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Random Riemannian Geometry and Conformal Invariance

Original Goal

“Average” over the set of all (compact) Riemannian manifolds (M, g) of dimen-
sion n, i.e. find a probability measure P on this set.

Simplification: fix a reference space (M, g) and ask for average over the set{(
M, e2hg

)
: h ∈ C(M)

}
.

Modified Goal

Associate to each (M, g) a probability measure PM,g on “fields” (continuous
functions, distributions) on M such that

PM,g′ = PM,g if g ′ = e2ϕg for some ϕ ∈ C(M)

h
(d)
= h′ ◦ Φ if Φ : M → M ′ is an isometry and h and h′ are distributed

according to PM,g and PM′,g′ , resp.

For the sequel fix M.



Random Riemannian Geometry and Conformal Invariance

Typically, Pg is a Gaussian field, informally given as

dPg (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh

with (non-existing) uniform distribution dh on C(M), normalizing constant Zg ,
and bilinear form eg (u, v) = (u,Av)L2 .
Rigorous definition (on spaces of distributions rather than continuous
functions) via Bochner–Minlos Theorem∫

e i〈u,h〉 dPg (h) = exp
(
− 1

2
kg (u, u)

)
where kg (u, v) := (u,A−1v)L2 =

∫∫
u(x)v(y) k(x , y) dx dy Green energy dual to

eg . Then E[h(x)] = 0, E[h(x)h(y)] = k(x , y).

Conformal Invariance Requirement

eg (u, u) = ee2ϕg (u, u) ∀ϕ, ∀u.

In case n = 2, celebrated property of the Dirichlet energy

eg (u, u) :=

∫
M

∣∣∇gu
∣∣2 d volg .
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Random Riemannian Geometry and Conformal Invariance

In case n = 2:

Gaussian Free Field [Sheffield, Miller, ...],

dPg (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh (1)

with conformally invariant Dirichlet energy

eg (u, u) =

∫
M

∣∣∇gu
∣∣2 d volg = ee2ϕg (u, u) ∀ϕ, ∀u.

Liouville Quantum Gravity: random measure

eγh(x)− γ
2

2
Eh(x)2

d vol(x)

rigorously defined as weak limit of RHS with h replaced by regular
approximations (h`)`∈N

Links to Schramm–Loewner evolution [Lawler/Schramm/Werner, ...],
convergence to Brownian map: universal scaling limit of planar random graphs
[LeGall, Miermond]



Random Riemannian Geometry and Conformal Invariance

How to give a rigorous meaning to (1), how to find a instructive interpretation?
Consider particular case n=1, say M = [0, 1], h(0) = 0:

dP(h) =
1

Z
exp

(
− 1

2

∫ 1

0

h′(t)2dt
)
dh

= Wiener measure

= limit of distribution for the values (hj)j=1,...,N at points (tj)j=1,...,N of
partition of [0, 1], chosen according to the Dirichlet energy of the linear
interpolation

= distribution of

h :=
∑
j∈N

ν
−1/2
j ψj ξj =

∑
j∈N

π

j
sin
( j

π
·
)
ξj

with eigenfunctions (ψj)j∈N, eigenvalues (νj)j∈N for the negative
(Dirichlet) Laplacian on [0, 1] and iid N (0, 1) random variables (ξj)j∈N.

This yields probability measure on functions h : [0, 1]→ R of class C1/2−ε.

Similar construction in n=2 yields probability measure on distributions h on M
of class H−ε.
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Random Riemannian Geometry and Conformal Invariance

Gaussian fields dPg (h) = 1
Zg

exp
(
− 1

2
eg (h, h)

)
dh with conformally invariant

energy
eg (u, u) = ee2ϕg (u, u) ∀ϕ, ∀u.

In n 6= 2, Dirichlet energy no longer conformally invariant:

ee2ϕg (u, u) =

∫
M

∣∣∇gu
∣∣2 e(n−2)ϕd volg .

In n = 4, more promising: bi-Laplacian energy

ẽg (u, u) :=

∫
M

(
∆gu

)2
d volg .

Still not conformally invariant but close to:

ẽe2ϕg (u, u) :=

∫
M

(
∆gu + 2∇gϕ∇gu

)2
d volg = ẽg (u, u) + low order terms.

Paneitz:

eg (u, u) =
1

8π2

∫
M

[
(∆gu)2 − 2Ricg (∇gu,∇gu) +

2

3
scalg ·|∇gu|2

]
d volg

is conformally invariant.



Co-Polyharmonic Energy on n-Manifolds

Assume from now on that (M, g) is n-dimensional smooth, compact, connected
Riemannian manifold without boundary, n even.

Graham/Jenne/Mason/Sparling.

The co-polyharmonic energy

eg (u, v) = c

∫
M

(
−∆g

)n/4
u ·
(
−∆g

)n/4
v d volg + low order terms

is conformally invariant.

eg (u, v) =
∫
M
pgu · v d volg with co-polyharmonic operator

pgu := c (−∆)n/2u + low order terms

Choose c = 2

Γ(n/2) (4π)n/2 =: an.



Co-Polyharmonic Energy on n-Manifolds

Integrable functions (or distributions) u on M will be called grounded if∫
M
u d volg = 0 (or 〈u, 1〉 = 0, resp.).

Grounded Sobolev spaces H̊s(M, g) = (−∆g )−s/2L̊2(M, volg ) for s ∈ R,
usual Sobolev spaces Hs(M, g) = (1−∆)−s/2L2(M, volg ) = H̊s(M, g)⊕ R · 1

Laplacian −∆ : Hs → H̊s−2; grounded Green operator G̊g : H̊s → H̊s+2.

Definition

The n-manifold (M, g) is called admissible if eg > 0 on H̊n/2(M).

Large classes of n-manifolds are admissible. For instance in n = 4:

all compact Einstein 4-manifolds with Ric ≥ 0 are admissible.

all compact hyperbolic 4-manifolds with spectral gap λ1 > 2 are
admissible.

For the sequel, we always assume that (M, g) is admissible.



Two Key Properties of the Co-Polyharmonic Green Kernel

Define co-polyharmonic Green operator

kg := p−1
g : H−n(M)→ L̊2(M)

and associated bilinear form with domain H−n/2(M) by

kg (u, v) := 〈u, kgv〉L2 .

Theorem

kg is an integral operator with an integral kernel kg which is grounded, symmetric,
and satisfies ∣∣∣kg (x , y) + log dg (x , y)

∣∣∣ ≤ C0.

Theorem

Assume that g ′ := e2ϕg for some ϕ ∈ C∞(M). Then the co-polyharmonic Green
kernel kg′ for the metric g ′ is given by

kg′(x , y) = kg (x , y)− 1

2
φ̄(x)− 1

2
φ̄(y)

with φ̄ ∈ C∞(M) obtained by re-grounding.



Co-Polyharmonic Gaussian Field – Definition, Construction

Definition

A co-polyharmonic Gaussian field on (M, g) is a linear family
{
〈h, u〉

}
u∈H−n/2 of

centered Gaussian random variables (defined on some probability space) with

E
[
〈h, u〉 〈h, v〉

]
= kg (u, v) ∀u, v ∈ H−n/2(M).

Interpretation: E
[
h(x)

]
= 0, E

[
h(x) h(y)

]
= kg (x , y) (∀x , y)

Let a probability space (Ω,F,P) be given and an i.i.d. sequence (ξj)j∈N of
N (0, 1) random variables. Furthermore, let (ψj)j∈N0 and (νj)j∈N0 denote the
sequences of eigenfunctions and eigenvalues for pg (counted with multiplicities).

Theorem

A co-polyharmonic field is given by

h :=
∑
j∈N

ν
−1/2
j ξj ψj .

A co-polyharmonic Gaussian field on (M, g) can be regarded as a random
variable with values in H̊−ε(M) for any ε > 0.
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Co-Polyharmonic Gaussian Field – Smooth Approximation

Theorem

A co-polyharmonic field is given by

h :=
∑
j∈N

ξj ·
√

kg ψj =
∑
j∈N

ν
−1/2
j ξj ψj .

More precisely,

1 For each ` ∈ N, a centered Gaussian random variable h` with values in
C∞(M) is given by

h` :=
∑̀
j=1

ν
−1/2
j ξj ψj .

2 The convergence h` → h holds in L2(P) × H−ε(M) for every ε > 0. In
particular, for a.e. ω and every ε > 0,

hω ∈ H−ε(M),

3 For every u ∈ H−n/2(M), the family (〈u, h`〉)`∈N is a centered L2(P)-
bounded martingale and

〈u, h`〉 → 〈u, h〉 in L2(P) as `→∞.



Co-Polyharmonic Gaussian Field – Discrete Approximation

Let M be the continuous torus Tn ∼= [0, 1)n and consider its discrete
approximations Tn

L
∼= {0, 1

L
, . . . , L−1

L
}n for L ∈ N.

Co-polyharmonic Gaussian Field on the discrete torus Tn
L

Centered Gaussian field (hL(v))v∈Tn
L

with covariance function

kL(u, v) =
1

an
G̊

n/2
L (u, v) =

1

an

∑
z∈Zn

L
\{0}

1

λ
n/2
L,z

· cos
(

2π z · (v − u)
)

where λL,z = 4L2 ∑n
k=1 sin2

(
πzk/L

)
and Zn

L = {z ∈ Zn : 0 < ‖z‖∞ < L/2}.

Given iid standard normals (ξz)z∈Zn
L

and Fourier basis functions

ϕz(x) = 1√
2

cos(2πxz) and ϕ−z(x) = 1√
2

sin(2πxz), a Co-polyharmonic
Gaussian Field is given as

hL =
1√
an

∑
z∈Zn

L
\{0}

1

λ
n/4
L,z

· ξz ϕz .

Given white noise on Tn
L, i.e. iid centered Gaussian variables (Ξ(v))v∈Tn

L
with

variance Ln/2, then

hL =
1√
an

G̊
n/4
L Ξ.



Co-Polyharmonic Gaussian Field – Discrete Approximation

The law of the ”ungrounded” Polyharmonic Gaussian Field is given explicitly as

cn exp

(
− an

2N

∥∥∥(−∆L)n/4h
∥∥∥2
)
dLN(h)

on RN ∼= RTn
L where N = Ln.

Theorem

Convergence of fields hL → h as L→∞: tested against f ∈
⋃

s>n/2

Hs(Tn)

Convergence of Fourier extension of hL to h: in each H−ε(Tn) and also
tested against f ∈ H−n/2(Tn)



Co-Polyharmonic Gaussian Field – Conformal Invariance

The co-polyharmonic Gaussian field for general (M, g) is conformally invariant
modulo re-grounding.

Theorem

Let h : Ω → H−ε(M) denote a co-polyharmonic Gaussian field for (M, g) and
let g ′ = e2ϕg with ϕ ∈ C∞(M). Then

h′ := h − 1

volg′(M)

〈
h, 1
〉

volg′

is a co-polyharmonic Gaussian field for (M, g ′).



Liouville Geometry



Liouville Geometry

Fix an admissible manifold (M, g) and a co-polyharmonic Gaussian field
h : Ω→ D′. Our naive goal is to study the ‘random geometry’ (M, gh)
obtained by the random conformal transformation,

gh = e2hg ,

and in particular to study the associated ‘random volume measure’ given as

µh(x) = enh(x) volg (x)

and the ‘random metric’ (or ‘random distance’) as

dh(x , y) = inf
ϕ

∫ 1

0

eh(ϕ(t))|ϕ′(t)|dt

Due to the singular nature of the noise h, however, both of these objects will
be degenerate – as long as no additional renormalization is built in.



Liouville Geometry

In n=2:
Replacing h by finite-dimensional noise approximations h` as before and proper
renormalization leads (for sufficiently small γ ∈ R) to sequences of random
measures (µh`) and random distances (dh`) on M which converge as `→∞ to
non-trivial limit objects

Duplantier/Sheffield 2011, Rhodes/Vargas 2014

µh(x) = lim
`→∞

eγh`(x)− γ
2

2
E[h`(x)2] volg (x).

Ding/Dubedat/Dunlap/Falconet 2020, Gwynne/Miller 2021

dh(x , y) = lim
`→∞

1

λγ,`
inf
ϕ

∫ 1

0

eγ h`(ϕ(t))|ϕ′(t)|dt.

Miller/Sheffield 2020/21

For the particular value γ =
√

8/3, the random metric measure space (M, dh, µh)
is isometric in distribution to the Brownian map
= scaling limit of random triangulations (Le Gall 2013) or quadrangulations
(Miermont 2013) of the sphere.



Liouville Quantum Gravity Measure

Let M as before be a compact manifold of even dimension and h the
co-polyharmonic Gaussian field.
For ` ∈ N define a random measure µ` = ρ` volg on M with density

ρ`(x) := exp
(
γh`(x)− γ2

2
k`(x , x)

)
where as before h` :=

∑̀
j=1

ν
−1/2
j ξj ψj and k`(x , x) := E

[
h2
`(x)

]
=
∑̀
j=1

ν−1
j ψ2

j (x).

Based on Kahane 1986, Shamov 2016:

Theorem

If |γ| <
√

2n, then there exists a random measure µ on M with µ` → µ. More
precisely, for every u ∈ C(M),∫

M

u dµ` −→
∫
M

u dµ in L1(P) and P-a.s. as `→∞.

The random measure µ := lim
`→∞

µ` is called Liouville Quantum Gravity measure.



Liouville Quantum Gravity Measure

Theorem

If |γ| <
√
n, then for every u ∈ Cb(M),

(
Y`
)
`∈N :=

(∫
M

u dµ`

)
`∈N

is L2-bounded martingale

Proof: Assume 0 ≤ u ≤ 1. Then

sup
`

E
[
Y`

2
]

= sup
`

E
[ ∫∫

eγh`(x)+γh`(y)− γ
2

2
k`(x,x)− γ

2

2
k`(y,y) · u(x)u(y) dx dy

]
= sup

`

∫∫
eγ

2 k`(x,y) · u(x)u(y) dx dy
]

≤
∫∫

eγ
2 k(x,y) dx dy

=

∫∫
1

d(x , y)γ2 dx dy +O(1)

due to the log divergence of k. The latter integral is finite if and only if γ2 < n.



Liouville Quantum Gravity Measure

Theorem

If γ <
√

2 then a.s. the LQG measure µ does not charge sets of vanishing
H1-capacity

−→ Dirichlet form
∫
M
|∇u|2d volg on L2(M, µ)

−→ Liouville Brownian motion (random time change of BM)

A key property of the Liouville Quantum Gravity measure is its quasi-invariance
under conformal transformations.

Theorem

Let µ be the Liouville Quantum Gravity measure for (M, g), and µ′ be the
Liouville Quantum Gravity measure for (M, g ′) where g ′ = e2ϕg for some ϕ ∈
C∞(M). Then

µ′
(d)
= e−γξ+ γ

2

2
ϕ̄+nϕ µ

where ξ := 1
v′ 〈h, e

nϕ〉 and ϕ̄ := 2
v′ kg (enϕ) − 1

v′2
kg (enϕ, enϕ) with v ′ :=

volg′(M).



Polyakov-Liouville Measure



Polyakov-Liouville Measure and Conformal Field Theory

For n=2: In 20016-2019 Rhodes–Vargas with David, Garban, and Kupiainen
provided a rigorous definition to the Polyakov–Liouville measure ν∗g , informally
given as

1

Zg
exp

(
− Sg (h)

)
dh

with (non-existing) uniform distribution dh on the set of fields and
Polyakov–Liouville action

Sg (h) :=

∫
M

( 1

4π

∣∣∇h∣∣2 + ΘRgh + meγh
)
d volg (2)

— and thus established conformal field theory on 2-dimensional spaces.

This ansatz for the measure ν∗g reflects the coupling of the gravitational field
with a matter field. It can be regarded as quantization of the the classical
Einstein–Hilbert action or, more precisely, of its coupling with a matter field.

Minimizers h of the action functional (with appropriate choice of
constants) satisfy Liouville equation,
the weighted metric g ′ = e2hg thus has constant curvature Rg′ .

Semiclassical limit (γ → 0): Polyakov–Liouville measure concentrates on
surfaces of constant curvature (Lacoin/Rhodes/Vargas 2019+).



Polyakov-Liouville Measure and Conformal Field Theory

Ansatz for Polyakov–Liouville measure action in arbitrary even dimensions

Sg (h) :=

∫
M

(1

2

∣∣√pg h
∣∣2 + ΘQgh +

Θ∗

volg (M)
h + meγh

)
d volg . (3)

Here pg is the co-polyharmonic operator, Qg denotes Branson’s curvature, and
m,Θ,Θ∗, γ are parameters.
In the case n = 4, Qg = − 1

6
∆g scalg − 1

2
|Ricg |2 + 1

6
scal2g . In general, total

Q-curvature is conformally invariant, and if g ′ = e2ϕg then

enϕQg′ = Qg +
1

an
pgϕ.

Remark: Minimizers of Sg satisfy

pgh + ΘQg +
Θ∗

volg (M)
+ mγeγh = 0.

Choose Θ∗ = 0, Θ = nan
γ

, m = − nan
γ2 Q̄ for some Q̄ ∈ R and put ϕ = γ

n
h.

Then this reads as
1

an
pgϕ+ Qg = enϕQ̄.

In other words, g ′ = e2ϕg is a metric of constant Branson curvature Qg′ = Q̄.



Polyakov-Liouville Measure and Conformal Field Theory
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Polyakov-Liouville Measure and Conformal Field Theory

Informal ansatz

ν∗g (dh) =
1

Z∗g
exp

(
−
∫
M

(1

2

∣∣√pg h
∣∣2 +ΘQgh+

Θ∗

volg (M)
h+meγh

)
d volg

)
dh

Rigorous

dν∗g (h) := exp
(
−Θ〈h,Qg 〉 −Θ∗〈h〉g −m µh(M)

)
d ν̂g (h)

with d ν̂g = law of ungrounded co-polyharmonic Gaussian field = image of
dνg (h)⊗ dL1(t) under map (h, t) 7→ h + t, informally characterized as

d ν̂g (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh,

and µh denotes the Liouville Quantum Gravity measure on the n-manifold M.



Polyakov-Liouville Measure and Conformal Field Theory

dν∗g (h) := exp
(
−Θ〈h,Qg 〉 −Θ∗〈h〉g −m µh(M)

)
d ν̂g (h)

with d ν̂g = law of ungrounded co-polyharmonic Gaussian field and µh =
Liouville Quantum Gravity measure.

Theorem

Assume that 0 < γ <
√

2n and ΘQ(M) + Θ∗ < 0. Then ν∗g is a finite measure.

Theorem

If Θ = an
n
γ

, and Θ∗ = γ, then ν∗g is conformally quasi-invariant modulo shift:

ν∗e2ϕg = Z(g , ϕ) · T∗ν∗g ∀ϕ (4)

with explicitly given conformal anomaly Z(g , ϕ).

For n = 2: David, Kupiainen, Rhodes, Vargas ’16 for surfaces of genus 0,
David, Rhodes, Vargas ’16 for surfaces of genus 1, and Garban, Rhodes, Vargas
’19 for surfaces of higher genus.


