X(s+ε)∧t − Xs)ds, t ≥ 0.

• Let X and Y be two càdlàg processes, the co-quadratic variation
[X ,Y ] is defined by

[X ,Y ]t := lim
ε↘0

1
ε

∫ t

0
(X(s+ε)∧t − Xs)(Y(s+ε)∧t − Ys)ds.

• The limits are defined in sense of “uniformly on compacts in
probability” (u.c.p.).

When X and Y are càdlàg semimartingales and H is càdlàg and
adapted, they are well defined and coincide with the usual Itô
integral.
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Itô calculus via regularization (Russo, Vallois, etc.)

•Weak Dirichlet process :
A càdlàg process A is called is called (martingale) orthogonal
(with weak zero energy), if [A,N] = 0 for all continuous
martingale N.
A càdlàg process X is called a weak Dirichlet process if it has
the decomposition

Xt = X0 + Mt + At ,

where M is a local martingale, A is (martingale) orthogonal.

Theorem (e.g. Gozzi and Russo (2006))

Let X = M + A be a continuous weak Dirichlet process and
f ∈ C 0,1([0,T ]× Rd), then f (t,Xt) is also a weak Dirichlet
process with the (unique) decomposition

f (t,Xt) =

∫ t

0
Df (s,Xs) · dMs + Γt .
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Extension 1 : A C 1-functional Itô’s formula

Theorem (Bouchard, Loeper and Tan (2022))

Let X = M + A be a continuous weak Dirichlet process and
F ∈ C 0,1([0,T ]× Ω). Under an additional continuity condition,
F (t,X ) is also a weak Dirichlet process with the (unique)
decomposition

F (t,X ) =

∫ t

0
∂ωF (s,X )dMs + ΓF

t .

• Motivation and applications (in mathematical finance) : pricing,
hedging and super-hedging of path-dependent options.

• For càdlàg weak Dirichlet processes, a C 1-Itô’s formula is
provided in Bouchard and Vallet (2021).
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Extension 2 : A C 1-Itô formula along conditional measures

Let Yt = AY
t + MY

t be a weak Dirichlet process, and
Xt = X0 + At + Mt +

∫ t
0 σ
◦
s dM

◦
s be a continuous semi-martingale.

Assume that the sub-filtration (Gt)t≥0 generated by M◦ satisfies
the (H)-Hypothesis, and

mt := L(Xt |Gt), t ≥ 0.

Theorem (Bouchard, T. and Wang, 2023)

Let F : R+ × Rd × P(Rd) −→ R lie in C 0,1,1, and assume some
local square-integrability conditions. Then F (t,Yt ,mt) is a weak
Dirichlet process with the (unique) decomposition :

F (t,Yt ,mt) =

∫ t

0
DyF (s,Ys ,ms)dMY

s

+

∫ t

0
E
[
DmF (s, y ,ms ,Xs)σ◦s

∣∣Gs]y=Ys
dM◦s + Γt .
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Technical proofs

• Step 1 : define

Γt := F (t,Yt ,mt)−
∫ t

0
DyF (s,Ys ,ms)dMY

s

−
∫ t

0
E
[
DmF (s, y ,ms ,Xs)σ◦s

∣∣Gs]y=Ys
dM◦s .

Step 2 : check that, for any continuous martingale N,

[Γ,N]t := lim
ε↘0

1
ε

∫ t

0
(Γs+ε − Γs)(Ns+ε − Ns)ds = 0.
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Application 1 : Option pricing and replication

Theorem (Replication of options)

Assume that u(t, x) := E[g(BT )|Bt = x ] ∈ C 0,1([0,T ]× R).
Then one can replicate the option g(BT ) with initial wealth
u(0,B0) and dynamic trading strategy Du(t,Bt).

Proof : 1. By C 1-Itô’s formula,

u(t,Bt) = u(0,B0) +

∫ t

0
Du(s,Bs)dBs + Γt ,

where Γ satisfies [Γ,N] = 0 for any continuous martingale N.

2. By its definition, (u(t,Bt))t∈[0,T ] is a martingale, so Γt ≡ 0.
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Application 3 : Super-hedging in incomplete market

• Recall that Ω := C ([0,T ],R) is the canonical space, X is the
canonical process, and

M(t, x) :=
{
P : Xt = x , dXs = σsdWs , a ≤ σ2

s ≤ a, P-a.s.
}
.

With the payoff g(XT ) of the derivative, we define

v(t, x) := sup
P∈M(t,x)

EP[g(XT )].

Theorem (Pricing-hedging duality)

If v ∈ C 0,1, then

v(0, x0) = inf
{
y : y+

∫ T

0
HsdXs ≥ g(XT ), P-a.s. ∀P ∈M(0, x0)

}
.

and the optimal (dynamic) super-replication strategy is Dv(t,Xt).
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Application 3 : Super-hedging in incomplete market

• Step 1 : By C 1-Itô’s formula, for any P ∈M(0, x0),

v(t,Xt) = v(0, x0) +

∫ t

0
Dv(s,Xs)dXs + Γt , t ∈ [0,T ] P-a.s.

• Step 2 : By dynamic programming principle, (v(t,Xt))t∈[0,T ] is a
P-super-martingale for all P ∈M(0, x0), so that by Doob-Meyer
decomposition,

v(t,Xt) = v(0, x0) + Mt−At , t ∈ [0,T ],P-a.s.

Therefore, Γt = −At ≤ 0, P-a.s. for all P ∈M(0, x0), and hence

g(XT ) ≤ v(0, x0)+

∫ T

0
Dv(s,Xs)dXs , P-a.s. for all P ∈M(0, x0).
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Applications : replication and super-replication of
path-dependent options

• The above two theorems can extended to the path-dependent
setting with the C 1-functional Itô’s formula, in order to find the
replication or super-replication strategy of the path-dependent
options.

• This is also the initial intuition and motivation in Dupire (2009)
to introduce the horizontal and vertical derivatives of the
path-dependent functionals.
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Application 2 : Verification theorem by C 1-Itô’s formula

• A classical optimal control problem under weak formulation :

sup
P∈P

EP
[ ∫ T

t
L(t,Xt , α

P
t )dt + g(XT )

]
,

with
dXt = αP

t dt + dW P
t , P-a.s.

• Define the value function V (t, x) by

V (t, x) := sup
P∈P(t,x)

EP
[ ∫ T

t
L(t,Xt , α

P
t )dt + g(XT )

]
.

Under mild conditions, V is a (viscosity) solution to the
corresponding HJB equation.
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Application 2 : Verification theorem by C 1-Itô’s formula

Theorem

Assume that V ∈ C 0,1, and P̂ be such that αP̂
t = â(t,Xt), where

â(t, x) := arg max
a

(
L(t, x , a) + a · DV (t, x)

)
.

Then P̂ is an optimal control.

• Dual Formulation 1 :

D1 := inf
{
v0 : v0 +

∫ T

0
φtdXt ≥ g(XT ) +

∫ T

0

(
αP
s φs + L(αP

s ,Xs)
)
ds,

P-a.s. for all P
}
,

• Dual Formulation 2 :

D2 := inf
{
v0 : v0+

∫ T

0
φtdXt ≥ g(XT )+

∫ T

0
H(t,Xt , φt)dt, a.s.

}
.

Xiaolu Tan C1–Itô’s formula and its applications
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Application 2 : Verification theorem by C 1-Itô’s formula

• Step 1 of the Proof : First, one has the weak duality :

V (0, x0) ≤ D1 ≤ D2.

Next, V (t,Xt) +
∫ t
0 L(s,Xs , α

P
s )ds is a P-super-martingale by the

dynamic programming principle. Its Doob-Meyer decomposition
coincides with the C 1-Itô’s formula, so that

V (0, x0)+

∫ T

0
DV (t,Xt)dXt ≥ g(XT )+

∫ T

0

(
L(Xt , α

P
t )+DV (t,Xt)·αP

t

)
dt.

This proves the duality :

V (0, x0) = D1.

By the optimality of αP̂, one further has

V (0, x0) = D1 = D2.
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Application 2 : Verification theorem by C 1-Itô’s formula

• Step 2 of the Proof : One can identify that the optimizer of D2 is
given by (v0, φ) = (V (0, x0),DV (·,X·)). By a classical duality
argument, one must have

V (0, x0)+

∫ T

0
DV (t,Xt)dXt = g(XT ) +

∫ T

0
H(t,Xt ,DV (t,Xt))dt

= g(XT ) +

∫ T

0

(
L(t,Xt , α

P̂
t ) + DV (t,Xt) · αP̂

t

)
dt, P̂-a.s.

This shows that P̂ is an optimizer, which concludes the proof.
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Verification theorem by C 1-Itô’s formula in the
McKean-Vlasov setting

• A McKean-Vlasov optimal control problem :

sup
α

E
[ ∫ T

0
L(t, ρt , αt)dt + g(ρT )

]
,

where

ρt := L(Xt |B), dXt = αtdt + σdWt + σ0dBt .

• The value function becomes a function of probability measures

(t, µ) ∈ [0,T ]× P(Rd) 7−→ V (t, µ) ∈ R.
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Verification theorem by C 1-Itô’s formula in the
McKean-Vlasov setting
• The value function V satisfies the HJB equation becomes

∂tV (t, µ) + LV (t, µ) + H
(
t, µ,DmV (t, µ, ·))

)
= 0,

with Hamiltonian

H
(
t, µ,DmV (t, µ, ·)

)
:= sup

a

{
L(t, µ, a) + aµ

(
DmV (t, µ, ·)

)}
.

Theorem

Assume that V ∈ C 0,1 and satisfies some growth condition, then
the optimizer â(t, µ) in the definition of the Hamiltonian

H
(
t, µ,DmV (t, µ, ·)

)
:= sup

a

{
L(t, µ, a) + aµ

(
DmV (t, µ, ·)

)}
.

gives the optimal (feedback) control.
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Further works : regularity of the value function

• Regularity of path-dependent functionals (solutions to the
path-dependent PDEs)

Bouchard B., Loeper G. and Tan X., Approximate viscosity
solutions of path-dependent PDEs and Dupire’s vertical
differentiability, Annals of Applied Probability, to appear.
Bouchard B. and Tan X., On the regularity of solutions of
some linear parabolic path-dependent PDEs, in preparation.

• Regularity of functionals on Wasserstein space (solution to the
master equations) : Cardaliaguet, Delarue, Lasry and Lions (2019),
Gangbo, Mészáros, Mou and Zhang (2022).
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