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@ Objective of the talk

3/52



Brief state of the art

Mean-field problems:

1) Mean-Field SDEs have been intensively studied for a longer time as
limit equ. for systems with a large number of particles (propagation of
chaos)(Bossy, Méléard, Sznitman, Talay,...);

2) Mean-Field Games and related topics, since 2006-2007 by J.M.Lasry
and P.L.Lions, Huang-Caines-Malhamé (2006) (Nash certainty
equivalence principle); Mean field game systems:

i)  Oym —vAm —div(Hp,(z, Du,m)m) =0 in (0,7) x R? continuity equ.

i) —Oww—vAu+ H(z,Du,m)=0 in (0,7) x R HJB equ.
i) m(0) =mg, u(z,T) = G(xz,m(T)) inR?

Master equation evaluated for U = U(t, z, m):

-0 U — v U+ H(z,D,Um)—v | divyD,U(t, z,m,y)m(dy)
Rd

+ | DnU(t,z,m,y) - DpH(y, DU, m)m(dy) = 0
]Rd
U(T,z,m)=G(z,m) in RdXPQ(Rd). 3/52



Brief state of the art

Mean-field problems:
3) +) Mean-Field BSDEs/FBSDEs and associated nonlocal PDEs:
e Prel. works: B., Djehiche, Li, Peng (AOP2009); B., Li, Peng (SPA2009);
e Classical solution of non-local PDE related with the mean-field SDE:
B., Li, Peng, Rainer (AOP2017 (Arxiv2014)):

0=0,V(t,m,p) + 0.V (t,m, p)b(x, ) + 202,V (t, 2, p)o?(x, )
+ [ @)1 )b ) + 50,0V b)) ),
V(T,z,pu) = ®(x,p), (t,z,pu) €0,7] x R x Po(R).

e For the case with mean-field SDE with jumps: Hao, Li (NODEA2016);
e For the case with the mean-field FBSDE with jumps: Li (SPA2017);

e For the case with the mean-field BDSDE and related nonlocal
semi-linear backward SPDEs: B., Li, Xing (Arxiv2021);
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Brief state of the art

Dynamic programming approach:

+) For classical case:

e For SDGs: B., Li (2008, SICON);

e For SDGs with jumps: B., Hu, Li (2011, SPA);

+) Classical case, but fully coupled FBSDEs with jumps: Li, Wei (2014,
AMO);

e For stochastic control problems with jumps: Li, Peng (2009, NA);

e Stoch. control for fully coupled FBSDEs: Li, Wei (2014, SICON);

+) For mean-field stochastic optimal control problems:

The objective is to characterize the value function of the mean-field
control problem as a viscosity solution of a second order PDE on
Wasserstein space, known as Master Bellman equation. The viscosity
theory of this kind of PDEs is still at a rather early stage.
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Brief state of the art

e Consider definition by “lifting” :

The following works adopt the notion of viscosity solution from
Crandall-Lions and adapt it to the Wasserstein space by lifting to L%. The
uniqueness is established for this lifted Bellman equation.
~» Pham,Wei (2018, ESAIM:COCV):

Controlled mean-field stochastic system:

dXtu = b(tv X#v U, P(Xf,ut))dt =+ U(t7 X#? Ut, ]P)(X;‘,uz))tha te [07 T]7

where wu; := a(t, X, Pxu).
It is assumed a priori that the controls were of Markovian feedback
type.
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Brief state of the art

~+ Bayraktar, Cosso, and Pham (2018, TAMS): Controlled mean-field SDEs:

S S

X;’&u ={+ / b(r, Xﬁ’&u’PX,';*&’”’uT)dr + / o(r, X:7571L7PX$‘5'1L7UT)CZWT>
t t
S S

Xbobu — gy / b(r, XPWOU P e, uy)dr + / o(r, XESU Py e, up ) AW

t t
They study control problems for open-loop controls, but without the
dependence of the law on the control, and they proved a so-called Randomized
DPP, based on a characterisation of the value function through an auxiliary
intensity control problem for a Poisson random measure.

~» Pham and Wei (2017, SICON),
~~ Cosso and Pham (2019, JMPA),
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Brief state of the art

e Consider “intrinsic” definition:

~+ Burzoni, Ignazio, Reppen and Soner (2020, SICON):
Controlled mean -field stochastic system with jumps:

dXZJ' = b(t, IP)Xtu, ut)dt + O'(t, ng,ut)th +dJy, t € [O, T],

where J is a purely discontinuous process.

The authors considered deterministic control processes only
depending on the time. They studied viscosity solutions for a particular
class of integro-differential Master equations. The uniqueness of viscosity
solutions has been proved on Wasserstein spaces of probability measures
which have finite exponential moments.

~~ Cosso et al. (2024, TAMS): Controlled mean-field stochastic system:
dX{ = b(t, X, ug, Pxu)dt + o(t, X{*, ug)dWy, t €[0,T].

By using refinements of early ideas from the Crandall-Lions theory of viscosity

solutions, they proved the uniqueness of the viscosity solutions on P»(R4), but

only for coefficients which do not depend on the law of the control.
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1. Objective of the talk

We develop a dynamic programming approach to study an optimal
control problem with generalized mean-field dynamics with considering:

e Open-loop controls;
e Coefficients which depend on the joint law of state processes and controls;
e Dynamics of both a “mean-field player” and a representative “individual player”.

We characterize the value function as the unique viscosity solution of
a second order PDE on Wasserstein space, by adapting the intrinsic
notion of viscosity solutions in Burzoni et al. [2020].
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© Formulation of the mean-field stochastic control problems
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2. Formulation of the mean-field stochastic control problems

We consider:

o (2, F,P) — the classical Wiener space; the driving Brownian Motion B is
the coordinate process on 2 := C([0, T]; R%)): T > 0 - a fixed horizon;
F = B(Q) V Np; P - Wiener measure.

o = {F;,0 <s < T} - the filtration generated by B = (Bs),c(o,r) and
augmented by all P-null sets.

e For k > 1, P2(RF) — the space of the probability measures over R* with
finite second moment and endowed with the 2-Wasserstein metric:

1
Wty s=int {( [ o =sPoldodn))”, p €Ty}, v € PoR)
X

where I, , ={p € P2(R?*) with p(- x R¥) = p1, p(RF x ) = v}.
Note: (P2(R¥), W) is a complete separable space.
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2. Formulation of the mean-field stochastic control problems

Spaces we work with:

e L%(F;;R™) is the set of R™-valued, F;-measurable random variables
¢ : Q — R™ such that E[|¢]?] < oo.

e L2([0,T]; R™) is the set of R"-valued, F-progressively measurable
T
processes ¢ : Q x [0,T] — R", with E[/ ]¢t|2dt] < 400.
0

e S52(0,T;R™) is the set of F-adapted continuous processes ¢ : 2 x [0, 7]
— R™ satisfying E[ sup |¢s]?] < oc.
0<s<T

For simplicity, we write L?(F;) := L*(F; R), L([0,T]) := L&([0, T); R).
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2. Formulation of the mean-field stochastic control problem

The dynamics of our stochastic control problem are the following
controlled mean-field SDEs:

2
Xﬁvau — f —|—/ bl Xt 3 u’ ) ]P(X[ &,u? uz>)d
s (2.1)
+/ (r, (thu Ju2), [p)(Xt_g)“g 2))dBT, s €t T),
\ - Juz
X;ﬁbﬁ’“ o / b2(r7 (X$,$,51U7 ui)’ P(XT,”&,I,{“’?V))dT
+ (2.2)

+/ 2(r, (Xp 8" ug) P e, )ABr, s € 1T,
t

wheret € [0,T], z € R, £ € L*(F;R), u = (u',u?) € Uy = Uy x Upp.
Admissible controls u!, u? € Z/IQT are [F-adapted stochastic processes on
[t,T] taking values in a compact set U C R™.
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2. Formulation of the mean-field stochastic control problems

Remark: Interpretation of the dynamics

e Equation (2.1) can be interpreted as the dynamics of an agent (referred
to as the "mean-field player”), who plays collectively with using a
“collective control” u?. It describes the average over the states of all
agents.

e Equation (2.2) describes the dynamics of an individual agent who faces
the “mean-field player”, and u' is the “individual control” played by this
individual agent.

e In other words, (2.1) characterizes the evolution of the law P2 2y,
while (2.2) describes the associated trajectories of an individual agent with

. .. t
initial condition Xt’x’g’“ = .
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2. Formulation of the mean-field stochastic control problem

We shall make the following standard assumptions.

Assumption 2.1.

(i) b1, b2, 01,02 are continuous and, for simplicity, bounded.

(ii) Lipschitz continuity: There exists a constant C' > 0, such that
|p(t, (2, w), Pic ) = (t, (2", 1), Per )| < Clle = 2'] + Wa(Pe.my» Pier i)

forallt € [0,T), z,2' € R™, ue U, (,{' € L>(F;R"), n € L>(F;U),
¢ = b1,b2,01,09.

Under Assumption 2.1, there exists a unique pair of solutions
2
(Xﬁ’g’“ ,Xﬁ’x’g’“)se[t € S2(0,T;R™) x §%(0,T; R™) to the equations
(2.1) and (2.2) (see, e.g., Buckdahn, Li, Peng and Rainer [2017]).
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2. Formulation of the mean-field stochastic control problem

Moreover, for every p > 2, we have the following LP-estimates:
There exists C, € R such that, for all t € [0, T, u = (u!,u?) € Uy 7,
and z,2' € R", (, (" € L? (Fi; RM),

E[ sup ‘Xﬁ’c’“2 — Xﬁ’cl’“z
se(t,T]

P "y
7] < clc—¢P,

E|: sup ‘Xta:gu Xta:,(u
set,T]

R <o (le-a P HIc- ).

From the uniqueness of the solutions of the both equations, we also have
the following flow property: For all0 <t <t+4+d < T, z € R",
CelL? (F; R™), u = (ul,u2) €U r:

4o, X G xt G 46, x06u7 42 2
(X t+6 t+s “7X s ) — (Xg,m7C7u’X£7C7U )’5 € [t+6,T),P-ass.
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2. Formulation of the mean-field stochastic control problem

Assumption 2.2.

Let @ : R™ x P2(R™) — R be Lipschitz, i.e., for some constant C' > 0 we
have, for all z, 2’ € R™, u, u' € P2(R"),

|®(z, 1) — @ (2, )| < C(|z— 2| + Walp, 1))

Given the control processes u = (u',u?) € Uy, we introduce the
cost functional of our mean-field stochastic control problem:

J(t,x,C u) = E[@(X;’x’c’u,lp 2) ‘ft]a

where (t,z) € [0,T] x R, ¢ € L*(Fi;R™), (X564, X1544) are the
solutions of (2.1) and (2.2).

t,¢u
X7

Remark. X5%%% is in general not independent of F;, and therefore
J(t,z,(,u) is an Fy-measurable random variable.
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2. Formulation of the mean-field stochastic control problem

The definition of the value function:

Suppose that both the “mean-field player” and the “individual player”
try to minimize the cost, for all (t,z) € [0,T] x R™, ( € L*(F;; R"),

V(t,z,() := essinf J(t,z,(,u)

uEZ/{tyT
= essinf | essinf J (t,:c,(, (ul,u2)) .
wrel) , \u'elt)

Set W (t,2,(,u?) := essinf J (t,z,¢, (u',u?)), (t,z) € [0,T] x R,

uleld?
u? € U2.. Then
t,T"

V(t,z,() = essinf W (t,x,(,uQ) .

2 0
U Eut,T
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© Dynamic programming principle

18/52



3. Dynamic programming principle

Recall that W (¢, z,¢,u?) is an F;-measurable random variable. The
following lemma shows that it is even deterministic.

Lemma 3.1.

For any (t,z) € [0,T] x R", ¢ € L*(F;R"), u? € Z/IQT, %% (t,m,C,uQ) is
deterministic. Moreover, by standard estimates, 4 C' > 0 s.t.

|W(t7"1:7 Ca U2) - W(t,ﬂf/, C/,’U,2)| < C(|‘T - :C/| + (EHC - C/|2])%)7
for all t € [0, ], @2’ € R", (,¢’ € LA(Fy; R™), u? € Uy

The proof of this lemma uses a standard argument from Buckdahn
and Li [2008] with a novel, subtle approach.

The above lemma, combined with the definition of the value function
V vyields that also
V(t,z,{) = inf W (t,z, L u?
( g) u?eld? ( 56 )
is deterministic, for all (t,z) € [0,7] x R", ¢ € L*(F;R™).
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3. Dynamic programming principle

Next, we prove that the value function V (¢, z,() does not depend

on ( itself but only on its law P;. For this, we have first to study some
auxiliary results.

Consider the following space of elementary control processes:

N-1

te,T = { u? = Z 1Ai,jCi7j1(ti7tz‘+1]

i,7=0

Gi,j € L2(}'fi;U), i=0,---,N—1, (Ai,j)év:f)l is a decomposition of Q},

N>l t=t<---<ty=T, Aj; € F,

where F! :=o{B, — By, r € [t,s]}, s € [t,T].

Ui is dense in L[, T);U)( = L{QT) with respect to the L2-norm over
[t,T] x €.
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3. Dynamic programming principle

Then standard arguments allow to show:

V(t,z,() = inf W (t,z,¢ u?).
( ¢) w2ells ( ¢ )
Now we have the following result:

Lemma 3.4.

For every (,(’ € L? (F; R") with P; = P/, and every u? € Ui, there
exists u? € Ufr such that

J(t,x,(', (ul,uQ')) = dJ (t,w,(, (ul,u2)) , P-as,
for all u! € Z/{ST, x € R™, and, in particular,
W(t,x,C',qu) := essinf J(t,x, ¢, (ul,uzl))

1.-7/0
u EMt,T

= essinf J(t,:n,(, (ul,u2)) = W(t,m,C,u2).

17,0
u Gut’T
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3. Dynamic programming principle

From the above lemma we deduce now easily:

Proposition 3.2.

Let (t,x) € [0,T] x R", ¢ € L?(F;R™). Then, for all ¢’ € L?(F; R™)
with Pr = IPe, we have

V(ta €, C) = V(tv L, C/)a
i.e., V depends on ¢ only through P:. We write:
V(t,z, PC) =V (t,z,(),

where V' : [0, T] x R™ x Py(R™) — R. Moreover, by standard estimates,
there exists C' € R, such that

forall t € [0,T), ,% € R, (,( € L%(Fy; R™).




3. Dynamic programming principle

Study of W (t,z, ¢, u?):

Recall that:

o W(t,---): Rx L*(Fy;R") x U — Ris defined by
w (t,x,(,u2) = 3855{3?1 (t,az,C, (ul,u2))

= essinf E[@(X;x,c,(ulmz) p

t,C,

uleutOT ’ XTCU

e For any u? € Uy, W (t,x,(,u?) is deterministic;
e From standard estimates:

2) | 7]

W (k. Gu?) = Wit,a! )| < € (o —a'| + (Bl ¢)?).

forall t € [0,T], x, 2" € R", (,{" € L*>(F;; R, u? € thO,T.
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3. Dynamic programming principle

Using the above properties of W, we obtain the following DPP for W.
Theorem 3.1. (DPP for W)

Forall 0<t<t+d<T, uzelx{gT, r € R?, ¢ € L*(Fy;R"),

W(t,:c,(,uQ) = essinf E[W(t + 0, Xfff’(ul’u2),ijfgu2,u2) |-7:t]-
uleuf{tH

The proof of this proposition uses a standard argument from Theorem
3.1 of Buckdahn and Li [2008].
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3. Dynamic programming principle

From the proof of Theorem 3.1, as W is deterministic, we obtain, for all
t<t4+0<T,

1 2
W(t, 2, ¢,u?) = int E[W(t—i—(S,Xttféc’(“ ’“),Xff(;“z,ﬁ)}. (3.1)
@ t,t+8

In particular, fort +6 =T,

W(t,z,¢,u?) = inf E [@(X;lm’c’(”l’uz),IP’Xt’C,uz)} :
T

ulelxlgT
and therefore, for the value function V (¢, z,P¢) = V (¢, z, ():

V(t,2,B) = V(t,2,() = essinf E[@(XE"C0 ) P, 2)|F
T

(ul,u?)eUs, v

— inf Wz (ud)= inf E[®XZCEHD) p o )]
wego_ o Gul)= | i [@(X7 P ecn)]

v
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3. Dynamic programming principle

Study of V(t,z,P¢):

As the following inequality shows, we get the one-sided DPP for V:
For0<t<t+0<T,zcR" (e L*F;R"),

V(t,z,Pe) VDt g W(t,z,¢,u?)

UQGUtO,T

3.1 1,2 2

e (e B[W (8, X5 X))
w2€U) p \ulelp, s

W Def 1,2 2

>t (it B[V X5 xEG)])

w2elU) p \utel, s

Indep. of£2|(l+§y,,,]

. t,Z,C,(ul,’uQ)
(ul,uzl)nefutm E[V(t+06, X5 JPX#E,”Z)].

But we can not get the above inequality in the opposite direction.
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3. Dynamic programming principle

The value function ¥:

For 6, ¢ € L*(F;; R™), we introduce a new definition of the value
function:

— : 2
I(t,0,P;) := uQE%.TE[W(t,O,C,u )]
' : 3.2
= inf B[ essinf E[(X570M ’“2),PX;,<,M2)\E}]. (32)

u2 €Uy utely ,

We can see:
e The function 1 is obviously deterministic;
e J(t,0,P¢) depends on 6 only through the law Py. (Indeed,

I(t,0,P;) = inf W(t,z,(,u?)Pg(dz).)
u2eu2T Rn
This allows to write
ﬁ(t,]P’g,IP’() = (t, H,PC),

and to consider 9 as a function over [0, 7] x Po(R™) x Pa(R™).
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3. Dynamic programming principle

From Lemma 3.1 and a standard argument we have the following
estimate for 9: There exists a constant C' > 0 such that

[9(t, Pg, Pe) — O(t, Py, Per)| < C(Wa(Po, Por) + Wa(Pe,Per)),  (3.3)

for all t € [0,T], 0, 0/, ¢, ¢' € L2(F;;R).

Notice that, for (t,z) € [0,T] x R®, ¢ € L?(F;R"),

I(t, 2, Pe) (= 9(t, 6z, P¢))= V (¢, z,P),

where ¢, denotes the Dirac measure at x, which means that a description
of ¥(t,Py,P¢), (0,¢) € L*(F;R™) x L?(F;R™), as a solution of a PDE
also characterizes V (¢, z,IP¢). This allows to characterize V' through
studying 9.
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3. Dynamic programming principle

Let us now study the new value function ¢. To begin with, we prove
that 1 obeys the following DPP:

Theorem 3.2. (DPP for )

Forany0<t<t+d<T, 6,c L*F;R"),

9(t, Py, PC) = inf ’19(t + 4, ]P)X:fég,u, ]P)Xt,(,u2 ) . (34)

uEU 145 t+6

By using the properties of W, especially the DPP for W, and standard
arguments from Buckdahn and Li [2008], we prove Theorem 3.2.

28 /52



3. Dynamic programming principle

Using the continuity properties of 9(t,-,-) on P2(R%) x P?(R%) and
the DPP for 4, we also prove the continuity of ¥ with respect to ¢.

Proposition 3.3.

The value function ¢ is %—Hélder continuous in t: There exists a constant
C such that, for every t,t' € [0,T], 6,¢ € L*(F; R"),

[9(t, o, Be) — 9 (¢, Bg, Be) | < C(1+ (BICED + (B0 ) |- #2.
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@ Master Bellman equation and viscosity solution

30/52



4. Master Bellman equation and viscosity solution

Let us begin with the notion of derivative w.r.t. the measure over the
Wasserstein space.

Definition 4.1. (Carmona and Delarue [2018])

A function ¢ : Py (]Rk) — R is said to have a linear functional derivative if
there exists a function

dp

5. P2 <R’“>><Rk (1,2) = 22 () (@) € R,

op

which is continuous with respect to the product topology (P (Rk) is
equipped with the 2-Wasserstein distance) such that, for any bounded
subset K C P> (R¥), the function R? 3 = — [§¢/64(p) () is at most of

quadratic growth in x, uniformly in y, for p € K, and for all x and ¢ in
P (Rk) it holds:

o / L 52 0w+ (=) (@ = )b
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4. Master Bellman equation and viscosity solution

This leads to the definition of the L-derivative of ¢ (the derivative
introduced by P.L. Lions [2013]).

Definition 4.2. (Carmona and Delarue [2018])

)
If 5£ is of class C! with respect to the second variable, the L-derivative

"
Oup : P (R¥) x R¥ — R¥ is defined by

() = 0:(52) (1.2), (1) € PaRY) x R

For any u € Po(R¥) and any p-integrable function f : R* — R, we
use the notation

e f) = [, Fantda).

For simplicity of notation, we restrict ourselves to dimensionn =d =%k =1
in what follows.
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4. Master Bellman equation and viscosity solution

In this section, we study our optimal control problem on the space
O :=10,T) x M x M, where M C P(R) is the set of probability
measures with §-exponential moments, i.e.,

M= {0 € Po(R): Gu.exp(8]- D) = [ exp(Glaputde) < oo}, (41)

where § > 0 is an arbitrary given constant. We endow M with the
topology of weak convergence o (M, Cy(R)), where Cy(R) is the space of
continuous and bounded functions on R.

Remark. The space O has a suitable o-compact structure, which allows
to establish uniqueness in the next section. This form of O is crucial to
obtain uniform integrability of the viscosity test functions as well as some
continuity properties of the Hamiltonian.
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4. Master Bellman equation and viscosity solution

Master Bellman equation:

For any (t, 1, p2) € [0,T) x M x M,

{ — 0p9(t, pa, p2) — H(t, pa, p2, 0, O(t, pa, i), Oy O(E, i, pi;+)) =0, (4.2)
T, pa,s p2) = (1, (-, p2)),

where, with the notation
I, :={y € P2(RxU): 7(- xU) = p}, p € Pa(R),
the Hamiltonian H is defined by
H(t, pa, 2, p1,p2)
= inf { (70, L2 pa]) - (2, 2 pal) ¢ i €T,y 0= 1,2,
p1,p2 € CH(R), with, for (y,v) € R x U,
L2 )y, v) o= pi(y)ba(t, (v, v),72) + %%pl(y)(@(t, (y.0).72))%,

L ) (y,v) = pa(y)ba(t, (y,0),72) + %&,pz(y)(m(t, (y,0),72))>.
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4. Master Bellman equation and viscosity solution

When the coefficients b; and 1 do not depend on the control u2, then
V(t, 0z, ) =V (t,z,u) = W(t,x, 1), and from PDE (4.2) we get the
following PDE related with V (¢, x, u): For (t,z,pu) € [0,T) x R x M,

— OV (t,z, 1) — 1}2{, {89?V(t7 z, )b (t, (z,u), 1) + %82‘/(1‘,, z, p)(o2(t, (z,u), N))Q}

—/R3uV(t7ww;y)bl(hy,u)u(dy) —/R%ayauV(tmu;y)(al(ty,u))Qu(dy) =0,
V(T,z, p) = ®(, p).
(4.3)

e If by =01 =0, and bz, 09, ® do not depend on the law, PDE (4.3) is
just the classical HJB equation.
e If by = b, and o1 = 09, i.e., all the coefficients are free of controls,
then PDE (4.2) is just the mean-field PDE obtained in Buckdahn, Li, Peng
and Rainer [2017].

v
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4. Master Bellman equation and viscosity solution

For ¢ as in (4.1), we consider the function

es(x) ==exp (6(Va2+1-1)), zeR

For N € N and ¢ as in (4.1), let

Oy = {(t, 1) € [0,T) x Pa(R) x Po(R) | (i, e5) < NeX™, i = 1,2},

On = {(t s ) € [0,T] x Pa(R) x Po(R) | {mire5) < Ne¥™, i = 1,2},

where K* is a given positive constant which is derived from the proof of
Lemma 4.1 further down, in order to ensure that ONJS invariarEfor the
dynamics (2.1)-(2.2). Note that O = UR%_,On and O = US_;On.

For a constant b and ¢ as in (4.1), we put
My = {p € Pa(R) | (i, e5) < b}
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4. Master Bellman equation and viscosity solution

Lemma 4.1.

Under Assumption 2.1 , for all N € N, the set Oy is invariant for the
SDEs (2.1)-(2.2), namely,

(t,}P’g,]P’g) c Oy — <S’PX§'9’<’“’PX?C,“2> € Oy,

forall t € [0,T], s € [t,T], 0,¢ € L*(F;), and u = (ul,u?) € Us 1, where
2
(X5, XE96) iy is the solution to (2.1)-(2.2) with initial condition
AN 2 ?97 ?u
(X024, Xp00") = (¢, 0).

This implies that for any given initial law (¢, i1, p2) € O, we may
restrict the Master Bellman equation (4.2) to On.
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4. Master Bellman equation and viscosity solution

As Py(R) itself is not o-compact, the importance of Oy stems also
from the following fact:

For N € N, Oy is a compact subset of [0,7] x Pa(R) x Pa(R).

Now we give the definition of a test function and that of a
viscosity solution to the Master Bellman equation (4.2), which were
first introduced in Burzoni et al. [2020]. We adapt them here to our
framework.

Definition 4.3.

A cylindrical function is a mapping of the form (¢, u1, pu2) — F(t, (u1, f1),
(u2, f2)) for some functions fi1, fo : R —Rand F: [0,7] xR xR — R.
This function is called cylindrical polynomial, if f1, fo are polynomials and
F' is continuously differentiable.
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4. Master Bellman equation and viscosity solution

We extend the above class to its linear span. For any polynomial f,
we denote the degree of f by deg(f).

Definition 4.4. (Test Functions)

For E C O, a viscosity test function on E is a function of the form

(t, 1, p2) Zsog (t,p1, p2),  (t, g1, p2) € E,

where {goj}jeN is a sequence of cylindrical polynomials which is absolutely
convergent at every (¢, i1, 2) and, for i = 1,2,

lim sup ({116,190 05 8, 12, 123 ) D) HGps 19O 05 8, 1, iz ) ) = 0.
M= J;/I (t,n1,12)EO0N i:ZLQ ’ ! !

(4.4)
Let I'r be the set of all viscosity test functions on E.

V.

Remark. Condition (4.4) is used for proving the continuity of (¢, u1, o) — H(t,

[11, fi2, Oy p(t, i1, 125 +), Oy p(t, p1, pi2; +)) in Proposition 4.1, when ¢ € To,, .
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4. Master Bellman equation and viscosity solution

Definition 4.5.

For E C O and (t, i1, 2) € E with t < T, the superjet of a function
u: FE — R at (t, pu1, u2) is given by

Jgult, pa, i) ={(Bep(t, i, 1), By P(t o1, 23 ), Oyt i1, pi2; ) |
¢ € T, (u— @)(t, 1, p2) = max(u — o) }.

The subjet of w at (¢, p1, o) is defined as

Jgu(ta M, M?) = _J—Ei_(_u(ta M, MQ))
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4. Master Bellman equation and viscosity solution

Definition 4.6. (Viscosity Solution)

A continuous function u : Oy — R with w(T, 1, p2) = (1, @(-, pe)) is
called a viscosity subsolution of (4.2) on Oy if, for every (¢, u1, p2) € On,

— Tt — H (t7/1/17u277ru1777;12) < 07 (ﬂ-taﬂ-upﬂ-uz) € JgNu(t7/1’17H2)'

A continuous function u : On — R with w(T, 1, p2) = (1, P(+, p2)) is
called a viscosity supersolution of (4.2) on Oy if for every

(t, p1, p2) € On,
— Tt — H (t),ulaljaaﬂ-p,pﬂ-uz) Z 0) (ﬂ-tvﬂ-ul?ﬂ-/m) € J(BNU(t,,ul,Hg).

A viscosity solution of (4.2) is a function on O that is both a subsolution
and a supersolution of (4.2) on Oy, for every N € N.
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4. Master Bellman equation and viscosity solution

In what follows we show that (¢, u1, fi2) = H (¢, 1, pi2, Oy @, Opunp) is
continuous on Oy, for any ¢ € T'p,, .

Proposition 4.1.

Under Assumption 2.1, for every ¢ € I'o,,, the mapping

(ta M1, MQ) = H(tv M1, (42, aIJ41 (p(t7 M1, (12, ')7 aMQSO(ta M1, 12, ))

is continuous on Oy.

Lemma 4.5.

Under the Assumptions 2.1 and 2.2, for all N, the value function % is
bounded on Oy.

| N
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5. Main results

Let us come to our main results: One states that the value function
¥ is a viscosity solution of (4.2) on O, and the other shows that the
comparison theorem for (4.2) holds.

Let the Assumptions 2.1 and 2.2 hold true. Then, for all N € N, the value
function ¥ is both a viscosity sub- and a supersolution to (4.2) on Oy,
and so O.

The proof of this theorem is rather subtle and technical, and so it is
omitted here.
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5. Main results

The remaining part of this section is devoted to a comparison theorem
for the value function 1. For this purpose, we first need to introduce some
definitions and notations.

Definition 5.1.

We say that a set of polynomials X’ has the (x)-property, if it satisfies

forall ge X, ¢ e X, 0 <i<deg(y),

where ¢() is the i-th derivative of g, and deg(g) denotes the degree of
polynomial g. Let > be the collection of all sets of polynomials that have
the (x)-property.

For f a real polynomial we set
xX(fH= [ &
Xex,fex
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5. Main results

We can easily check the following properties of X'(f).

For every polynomial f, we have:

(a) X(f) is the smallest set of polynomials with the (x)-property that
includes f;

(b) For every g € X(f), X(g) C X(f);

(c) X(f) is finite.

Let © := U X (1;), where 1;(z) = 27, x € R. Then:
j=1
a) © is countable; b) {1;}32, CO; «c)Forany f€©O, X(f) CO.

Let {fj};il be an enumeration of ©. We define the finite index set /;:

L={ilfieXx(f;)} j=1L

Then, for all i € I, we have X (f;) C X (f;) and, therefore, I; C I;.
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5. Main results

Moreover, we define for b > 0 and j € N

ei(0) = (3297 (S sv) 2,

kefj k‘EIj

where s5;(b):= 1+ sup (u, fj). We observe that it follows from Lemma 4.3
HEM,,

that 1 < s;(b) < oo, for all j € N. And we can see:

e Since f; € X (f;), we have j € I;, and, thus, ¢;(b) < 277. Hence,
2= ci(b) <1,

e For i € I}, from I; C I; we get c;(b) < ¢;(b).

e By the definition of s;(b) and ¢;(b),

ZC] ,uf] <1, peM,. (5.1)

In the proof of comparison theorem, ¢; and its properties are used to

introduce a distance-like function d, in order to construct test functions.
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5. Main results

To prove the comparison theorem, we need to impose an additional
assumption. Let N > 1, and define

K = {7 € PoR x U) | = (- x U) € Myor}.

Note that K is compact and Oy C [0,7] x {u=~(- x U) | v € Ky}

Assumption 5.1(N).

There exists a constant ko > 0 and a finite set Z C N (possibly depending
on N) such that for all s, s’ € [t,T], x € R, u € U, and v, v € Kn
satisfying (R x -) = +/(R x -),

’¢(87 (:L','LL),"}/) - ¢(S/7 (x7u)77I)‘ < H0(|S - S/| + Z ‘<M - Mlvxi>‘)7 (52)
€T
where p=~(- x U), ' =+'(- x U), for ¢ = by, bs, 01, 09, resp.
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5. Main results

Assumption 5.1(N) is a form of Lipschitz continuity on Oy w.r.t.
cylindrical functions of the measure arguments. Moreover, (5.2) also
implies, that for some constant C' 7z > 0,

‘90(37 (z, u)a')’) - 90(3/7 ($7U)>7/)| < KO(’8 - 3/‘ =+ CN,IW2(%7/))7
forall s, s € [t,T], ue U, v, v € Ky with y(R x -) =+/(R x -). This
latter relation shows that, if ¢ is independent of (z, ), Assumption
5.1(N) implies Assumption 2.1 on [0,7] x Ky
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5. Main results

Theorem 5.2. (Comparison Theorem)

We suppose that

bj(tv (y7'l))-/’}/) — bj(t7’7)7 Jj(tv (y7v>77) - U(LV)? (53)

(t, (y,v),7)€[0,T] x (R x U) x Po(R x U), j=1,2, i.e., the coefficients
b;,o; are independent of (y,v). Let Assumptions 2.2 and 5.1(/N) hold on
[0,T] x K. Let u € C(On) be a viscosity subsolution to HJB equation
(4.2) on On and v € C(Op) be a viscosity supersolution to HJB equation
(4.2) on Oy, satisfying u(T, p1, p2) < (T, 1, p2), for any (T, 1, pe) €
Op. Then u < v on Oy.

Remark. Burzoni et al. [2020] consider coefficients (b, o)(t, u, v), (t, u, v)
€ [0,7] x P(R) x U. While they use only deterministic control processes,
we overcome this difficulty by considering our stochastic control in the law.
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5. Main results

Sketch of Proof. Fix N € N and let ¢; := ¢; (Ne®™T). Then, for all
(t, 1, p2) € On, p1, 2 € Myerce C My x+r, it follows from (5.1) that

o
sup Y oi{mi, f;)? <1, i=1,2.
(t,p1,p2)EON j=1

We suppose that
sup(u —v) >0,
On
and we prove that this leads to a contradiction.
Since u — v is continuous and Oy is compact, the maximum

(:=  max_ ((u—v)(t p,p) —2n(T — 1))
(t,p1,12)E0N
can be achieved and there exists sufficiently small 79, such that, for all
n € (0,m0], we have £ > 0.
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Now we use the standard argument of doubling variables to construct
test functions for v and v.

Step 1. Doubling of variables. For ¢ > 0 and n € (0, 7], we define

¢8(t7ula Hn2,S, 1, VQ) =u (tv:uhMQ) —v (8, vy, VQ)

- %((t —5)? +d(pr, 1) + d(pz,v2)) = (T —t+T — s), 5

where d is a distance-like function defined for j1, v € My x*7 by the
relation

ch — v, i) (5.5)

recall that {fj};.’il ==X (27) (see Lemma 5.1). We observe
that d(-, -) is compatible with the weak convergence in My _x+r: Both
generate the same topology.
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5. Main results

The following corollary is a straightforward conclusion of Theorems
5.1 and 5.2.

Corollary 5.1.

Let Assumptions 2.2 and 5.1(V) hold, for all N > 1. Under the assumption
that

bi(t, (y,v),7) = bi(t,v), ot (y,v),7) = a(t,v), (5.6)

(t, (y,v),y) €[0,T] x (Rx U) x Po(RxU), j=1,2, are independent of
(y,v), the value function ¥ is the unique viscosity solution to HJB
equation (4.2) on O.
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Thank you very much

for your attention!
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