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Brief state of the art

Mean-field problems:
1) Mean-Field SDEs have been intensively studied for a longer time as

limit equ. for systems with a large number of particles (propagation of
chaos)(Bossy, Méléard, Sznitman, Talay,...);

2) Mean-Field Games and related topics, since 2006-2007 by J.M.Lasry
and P.L.Lions, Huang-Caines-Malhamé (2006) (Nash certainty
equivalence principle); Mean field game systems: i) −∂tu− v4u+H(x,Du,m) = 0 in (0, T )× Rd HJB equ.
ii) ∂tm− v4m− div(Hp(x,Du,m)m) = 0 in (0, T )× Rd continuity equ.
iii) m(0) = m0, u(x, T ) = G(x,m(T )) in Rd

Master equation evaluated for U = U(t, x,m):
−∂tU − v4xU +H(x,DxU,m)− v

∫
Rd

divyDmU(t, x,m, y)m(dy)

+

∫
Rd
DmU(t, x,m, y) ·DpH(y,DxU,m)m(dy) = 0

U(T, x,m) = G(x,m) in Rd × P2(Rd). 3 / 52



Brief state of the art

Mean-field problems:
3) +) Mean-Field BSDEs/FBSDEs and associated nonlocal PDEs:
• Prel. works: B., Djehiche, Li, Peng (AOP2009); B., Li, Peng (SPA2009);
• Classical solution of non-local PDE related with the mean-field SDE:

B., Li, Peng, Rainer (AOP2017 (Arxiv2014)):

0 = ∂tV (t, x, µ) + ∂xV (t, x, µ)b(x, µ) + 1
2∂

2
xxV (t, x, µ)σ2(x, µ)

+

∫
R

[
(∂µV )(t, x, µ, y)b(y, µ) +

1

2
∂y(∂µV )(t, x, µ, y)σ2(y, µ)

]
µ(dy),

V (T, x, µ) = Φ(x, µ), (t, x, µ) ∈ [0, T ]× R× P2(R).

• For the case with mean-field SDE with jumps: Hao, Li (NODEA2016);

• For the case with the mean-field FBSDE with jumps: Li (SPA2017);

• For the case with the mean-field BDSDE and related nonlocal
semi-linear backward SPDEs: B., Li, Xing (Arxiv2021);
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Brief state of the art

Dynamic programming approach:

+) For classical case:
• For SDGs: B., Li (2008, SICON);
• For SDGs with jumps: B., Hu, Li (2011, SPA);
+) Classical case, but fully coupled FBSDEs with jumps: Li, Wei (2014,
AMO);
• For stochastic control problems with jumps: Li, Peng (2009, NA);
• Stoch. control for fully coupled FBSDEs: Li, Wei (2014, SICON);

+) For mean-field stochastic optimal control problems:
The objective is to characterize the value function of the mean-field

control problem as a viscosity solution of a second order PDE on
Wasserstein space, known as Master Bellman equation. The viscosity
theory of this kind of PDEs is still at a rather early stage.
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Brief state of the art

• Consider definition by “lifting” :
The following works adopt the notion of viscosity solution from

Crandall-Lions and adapt it to the Wasserstein space by lifting to L2. The
uniqueness is established for this lifted Bellman equation.
 Pham,Wei (2018, ESAIM:COCV):

Controlled mean-field stochastic system:

dXu
t = b(t,Xu

t , ut,P(Xu
t ,ut)

)dt+ σ(t,Xu
t , ut,P(Xu

t ,ut)
)dWt, t ∈ [0, T ],

where ut := ũ(t,Xu
t ,PXu

t
).

It is assumed a priori that the controls were of Markovian feedback
type.
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Brief state of the art

 Bayraktar, Cosso, and Pham (2018, TAMS): Controlled mean-field SDEs:

Xt,ξ,u
s = ξ +

∫ s

t

b(r,Xt,ξ,u
r ,PXt,ξ,ur

, ur)dr +

∫ s

t

σ(r,Xt,ξ,u
r ,PXt,ξ,ur

, ur)dWr,

Xt,x,ξ,u
s = x+

∫ s

t

b(r,Xt,x,ξ,u
r ,PXt,ξ,ur

, ur)dr+

∫ s

t

σ(r,Xt,x,ξ,u
r ,PXt,ξ,ur

, ur)dWr.

They study control problems for open-loop controls, but without the

dependence of the law on the control, and they proved a so-called Randomized

DPP, based on a characterisation of the value function through an auxiliary

intensity control problem for a Poisson random measure.

 Pham and Wei (2017, SICON),
 Cosso and Pham (2019, JMPA),
· · ·
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Brief state of the art

• Consider “intrinsic” definition:

 Burzoni, Ignazio, Reppen and Soner (2020, SICON):
Controlled mean -field stochastic system with jumps:

dXu
t = b(t,PXu

t
, ut)dt+ σ(t,PXu

t
, ut)dWt + dJt, t ∈ [0, T ],

where J is a purely discontinuous process.
The authors considered deterministic control processes only

depending on the time. They studied viscosity solutions for a particular
class of integro-differential Master equations. The uniqueness of viscosity
solutions has been proved on Wasserstein spaces of probability measures
which have finite exponential moments.

 Cosso et al. (2024, TAMS): Controlled mean-field stochastic system:
dXu

t = b(t,Xu
t , ut,PXut )dt+ σ(t,Xu

t , ut)dWt, t ∈ [0, T ].

By using refinements of early ideas from the Crandall-Lions theory of viscosity

solutions, they proved the uniqueness of the viscosity solutions on P2(Rd), but

only for coefficients which do not depend on the law of the control.
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1. Objective of the talk

We develop a dynamic programming approach to study an optimal
control problem with generalized mean-field dynamics with considering:

• Open-loop controls;
• Coefficients which depend on the joint law of state processes and controls;
• Dynamics of both a “mean-field player” and a representative “individual player”.

We characterize the value function as the unique viscosity solution of
a second order PDE on Wasserstein space, by adapting the intrinsic

notion of viscosity solutions in Burzoni et al. [2020].
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2. Formulation of the mean-field stochastic control problems

We consider:

• (Ω,F ,P) – the classical Wiener space; the driving Brownian Motion B is

the coordinate process on Ω := C0([0, T ];Rd)): T > 0 - a fixed horizon;

F = B(Ω) ∨NP; P - Wiener measure.

• F = {Fs, 0 ≤ s ≤ T} – the filtration generated by B = (Bs)s∈[0,T ] and

augmented by all P-null sets.

• For k ≥ 1, P2(Rk) – the space of the probability measures over Rk with

finite second moment and endowed with the 2-Wasserstein metric:

W2(µ, ν) := inf
{(∫

Rk×Rk
|x− y|2ρ(dxdy)

) 1
2
, ρ ∈ Ππ,ν

}
, µ, ν ∈ P2(Rk),

where Πµ,ν=
{
ρ ∈ P2(R2k) with ρ(· × Rk) = µ, ρ(Rk × ·) = ν

}
.

Note: (P2(Rk),W2) is a complete separable space.
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2. Formulation of the mean-field stochastic control problems

Spaces we work with:

• L2(Ft;Rn) is the set of Rn-valued, Ft-measurable random variables

ζ : Ω→ Rn such that E[|ζ|2] <∞.

• L2
F([0, T ];Rn) is the set of Rn-valued, F-progressively measurable

processes φ : Ω× [0, T ]→ Rn, with E
[ ∫ T

0
|φt|2dt

]
< +∞.

• S2(0, T ;Rn) is the set of F-adapted continuous processes φ : Ω× [0, T ]

→ Rn satisfying E
[

sup
0≤s≤T

|φs|2
]
<∞.

For simplicity, we write L2(Ft) := L2(Ft;R), L2
F([0, T ]) := L2

F([0, T ];R).
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2. Formulation of the mean-field stochastic control problem

The dynamics of our stochastic control problem are the following

controlled mean-field SDEs:

Xt,ξ,u2

s = ξ +

∫ s

t

b1(r, (Xt,ξ,u2

r , u2r),P(Xt,ξ,u
2

r ,u2
r)

)dr

+

∫ s

t

σ1(r, (Xt,ξ,u2

r , u2r),P(Xt,ξ,u
2

r ,u2
r)

)dBr, s ∈ [t, T ],

(2.1)

Xt,x,ξ,u
s = x+

∫ s

t

b2(r, (Xt,x,ξ,u
r , u1r),P(Xt,ξ,u

2
r ,u2

r)
)dr

+

∫ s

t

σ2(r, (Xt,x,ξ,u
r , u1r),P(Xt,ξ,u

2
r ,u2

r)
)dBr, s ∈ [t, T ],

(2.2)

where t ∈ [0, T ], x ∈ R, ξ ∈ L2(Ft;R), u = (u1, u2) ∈ Ut,T := U0
t,T ×U0

t,T .

Admissible controls u1, u2 ∈ U0
t,T are F-adapted stochastic processes on

[t, T ] taking values in a compact set U ⊂ Rn.
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2. Formulation of the mean-field stochastic control problems

Remark: Interpretation of the dynamics

• Equation (2.1) can be interpreted as the dynamics of an agent (referred
to as the “mean-field player”), who plays collectively with using a
“collective control” u2. It describes the average over the states of all
agents.

• Equation (2.2) describes the dynamics of an individual agent who faces
the “mean-field player”, and u1 is the “individual control” played by this
individual agent.

• In other words, (2.1) characterizes the evolution of the law P
(Xt,ζ,u2 ,u2)

,

while (2.2) describes the associated trajectories of an individual agent with

initial condition Xt,x,ζ,u
t = x.
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2. Formulation of the mean-field stochastic control problem

We shall make the following standard assumptions.

Assumption 2.1.

(i) b1, b2, σ1, σ2 are continuous and, for simplicity, bounded.

(ii) Lipschitz continuity: There exists a constant C > 0, such that∣∣φ(t, (x, u),P(ζ,η))−φ(t, (x′, u),P(ζ′,η))
∣∣ ≤ C(|x− x′|+W2(P(ζ,η),P(ζ′,η))),

for all t ∈ [0, T ], x, x′ ∈ Rn, u ∈ U, ζ, ζ ′ ∈ L2(Ft;Rn), η ∈ L2(Ft;U),
φ = b1, b2, σ1, σ2.

Under Assumption 2.1, there exists a unique pair of solutions(
Xt,ζ,u2
s , Xt,x,ζ,u

s

)
s∈[t,T ]

∈ S2(0, T ;Rn)×S2(0, T ;Rn) to the equations

(2.1) and (2.2) (see, e.g., Buckdahn, Li, Peng and Rainer [2017]).
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2. Formulation of the mean-field stochastic control problem

Moreover, for every p ≥ 2, we have the following Lp-estimates:
There exists Cp ∈ R+ such that, for all t ∈ [0, T ], u = (u1, u2) ∈ Ut,T ,
and x, x′ ∈ Rn, ζ, ζ ′ ∈ L2 (Ft;Rn),

E
[

sup
s∈[t,T ]

∣∣∣Xt,ζ,u2

s −Xt,ζ′,u2

s

∣∣∣p |Ft] ≤ Cp|ζ − ζ ′|p,
E
[

sup
s∈[t,T ]

∣∣∣Xt,x,ζ,u
s −Xt,x′,ζ′,u

s

∣∣∣p |Ft] ≤ Cp( |x− x′|p + |ζ − ζ ′|p
)
.

From the uniqueness of the solutions of the both equations, we also have
the following flow property: For all 0 ≤ t < t+ δ ≤ T, x ∈ Rn,
ζ ∈ L2 (Ft;Rn) , u = (u1, u2) ∈ Ut,T :(
X
t+δ,Xt,x,ζ,ut+δ ,Xt,ζ,u

2

t+δ ,u
s , X

t+δ,Xt,ζ,u
2

t+δ ,u2

s

)
=
(
Xt,x,ζ,u
s , Xt,ζ,u2

s

)
, s ∈ [t+δ, T ],P-a.s.
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2. Formulation of the mean-field stochastic control problem

Assumption 2.2.

Let Φ : Rn × P2(Rn)→ R be Lipschitz, i.e., for some constant C > 0 we
have, for all x, x′ ∈ Rn, µ, µ′ ∈ P2(Rn),∣∣Φ(x, µ)− Φ

(
x′, µ′

)∣∣ ≤ C( ∣∣x− x′∣∣+W2(µ, µ′)
)
.

Given the control processes u =
(
u1, u2

)
∈ Ut,T , we introduce the

cost functional of our mean-field stochastic control problem:

J(t, x, ζ, u) := E
[
Φ
(
Xt,x,ζ,u
T ,P

Xt,ζ,u2

T

)∣∣Ft],
where (t, x) ∈ [0, T ]× Rn, ζ ∈ L2(Ft;Rn),

(
Xt,ζ,u2 , Xt,x,ζ,u

)
are the

solutions of (2.1) and (2.2).

Remark. Xt,x,ζ,u is in general not independent of Ft, and therefore
J(t, x, ζ, u) is an Ft-measurable random variable.
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2. Formulation of the mean-field stochastic control problem

The definition of the value function:

Suppose that both the “mean-field player” and the “individual player”
try to minimize the cost, for all (t, x) ∈ [0, T ]× Rn, ζ ∈ L2(Ft;Rn),

V (t, x, ζ) := essinf
u∈Ut,T

J(t, x, ζ, u)

= essinf
u2∈U0

t,T

(
essinf
u1∈U0

t,T

J
(
t, x, ζ,

(
u1, u2

)))
.

Set W
(
t, x, ζ, u2

)
:= essinf

u1∈U0
t,T

J
(
t, x, ζ,

(
u1, u2

))
, (t, x) ∈ [0, T ]× Rn,

u2 ∈ U0
t,T . Then

V (t, x, ζ) = essinf
u2∈U0

t,T

W
(
t, x, ζ, u2

)
.

17 / 52



1 Objective of the talk

2 Formulation of the mean-field stochastic control problems

3 Dynamic programming principle

4 Master Bellman equation and viscosity solution

5 Main results

18 / 52



3. Dynamic programming principle

Recall that W (t, x, ζ, u2) is an Ft-measurable random variable. The
following lemma shows that it is even deterministic.

Lemma 3.1.

For any (t, x) ∈ [0, T ]× Rn, ζ ∈ L2(Ft;Rn), u2 ∈ U0
t,T , W

(
t, x, ζ, u2

)
is

deterministic. Moreover, by standard estimates, ∃ C > 0 s.t.

|W (t, x, ζ, u2)−W (t, x′, ζ ′, u2)| ≤ C
(
|x− x′|+

(
E[|ζ − ζ ′|2]

) 1
2
)
,

for all t ∈ [0, T ], x, x′ ∈ Rn, ζ, ζ ′ ∈ L2(Ft;Rn), u2 ∈ U0
t,T .

The proof of this lemma uses a standard argument from Buckdahn
and Li [2008] with a novel, subtle approach.

The above lemma, combined with the definition of the value function
V yields that also

V (t, x, ζ) = inf
u2∈U0

t,T

W
(
t, x, ζ, u2

)
is deterministic, for all (t, x) ∈ [0, T ]× Rn, ζ ∈ L2(Ft;Rn).
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3. Dynamic programming principle

Next, we prove that the value function V (t, x, ζ) does not depend
on ζ itself but only on its law Pζ . For this, we have first to study some
auxiliary results.

Consider the following space of elementary control processes:

Uet,T :=
{
u2 =

N−1∑
i,j=0

1Ai,jζi,j1(ti,ti+1]

∣∣∣ N ≥ 1, t = t0 ≤ · · · ≤ tN = T, Ai,j ∈ Ft,

ζi,j ∈ L2(F tti ;U), i = 0, · · · , N − 1, (Ai,j)
N−1
j=0 is a decomposition of Ω

}
,

where F ts := σ{Br −Bt, r ∈ [t, s]}, s ∈ [t, T ].

Lemma 3.2.

Uet,T is dense in L2
F([t, T ];U)

(
= U0

t,T

)
with respect to the L2-norm over

[t, T ]× Ω.
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3. Dynamic programming principle

Then standard arguments allow to show:

V (t, x, ζ) = inf
u2∈Uet,T

W
(
t, x, ζ, u2

)
.

Now we have the following result:

Lemma 3.4.

For every ζ, ζ ′ ∈ L2 (Ft;Rn) with Pζ = Pζ′ , and every u2 ∈ Uet,T , there

exists u2′ ∈ Uet,T such that

J
(
t, x, ζ ′,

(
u1, u2′)) = J

(
t, x, ζ,

(
u1, u2

))
, P-a.s.,

for all u1 ∈ U0
t,T , x ∈ Rn, and, in particular,

W
(
t, x, ζ ′, u2′) := essinf

u1∈U0
t,T

J
(
t, x, ζ ′,

(
u1, u2′))

= essinf
u1∈U0

t,T

J
(
t, x, ζ,

(
u1, u2

))
= W

(
t, x, ζ, u2

)
.
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3. Dynamic programming principle

From the above lemma we deduce now easily:

Proposition 3.2.

Let (t, x) ∈ [0, T ]× Rn, ζ ∈ L2(Ft;Rn). Then, for all ζ ′ ∈ L2(Ft;Rn)
with Pζ = Pζ′ , we have

V (t, x, ζ) = V (t, x, ζ ′),

i.e., V depends on ζ only through Pζ . We write:

V (t, x,Pζ) := V (t, x, ζ),

where V : [0, T ]× Rn × P2(Rn)→ R. Moreover, by standard estimates,
there exists C ∈ R+, such that∣∣V (t, x,Pζ)− V (t, x̃,P

ζ̃
)
∣∣ ≤ C(|x− x̃|+W2(Pζ ,Pζ̃)

)
,

for all t ∈ [0, T ], x, x̃ ∈ Rn, ζ, ζ̃ ∈ L2(Ft;Rn).
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3. Dynamic programming principle

Study of W (t, x, ζ, u2):

Recall that:

• W (t, ·, ·, ·) : R× L2(Ft;Rn)× U0
t,T → R is defined by

W
(
t, x, ζ, u2

)
= essinf

u1∈U0
t,T

J
(
t, x, ζ,

(
u1, u2

))
= essinf

u1∈U0
t,T

E
[
Φ
(
X
t,x,ζ,(u1,u2)
T ,P

Xt,ζ,u2

T

)∣∣Ft];
• For any u2 ∈ U0

t,T , W (t, x, ζ, u2) is deterministic;
• From standard estimates:

|W (t, x, ζ, u2)−W (t, x′, ζ ′, u2)| ≤ C
(
|x− x′|+

(
E[|ζ − ζ ′|2]

) 1
2

)
,

for all t ∈ [0, T ], x, x′ ∈ Rn, ζ, ζ ′ ∈ L2(Ft;Rn), u2 ∈ U0
t,T .
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3. Dynamic programming principle

Using the above properties of W , we obtain the following DPP for W .

Theorem 3.1. (DPP for W )

For all 0 ≤ t < t+ δ ≤ T, u2 ∈ U0
t,T , x ∈ Rn, ζ ∈ L2(Ft;Rn),

W (t, x, ζ, u2) = essinf
u1∈U0

t,t+δ

E
[
W
(
t+ δ,X

t,x,ζ,(u1,u2)
t+δ , Xt,ζ,u2

t+δ , u2
)∣∣Ft].

The proof of this proposition uses a standard argument from Theorem
3.1 of Buckdahn and Li [2008].
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3. Dynamic programming principle

Remark.

From the proof of Theorem 3.1, as W is deterministic, we obtain, for all
t < t+ δ ≤ T,

W (t, x, ζ, u2) = inf
u1∈U0

t,t+δ

E
[
W
(
t+ δ,X

t,x,ζ,(u1,u2)
t+δ , Xt,ζ,u2

t+δ , u2
)]
. (3.1)

In particular, for t+ δ = T ,

W (t, x, ζ, u2) = inf
u1∈U0

t,T

E
[
Φ
(
X
t,x,ζ,(u1,u2)
T ,P

Xt,ζ,u
2

T

)]
,

and therefore, for the value function V (t, x,Pζ) = V (t, x, ζ):

V (t, x,Pζ) = V (t, x, ζ) = essinf
(u1,u2)∈Ut,T

E
[
Φ
(
X
t,x,ζ,(u1,u2)
T ,P

Xt,ζ,u
2

T

)∣∣Ft]
= inf
u2∈U0

t,T

W (t, x, ζ, u2) = inf
(u1,u2)∈Ut,T

E
[
Φ
(
X
t,x,ζ,(u1,u2)
T ,P

Xt,ζ,u
2

T

)]
.

24 / 52



3. Dynamic programming principle

Study of V (t, x,Pζ):

As the following inequality shows, we get the one-sided DPP for V :
For 0 ≤ t < t+ δ ≤ T , x ∈ Rn, ζ ∈ L2(Ft;Rn),

V (t, x,Pζ)
V Def

= inf
u2∈U0

t,T

W (t, x, ζ, u2)

(3.1)
= inf

u2∈U0
t,T

(
inf

u1∈U0
t,t+δ

E
[
W
(
t+ δ,X

t,x,ζ,(u1,u2)
t+δ , Xt,ζ,u2

t+δ , u2
)])

W Def
≥ inf

u2∈U0
t,T

(
inf

u1∈U0
t,t+δ

E
[
V
(
t+ δ,X

t,x,ζ,(u1,u2)
t+δ , Xt,ζ,u2

t+δ

)])
Indep. of u2|(t+δ,T ]

= inf
(u1,u2)∈Ut,t+δ

E
[
V
(
t+ δ,X

t,x,ζ,(u1,u2)
t+δ ,P

Xt,ζ,u
2

t+δ

)]
.

But we can not get the above inequality in the opposite direction.
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3. Dynamic programming principle

The value function ϑ:

For θ, ζ ∈ L2(Ft;Rn), we introduce a new definition of the value
function:

ϑ(t, θ,Pζ) := inf
u2∈U0

t,T

E
[
W (t, θ, ζ, u2)

]
= inf

u2∈U0
t,T

E
[

essinf
u1∈U0

t,T

E
[
Φ
(
X
t,θ,ζ,(u1,u2)
T ,P

Xt,ζ,u
2

T

)∣∣Ft]]. (3.2)

We can see:
• The function ϑ is obviously deterministic;
• ϑ(t, θ,Pζ) depends on θ only through the law Pθ.

(
Indeed,

ϑ(t, θ,Pζ) = inf
u2∈U0

t,T

∫
Rn
W (t, x, ζ, u2)Pθ(dx).

)
This allows to write

ϑ(t,Pθ,Pζ) := ϑ(t, θ,Pζ),

and to consider ϑ as a function over [0, T ]× P2(Rn)× P2(Rn).
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3. Dynamic programming principle

From Lemma 3.1 and a standard argument we have the following
estimate for ϑ: There exists a constant C > 0 such that

|ϑ(t,Pθ,Pζ)− ϑ(t,Pθ′ ,Pζ′)| ≤ C
(
W2(Pθ,Pθ′) +W2(Pζ ,Pζ′)

)
, (3.3)

for all t ∈ [0, T ], θ, θ′, ζ, ζ ′ ∈ L2(Ft;Rn).

Remark.

Notice that, for (t, x) ∈ [0, T ]× Rn, ζ ∈ L2(Ft;Rn),

ϑ(t, x,Pζ)(:= ϑ(t, δx,Pζ))= V (t, x,Pζ),

where δx denotes the Dirac measure at x, which means that a description
of ϑ(t,Pθ,Pζ), (θ, ζ) ∈ L2(Ft;Rn)× L2(Ft;Rn), as a solution of a PDE
also characterizes V (t, x,Pζ). This allows to characterize V through
studying ϑ.
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3. Dynamic programming principle

Let us now study the new value function ϑ. To begin with, we prove
that ϑ obeys the following DPP:

Theorem 3.2. (DPP for ϑ)

For any 0 ≤ t < t+ δ ≤ T, θ, ζ ∈ L2(Ft;Rn),

ϑ(t,Pθ,Pζ) = inf
u∈Ut,t+δ

ϑ
(
t+ δ,P

Xt,θ,ζ,u
t+δ

,P
Xt,ζ,u2

t+δ

)
. (3.4)

By using the properties of W , especially the DPP for W , and standard
arguments from Buckdahn and Li [2008], we prove Theorem 3.2.
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3. Dynamic programming principle

Using the continuity properties of ϑ(t, ·, ·) on P2(Rd)× P2(Rd) and
the DPP for ϑ, we also prove the continuity of ϑ with respect to t.

Proposition 3.3.

The value function ϑ is 1
2 -Hölder continuous in t: There exists a constant

C such that, for every t, t′ ∈ [0, T ], θ, ζ ∈ L2(Ft;Rn),∣∣ϑ(t,Pθ,Pζ)− ϑ
(
t′,Pθ,Pζ

)∣∣ ≤ C(1 + (E[|ζ|2])
1
2 + (E[|θ|2])

1
2
) ∣∣t− t′∣∣ 12 .
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4. Master Bellman equation and viscosity solution

Let us begin with the notion of derivative w.r.t. the measure over the
Wasserstein space.

Definition 4.1. (Carmona and Delarue [2018])

A function ϕ : P2

(
Rk
)
→ R is said to have a linear functional derivative if

there exists a function

δϕ

δµ
: P2

(
Rk
)
× Rk 3 (µ, x) 7→ δϕ

δµ
(µ)(x) ∈ R,

which is continuous with respect to the product topology (P2

(
Rk
)

is
equipped with the 2-Wasserstein distance) such that, for any bounded
subset K ⊂ P2

(
Rk
)
, the function Rd 3 x 7→ [δϕ/δµ](µ)(x) is at most of

quadratic growth in x, uniformly in µ, for µ ∈ K, and for all µ and µ′ in
P2

(
Rk
)
, it holds:

ϕ
(
µ′
)
− ϕ(µ) =

∫ 1

0

∫
Rd

δϕ

δµ

(
rµ′ + (1− r)µ

)
(x)d(µ′ − µ)(x)dr.
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4. Master Bellman equation and viscosity solution

This leads to the definition of the L-derivative of ϕ (the derivative
introduced by P.L. Lions [2013]).

Definition 4.2. (Carmona and Delarue [2018])

If
δϕ

δµ
is of class C1 with respect to the second variable, the L-derivative

∂µϕ : P
(
Rk
)
× Rk → Rk is defined by

∂µϕ(µ, x) := ∂x
(δϕ
δµ

)
(µ, x), (µ, x) ∈ P2(Rk)× Rk.

For any µ ∈ P2(Rk) and any µ-integrable function f : Rk → R, we
use the notation

〈µ, f〉 :=

∫
Rk
f(x)µ(dx).

For simplicity of notation, we restrict ourselves to dimension n = d = k = 1
in what follows.
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4. Master Bellman equation and viscosity solution

In this section, we study our optimal control problem on the space
O := [0, T )×M×M, where M⊂ P2(R) is the set of probability
measures with δ-exponential moments, i.e.,

M :=
{
µ ∈ P2(R) : 〈µ, exp(δ| · |)〉 =

∫
R

exp(δ|x|)µ(dx) <∞
}
, (4.1)

where δ > 0 is an arbitrary given constant. We endow M with the
topology of weak convergence σ(M, Cb(R)), where Cb(R) is the space of
continuous and bounded functions on R.

Remark. The space O has a suitable σ-compact structure, which allows
to establish uniqueness in the next section. This form of O is crucial to
obtain uniform integrability of the viscosity test functions as well as some
continuity properties of the Hamiltonian.
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4. Master Bellman equation and viscosity solution

Master Bellman equation:

For any (t, µ1, µ2) ∈ [0, T )×M×M,{
− ∂tϑ(t, µ1, µ2)−H

(
t, µ1, µ2, ∂µ1

ϑ(t, µ1, µ2; ·), ∂µ2
ϑ(t, µ1, µ2; ·)

)
= 0,

ϑ(T, µ1, µ2) = 〈µ1,Φ(·, µ2)〉,
(4.2)

where, with the notation

Πµ :=
{
γ ∈ P2(R× U) : γ(· × U) = µ

}
, µ ∈ P2(R),

the Hamiltonian H is defined by

H
(
t, µ1, µ2, p1, p2

)
:= inf

{
〈γ1,Lµ1,µ2,γ2

t [p1]〉+ 〈γ2,L
µ1,µ2,γ2
t [p2]〉 : γi ∈ Πµi , i = 1, 2

}
,

p1, p2 ∈ C1(R), with, for (y, v) ∈ R× U ,

Lµ1,µ2,γ2
t [p1](y, v) := p1(y)b2(t, (y, v), γ2) +

1

2
∂yp1(y)(σ2(t, (y, v), γ2))2,

Lµ1,µ2,γ2
t [p2](y, v) := p2(y)b1(t, (y, v), γ2) +

1

2
∂yp2(y)(σ1(t, (y, v), γ2))2.
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4. Master Bellman equation and viscosity solution

Remark.

When the coefficients b1 and σ1 do not depend on the control u2, then
ϑ(t, δx, µ) = V (t, x, µ) = W (t, x, µ), and from PDE (4.2) we get the
following PDE related with V (t, x, µ): For (t, x, µ) ∈ [0, T )× R×M,
− ∂tV (t, x, µ)− inf

u∈U

{
∂xV (t, x, µ)b2(t, (x, u), µ) +

1

2
∂2
xV (t, x, µ)(σ2(t, (x, u), µ))2

}
−
∫
R
∂µV (t, x, µ; y)b1(t, y, µ)µ(dy)−

∫
R

1

2
∂y∂µV (t, x, µ; y)(σ1(t, y, µ))2µ(dy) = 0,

V (T, x, µ) = Φ(x, µ).

(4.3)

• If b1 = σ1 = 0, and b2, σ2,Φ do not depend on the law, PDE (4.3) is

just the classical HJB equation.

• If b1 = b2, and σ1 = σ2, i.e., all the coefficients are free of controls,

then PDE (4.2) is just the mean-field PDE obtained in Buckdahn, Li, Peng

and Rainer [2017].
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4. Master Bellman equation and viscosity solution

For δ as in (4.1), we consider the function

eδ(x) := exp
(
δ(
√
x2 + 1− 1)

)
, x ∈ R.

For N ∈ N and δ as in (4.1), let

ON :=
{

(t, µ1, µ2) ∈ [0, T )× P2(R)× P2(R) | 〈µi, eδ〉 ≤ NeK
∗t, i = 1, 2

}
,

ON :=
{

(t, µ1, µ2) ∈ [0, T ]× P2(R)× P2(R) | 〈µi, eδ〉 ≤ NeK
∗t, i = 1, 2

}
,

where K∗ is a given positive constant which is derived from the proof of
Lemma 4.1 further down, in order to ensure that ON is invariant for the
dynamics (2.1)-(2.2). Note that O = ∪∞N=1ON and O = ∪∞N=1ON .

For a constant b and δ as in (4.1), we put

Mb := {µ ∈ P2(R) | 〈µ, eδ〉 ≤ b} .
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4. Master Bellman equation and viscosity solution

Lemma 4.1.

Under Assumption 2.1 , for all N ∈ N, the set ON is invariant for the
SDEs (2.1)-(2.2), namely,(

t,Pθ,Pζ
)
∈ ON =⇒

(
s,P

Xt,θ,ζ,u
s

,P
Xt,ζ,u2
s

)
∈ ON ,

for all t ∈ [0, T ], s ∈ [t, T ], θ, ζ ∈ L2(Ft), and u = (u1, u2) ∈ Ut,T , where(
Xt,ζ,u2
s , Xt,θ,ζ,u

s

)
s∈[t,T ]

is the solution to (2.1)-(2.2) with initial condition(
Xt,ζ,u2

t , Xt,θ,ζ,u
t

)
= (ζ, θ).

This implies that for any given initial law (t, µ1, µ2) ∈ ON , we may
restrict the Master Bellman equation (4.2) to ON .
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4. Master Bellman equation and viscosity solution

As P2(R) itself is not σ-compact, the importance of ON stems also
from the following fact:

Lemma 4.2.

For N ∈ N, ON is a compact subset of [0, T ]× P2(R)× P2(R).

Now we give the definition of a test function and that of a
viscosity solution to the Master Bellman equation (4.2), which were
first introduced in Burzoni et al. [2020]. We adapt them here to our
framework.

Definition 4.3.

A cylindrical function is a mapping of the form (t, µ1, µ2) 7→ F (t, 〈µ1, f1〉,
〈µ2, f2〉) for some functions f1, f2 : R→ R and F : [0, T ]× R× R→ R.
This function is called cylindrical polynomial, if f1, f2 are polynomials and
F is continuously differentiable.
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4. Master Bellman equation and viscosity solution

We extend the above class to its linear span. For any polynomial f,
we denote the degree of f by deg(f).

Definition 4.4. (Test Functions)

For E ⊂ O, a viscosity test function on E is a function of the form

ϕ(t, µ1, µ2) =

∞∑
j=1

ϕj(t, µ1, µ2), (t, µ1, µ2) ∈ E,

where {ϕj}j∈N is a sequence of cylindrical polynomials which is absolutely

convergent at every (t, µ1, µ2) and, for i = 1, 2,

lim
M→∞

∞∑
j=M

sup
(t,µ1,µ2)∈ON

∑
i=1,2

(
〈µi, |∂µiϕj(t, µ1, µ2; ·)|〉+〈µi, |∂y∂µiϕj(t, µ1, µ2; ·)|〉

)
= 0.

(4.4)
Let ΓE be the set of all viscosity test functions on E.

Remark. Condition (4.4) is used for proving the continuity of (t, µ1, µ2) 7→ H
(
t,

µ1, µ2, ∂µ1
ϕ(t, µ1, µ2; ·), ∂µ2

ϕ(t, µ1, µ2; ·)
)

in Proposition 4.1, when ϕ ∈ ΓON .
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4. Master Bellman equation and viscosity solution

Definition 4.5.

For E ⊆ O and (t, µ1, µ2) ∈ E with t < T , the superjet of a function
u : E → R at (t, µ1, µ2) is given by

J+
E u(t, µ1, µ2) :=

{(
∂tϕ(t, µ1, µ2), ∂µ1

ϕ(t, µ1, µ2; ·), ∂µ2
ϕ(t, µ1, µ2; ·)

) ∣∣
ϕ ∈ ΓE , (u− ϕ)(t, µ1, µ2) = max

E
(u− ϕ)

}
.

The subjet of u at (t, µ1, µ2) is defined as

J−E u(t, µ1, µ2) := −J+
E (−u(t, µ1, µ2)).
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4. Master Bellman equation and viscosity solution

Definition 4.6. (Viscosity Solution)

A continuous function u : ON → R with u(T, µ1, µ2) = 〈µ1,Φ(·, µ2)〉 is
called a viscosity subsolution of (4.2) on ON if, for every (t, µ1, µ2) ∈ ON ,

−πt −H (t, µ1, µ2, πµ1 , πµ2) ≤ 0, (πt, πµ1 , πµ2) ∈ J+
ONu(t, µ1, µ2).

A continuous function u : ON → R with u(T, µ1, µ2) = 〈µ1,Φ(·, µ2)〉 is
called a viscosity supersolution of (4.2) on ON if for every
(t, µ1, µ2) ∈ ON ,

−πt −H (t, µ1, µ2, πµ1 , πµ2) ≥ 0, (πt, πµ1 , πµ2) ∈ J−ONu(t, µ1, µ2).

A viscosity solution of (4.2) is a function on O that is both a subsolution
and a supersolution of (4.2) on ON , for every N ∈ N.
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4. Master Bellman equation and viscosity solution

In what follows we show that (t, µ1, µ2) 7→ H
(
t, µ1, µ2, ∂µ1ϕ, ∂µ2ϕ

)
is

continuous on ON , for any ϕ ∈ ΓON .

Proposition 4.1.

Under Assumption 2.1, for every ϕ ∈ ΓON , the mapping

(t, µ1, µ2) 7→ H
(
t, µ1, µ2, ∂µ1ϕ(t, µ1, µ2; ·), ∂µ2ϕ(t, µ1, µ2; ·)

)
is continuous on ON .

Lemma 4.5.

Under the Assumptions 2.1 and 2.2, for all N , the value function ϑ is
bounded on ON .
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5. Main results

Let us come to our main results: One states that the value function
ϑ is a viscosity solution of (4.2) on O, and the other shows that the
comparison theorem for (4.2) holds.

Theorem 5.1.

Let the Assumptions 2.1 and 2.2 hold true. Then, for all N ∈ N, the value
function ϑ is both a viscosity sub- and a supersolution to (4.2) on ON ,
and so O.

The proof of this theorem is rather subtle and technical, and so it is
omitted here.

42 / 52



5. Main results

The remaining part of this section is devoted to a comparison theorem
for the value function ϑ. For this purpose, we first need to introduce some
definitions and notations.

Definition 5.1.

We say that a set of polynomials X has the (∗)-property, if it satisfies

for all g ∈ X , g(i) ∈ X , 0 ≤ i ≤ deg(g),

where g(i) is the i-th derivative of g, and deg(g) denotes the degree of
polynomial g. Let

∑
be the collection of all sets of polynomials that have

the (∗)-property.

For f a real polynomial we set

X (f) :=
⋂

X∈Σ,f∈X
X .
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5. Main results

We can easily check the following properties of X (f).

Lemma 5.1.

For every polynomial f , we have:
(a) X (f) is the smallest set of polynomials with the (∗)-property that
includes f ;
(b) For every g ∈ X (f), X (g) ⊂ X (f);
(c) X (f) is finite.

Let Θ :=

∞⋃
j=1

X (ψj), where ψj(x) = xj , x ∈ R. Then:

a) Θ is countable; b) {ψj}∞j=1 ⊂ Θ; c) For any f ∈ Θ, X (f) ⊂ Θ.

Let {fj}∞j=1 be an enumeration of Θ. We define the finite index set Ij :

Ij =
{
i | fi ∈ X (fj)

}
, j ≥ 1.

Then, for all i ∈ Ij , we have X (fi) ⊂ X (fj) and, therefore, Ii ⊂ Ij .
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5. Main results

Moreover, we define for b > 0 and j ∈ N

cj(b) :=
(∑
k∈Ij

2k
)−1(∑

k∈Ij

sk(b)
)−2

,

where sj(b):= 1+ sup
µ∈Mb

〈µ, fj〉. We observe that it follows from Lemma 4.3

that 1 ≤ sj(b) <∞, for all j ∈ N. And we can see:

• Since fj ∈ X (fj), we have j ∈ Ij , and, thus, cj(b) ≤ 2−j . Hence,∑∞
j=1 cj(b) ≤ 1.

• For i ∈ Ij , from Ii ⊂ Ij we get cj(b) ≤ ci(b).
• By the definition of sj(b) and cj(b),

∞∑
j=1

cj(b) 〈µ, fj〉2 ≤ 1, µ ∈Mb. (5.1)

In the proof of comparison theorem, cj and its properties are used to
introduce a distance-like function d, in order to construct test functions.
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5. Main results

To prove the comparison theorem, we need to impose an additional
assumption. Let N ≥ 1, and define

KN :=
{
γ ∈ P2(R× U) | µ := γ(· × U) ∈MNeK∗T

}
.

Note that KN is compact and ON ⊂ [0, T ]× {µ = γ(· × U) | γ ∈ KN}2.

Assumption 5.1(N).

There exists a constant κ0 > 0 and a finite set I ⊂ N (possibly depending
on N) such that for all s, s′ ∈ [t, T ], x ∈ R, u ∈ U, and γ, γ′ ∈ KN
satisfying γ(R× ·) = γ′(R× ·),∣∣φ(s, (x, u), γ)− φ(s′, (x, u), γ′)

∣∣ ≤ κ0(|s− s′|+
∑
i∈I
|〈µ− µ′, xi〉|), (5.2)

where µ = γ(· × U), µ′ = γ′(· × U), for φ = b1, b2, σ1, σ2, resp.
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5. Main results

Remark.

Assumption 5.1(N) is a form of Lipschitz continuity on ON w.r.t.
cylindrical functions of the measure arguments. Moreover, (5.2) also
implies, that for some constant CN,I > 0,

|ϕ(s, (x, u), γ)− ϕ(s′, (x, u), γ′)| ≤ K0(|s− s′|+ CN,IW2(γ, γ′)),

for all s, s′ ∈ [t, T ], u ∈ U, γ, γ′ ∈ KN with γ(R× ·) = γ′(R× ·). This
latter relation shows that, if ϕ is independent of (x, u), Assumption
5.1(N) implies Assumption 2.1 on [0, T ]×KN .
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5. Main results

Theorem 5.2. (Comparison Theorem)

We suppose that

bj(t, (y, v), γ) = bj(t, γ), σj(t, (y, v), γ) = σ(t, γ), (5.3)

(t, (y, v), γ)∈[0, T ]× (R× U)× P2(R× U), j = 1, 2, i.e., the coefficients
bj , σj are independent of (y, v). Let Assumptions 2.2 and 5.1(N) hold on
[0, T ]×KN . Let u ∈ C(ON ) be a viscosity subsolution to HJB equation
(4.2) on ON and v ∈ C(ON ) be a viscosity supersolution to HJB equation
(4.2) on ON , satisfying u(T, µ1, µ2) ≤ v(T, µ1, µ2), for any (T, µ1, µ2) ∈
ON . Then u ≤ v on ON .

Remark. Burzoni et al. [2020] consider coefficients (b, σ)(t, µ, v), (t, µ, v)
∈ [0, T ]× P(R)× U . While they use only deterministic control processes,
we overcome this difficulty by considering our stochastic control in the law.
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5. Main results

Sketch of Proof. Fix N ∈ N and let cj := cj
(
NeK

∗T
)
. Then, for all

(t, µ1, µ2) ∈ ON , µ1, µ2 ∈MNeK∗t ⊂MNeK∗T , it follows from (5.1) that

sup
(t,µ1,µ2)∈ON

∞∑
j=1

cj〈µi, fj〉2 ≤ 1, i = 1, 2.

We suppose that
sup
ON

(u− v) > 0,

and we prove that this leads to a contradiction.
Since u− v is continuous and ON is compact, the maximum

` := max
(t,µ1,µ2)∈ON

(
(u− v)(t, µ1, µ2)− 2η(T − t)

)
can be achieved and there exists sufficiently small η0, such that, for all
η ∈ (0, η0], we have ` > 0.
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5. Main results

Now we use the standard argument of doubling variables to construct
test functions for u and v.

Step 1. Doubling of variables. For ε > 0 and η ∈ (0, η0], we define

φε(t,µ1, µ2, s, ν1, ν2) := u (t, µ1, µ2)− v (s, ν1, ν2)

− 1

ε

(
(t− s)2 + d(µ1, ν1) + d(µ2, ν2)

)
− η(T − t+ T − s),

(5.4)

where d is a distance-like function defined for µ, ν ∈MNeK∗T by the
relation

d(µ, ν) :=

∞∑
j=1

cj〈µ− ν, fj〉2; (5.5)

recall that {fj}∞j=1 = Θ =
⋃∞
j=1X

(
xj
)

(see Lemma 5.1). We observe
that d(·, ·) is compatible with the weak convergence in MNeK∗T : Both
generate the same topology.

..............
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5. Main results

The following corollary is a straightforward conclusion of Theorems
5.1 and 5.2.

Corollary 5.1.

Let Assumptions 2.2 and 5.1(N) hold, for all N ≥ 1. Under the assumption
that

bj(t, (y, v), γ) = bj(t, γ), σj(t, (y, v), γ) = σ(t, γ), (5.6)

(t, (y, v), γ) ∈ [0, T ]× (R× U)×P2(R× U), j = 1, 2, are independent of
(y, v), the value function ϑ is the unique viscosity solution to HJB
equation (4.2) on O.
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Thank you very much

for your attention!
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