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(G-expectation

o Let T > 0 be given and let Q7 = Co([0, T]; R?) be the space of
R%valued continuous functions on [0, 7] with wy = 0.

e Canonical process B (w) := wy, for w € Qp and t € [0, 7.
°
LZP(Qt {SD Btl’BtQ Btla--'aBtN *BtN_l) :
N>t <---<ty<tpe€ Cb.Lip(RdXN)},

where C’b.Lip(RdXN) denotes the space of bounded Lipschitz functions

on RIxXN,



(G-expectation

Let G : S; — R be a given monotonic and sublinear function, where Sy
denotes the set of d x d symmetric matrices. Then there exists a unique
bounded, convex and closed set > C Sj{ such that

1
G(A) = = suptr[An] for A € Sy,
2 yEX
where Sj denotes the set of d x d nonnegative matrices. If there exists a
02 > 0 such that v > 021, for any v € ¥, G is called non-degenerate.
Otherwise, G is called degenerate.

o If d =1, then G(a) = 3(6%a* — c%a™) for a € R. G is degenerate iff
a2 =0.



(G-expectation

Peng (2004-2008) constructed the G-expectation K : Lip(Q7) — R and
the conditional G-expectation E; : Lip(Qr) — Lip(Q) as follows:

@ Foreach s1 < s <Tand p € Cb.Lip(Rd), define
E[o(Bs, — Bs,)] = u(sy — s1,0), where u is the viscosity solution of

the following G-heat equation:
du — G(D%u) = 0, u(0,z) = p(z).

e For each X = on(By,,Bt, — Bty ..., Bty — Biy_,) € Lip(Qr),
define

A

Eti [X] - Soi(Btla s >Bti - Bti—l) and E[X] = E[@l(Btl)]ﬂ
where

iz, ... x;) = E[¢i+1(x1, ooz, By — By



(G-expectation

o G-expectation space (Qr, Lip(Qr), E, (IAEt)te[()’T]) is a consistent
sublinear expectation space, (Bt);c(o,r) is called the G-Brownian
motion under K.

o L7,(€) denotes the completion of Lip(€;) under the norm
HXHLZ := (K[| X[P])Y/? for p > 1. It is clear that [, can be
continuously extended to L} (€7) under the norm || - HLé.

@ S. Peng, Filtration consistent nonlinear expectations and evaluations of contingent claims,
Acta Math. Appl. Sin., 20(2) (2004), 1-24.

@ S. Peng, Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 26B(2)
(2005), 159-184.

@ S. Peng, G-expectation, G-Brownian Motion and Related Stochastic Calculus of 1té type,
Stochastic analysis and applications, Abel Symp., Vol. 2, Springer, Berlin, 2007, 541-567.

@ S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under
G-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.

@ S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer
(2019).



Representation theorem of (G-expectation

Theorem (Denis-Hu-Peng (2011), Hu-Peng (2009))

There exists a unique weakly compact and convex set of probability
measures P on (Qp, B(Q2r)) such that

E[X] = sup Ep[X] for all X € LE(Qr),

where B(Qr) =o0(Bs: s <T).

@ L. Denis, M. Hu, S. Peng, Function spaces and capacity related to a sublinear expectation:
application to G-Brownian motion paths, Potential Anal., 34 (2011), 139-161.

@ M. Hu, S. Peng, On representation theorem of G-expectations and paths of G-Brownian
motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539-546.




Representation theorem of (G-expectation

For this P, define

LP(Qy) := {X € B() : EEI%EPHXV)] < oo} forp > 1.

It is easy to check that L?,(Q) C LP(€;). For each X € L'(Qy),

E[X] := sup Ep[X]
PeP

is still called the G-expectation. The capacity associated to P is defined by

c(A) := sup P(A) for A € B(Qr).
pPeP
A set A € B(Qr) is polar if ¢(A) = 0. A property holds “quasi-surely”
(g.s. for short) if it holds outside a polar set. We do not distinguish two
random variables X and Y if X =Y q.s.



Doob's inequality for G-martingale

Theorem (Soner-Touzi-Zhang (2011), Song (2011))

Let1<p<p and€ e Lg(QT). Then

1/p
(I@ sup (E[\il])p]) < <I@1

where 1
P
C = (1 I ,L> .
p =D

ymsc@mmf”,

sup By [|£|7]
t<T

@ H. M. Soner, N. Touzi, J. Zhang, Martingale Representation Theorem under
G-expectation, Stochastic Process. Appl., 121 (2011), 265-287.

@ Y. Song, Some properties on G-evaluation and its applications to G-martingale
decomposition, Sci. China Math., 54(2) (2011), 287-300.
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© Problem formulation
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Non-degenerate G-BSDE

Hu-Ji-Peng-Song (2014) studied the following BSDE driven by
non-degenerate G-Brownian motion (G-BSDE)

Yy = €+ [1 f(s,Ys, Zs)ds + [ g(s, Y, Zs)d(B)s
— [ ZdB, — (Kr — K;).

We proved that the above G-BSDE has a unique solution (Y, Z, K), where
K is a non-increasing G-martingale with Ky = 0.

Soner-Touzi-Zhang (2012) studied a new type of fully nonlinear BSDE,
called 2BSDE, by different formulation and method.

@ M. Hu, S. Ji, S. Peng, Y. Song, Backward stochastic differential equations driven by
G-Brownian motion, Stochastic Process. Appl., 124 (2014), 759-784.

@ M. Hu, S. Ji, S. Peng, Y. Song, Comparison theorem, Feynman-Kac formula and Girsanov
transformation for BSDEs driven by G-Brownian motion, Stochastic Process. Appl., 124
(2014), 1170-1195.

@ H. M. Soner, N. Touzi, J. Zhang, Wellposedness of Second Order Backward SDEs,
Probab. Theory Related Fields, 153 (2012), 149-190.
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Degenerate G-BSDE

For simplicity, we consider the following degenerate G-BSDE:

Yi= &+ [T f(s,Yo)ds + [ g(s,Ys, Zo)d(B)s
— [ ZsdB, — (K1 — K,),

where B is a 1-dimensional G-Brownian motion, G(a) := %62a+ fora e R
with & > 0.

0 0< (B)ess — (Bl < 0%

o (5[ 17ram)”]) "
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o MO(0,T) i= {m = L0 &g ) () : & € Lin(,) )

. p/p]\ /P B
o |[nllymror = <E [(foT |77t|pdt) ) ;P21

) /] \ /P
o ||77||Hg’5(0,T;<B)) = (E [(fontlpd<B>t> }) ;

o MEP(0,T) completion of M°(0,T) under the norm || - ”Mg’ﬁ(o,T);
o HEZP(0,T;(B)) completion of M?(0,T) under the norm

IE HHg’ﬁ(QT;(B));

Mg(O,T) = Mg’p(O,T), Hg(O,T
590, T) := {(h(t, Biynt, - - - Biyne

)) = HE"(0,T; (B));

(B
Diepor] : h € Co.Lip(RYT)};

. 1/p
nllsg o) = (B [supeer ml?]) " p =1,

S%.(0,T) completion of SY(0,T) under the norm || - ||S§(0,T)-
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(H1) There exists a p > 1 such that £ € L% (Q7), f(-,y) € MGP(0,T)
and g(-,y,2) € Hé:ﬁ(O,T; (B)) for any y, z € R;

(H2) There exists a constant L > 0 such that, for any (t,w) € [0,T]x Qr,
(y,2), (9,2) € R xR,

|f(t7(*),y) - f(tawag” + |g(t7w7y7 Z) - g(t7wvg72)|
< L(ly =yl + |z — 2)).
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We give the following LP-solution of G-BSDE for p € (1, p).

Definition

(Y, Z,K) is called an LP-solution of G-BSDE if the following properties
hold:

(i) Y € S%(0,T), Z € HZ?(0,T; (B)), K is a non-increasing
G-martingale with Ko = 0 and K7 € LZ,(Q7);
(if)
Y= €+ [ f(s,Y)ds + [ g(s,Ys, Zs)d(B)s
— [ ZsdB, — (K7 — K;), t <T.
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d-dimensional GG-Brownian motion

Let B, = (B},...,BH)T be a d-dimensional G-Brownian motion satisfying

d

G(A) = G'(A) + Z +

where d' < d, A’ € Sy, a; € R for d' <1 < d,
A
e ad/:+1 Cs,
: : : a.d
G’ : Sy — R is non-degenerate, 5; > 0 fori=d +1,...,d.
Ye= &+ f) f(s.Ye, Z0ds + 0 f) giis, Y, Z)d(B', BY),

d T
+ Zfi:d/_i_lTj; gl(s) Yts’ Zga Z}s)d<Bl>8
—> %1 Ji ZkdBE — (K — K).
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© Existence and uniqueness result
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Prior estimates of G-BSDE

Proposition

Suppose that &;, f; and g; satisfy (H1) and (H2) fori =1, 2. Let
(Y, Z!, K%) be the LP-solution of G-BSDE corresponding to &;, f; and g;

for some p € (1,p). Then there exists a positive constant C' depending on
p, @, L and T satisfying

&+ ( / ' |fs|ds>p + ( / ’ rgs\d<B>s)p
e+ ([ ' |fi<s,o>\ds)p +( [ ' |gi<s,o7o>|d<B>s)p
([ |Z;'|2d<B>s)p/2

\Yt\p < CE;

)

|Y{P < CE;

)

E +E[|KLP] < CA,,
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Prior estimates of G-BSDE

(5 1ZraE).)"”
<C {]E [SuPtST Wt\p] + (A1 + Ag)1/2 (E [supth \thﬂ)w} :

where »
A 5 A T
Ai= B fsupper [YiP) + B [ (J 1i(s,0)lds)’|
R T P
+]E [(fO ‘91(87070)‘d<B>8> :| )
Vi=Y!—Y2 =6 —6&, fo=fi(s,Y2) - fos, VD),
gs291(57}/527Z52)_92(371/;27Z52)’ Zt:Ztl_Zt2
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Solution in the extended G-expectation space

Following Hu-Ji-Peng-Song (2014), the key point to obtain the solution of
G-BSDE is to study the following type of G-BSDE:

Y;S = QO(BT) + /;T h(Yﬁ Zs)d<B>s - /tT stBs - (KT - Kt);

where ¢ € C§°(R), h € C§°(R?).
Set Q7 = Cy([0, T];R?) and the canonical process is denoted by (B, B).
For each aq1, ai2, ass € R, define

- 1
G << ail ai2 )) — G(all) + ~ags,
a2 a2 2
we have (B, B); = 0 and (B); = t. The G-expectation is denoted by E,
and the related spaces are denoted by
Lip(4), LE (), MO(0,T), MEP(0,T), HEP(0,T;(B)), S4(0,T).
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Solution in the extended G-expectation space

Let ¢ € C5°(R) and h € C§°(R?). Then, for each given p > 1, G-BSDE
has a unique LP-solution (Y, Z, K) in the extended G-expectation space
such that Y € S%(0,T), Z € H2P(0,T; (B)) and K € L2 (Qr).
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Solution in the extended G-expectation space

Key point of proof. For each fixed € € (0,5), define
Bf = By +eB; for t € [0,T].

Then (Bf):e(o,1) is the Ge-Brownian motion under E, where

1
= (6% +e¥a" —%a7] fora € R.

Ge(a) 5

Let u. be the viscosity solution of the following PDE
Opu + G (02 ,u + 2h(u, Opu)) = 0, u(T, z) = ¢(z).

By Krylov's regularity estimate, there exists a constant a € (0,1) such
that u. € C'H/22+2([0, T — §] x R) for any 6 > 0.
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Solution in the extended G-expectation space

Applying 1t6's formula to u.(t, By), we obtain
T T
Ve o5+ [ MR D).~ [ zzans - (5 - ),
t t
where Y = u.(t, Bf), Z§ = Oyu.(t, Bf) and
b1
Ki = [ [Ohuels BS) + 207, Z0)] d(B°).
0
t
- / Ge (8§xua(s, B?) +2n(Y;, Zf;f)) ds.
0

Taking € — 0, we can prove the result.
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Estimates of partial derivatives of u,

Let ¢ be the G.-expectation on (7, Lip(€27)). The canonical process
(Bt)iefo,r) is the 1-dimensional G'.-Brownian motion under <. For each
given (t,z) € [0,T) x R, denote

BY = x + B, — By for s € [t, T).

Applying 1t6's formula to wu.(s, Bém) under ¢, we obtain that the
following G.-BSDE

T T
vie = o) + [ v 2y, - [ zman, - Ko
S S
has a unique solution (nt””,Zﬁ’””,Kﬁ’“’”)se[t,T] satisfying

Yi® = ua(s, Be"), Zo = dpuc(t, BS") and K;* = 0.
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Estimates of partial derivatives of u,

Let P¢ be a weakly compact and convex set of probability measures on
(Q7, B(Q7)) such that

E°[X] = sup Ep[X] for all X € Lg_(Qr).
Pepe

For each given (t,z) € [0,T) x R, denote

Pi, ={P € P : Ep[Ky"] = 0}.
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Estimates of partial derivatives of u,

The following estimates for G.-BSDE are useful.

Proposition

Suppose p € C§°(R) and h € C§°(R?). For (t,z,A) € [0,T) x RxR, let
(Yo, 257 Ko%)seqry and (Y702, 29702 K™2) ep 1) e two
solutions of G.-BSDE. Then, forp > 1, P € P;, and PA ¢ P i

sup |Yo7H8 —yr |’ < O|Ap,

s€t,T)
T ) p/2 »
Ep ( / |Zt=+8 _ zt7| d<B>s) +‘K§$+A) < C|AP,
%
T 9 p/2 »
Epa < [ 1z - 2 d(B>5> + |k | < clap,
t

where the constant C' > 0 depends on p, &, @, h and T.
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Estimates of partial derivatives of u,

In the following theorem, we obtain the formula of J,u. based on
us(t,z) = Y.

Theorem

Suppose that ¢ € C§°(R) and h € C$°(R?). Then, for each
(t,x) € [0,T) x R, we have

Byue(t,z) = Ep [r;%'( )} for any P € Pf,,

where (D5") sclt,] is the solution of the following G-SDE:

drh® = by (YP®, Z09)TH7d(B), + W, (YE®, Z6°)Th"dB,, T® = 1.
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Estimates of partial derivatives of u,

Now we give the estimate for 92 u..

Suppose that ¢ € C§°(R) and h € C§°(R?). Then

02 uc(t,z) > —C for (t,z) € [0,T) x R,

where the constant C' > 0 depends on &, @, h and T'.

The constant C' in the above theorem is independent of ¢ € (0,7).

Key point of proof. Set Y2 = YH#+A _ yte gnd ZA = gtatA _ gt
For any given P € P;, we obtain
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Estimates of partial derivatives of u,

T T
2 = Ep [YTAF%% | vepas), - | rgwﬁww].
t t

Since TH* > 0 and dKL*T2 <0, we get
T
72 > By [YTAP';”” -/ ri@fﬁdw»] |
¢

Noting that [Y2 — ¢/(BE")A| < OA? and |I2] < C([VA]? + | Z22), we
obtain

VA > Bp [T7/(BY)] A - a2,
Similarly, for any given P2 ¢ Py 2. We can get
VA < Epa [FtT’HAgo’(B%HA)} A+ CA2,

where C' > 0 depends on &, ¢, h and T
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Existence and uniqueness

Let ¢ € C°(R) and h € C§°(IR?). Then, for each given p > 1, G-BSDE
has a unique LP-solution (Y, Z, K) in the G-expectation space.

Key point of proof. (Y, Z, K) is the LP-solution in the extended

é—expectation space

T T

Y: = o(Br) —I-/ h(Ys, Zs)d(B)s — / ZsdBs — (K1 — Ky).
t t
Applying 1t6's formula to u.(t, By), we get
Ye = o(Br)+ [, h(Ys, Z5)d(B).s i
— S 52 (02, ucls, B + 20V, Z2) ) ds

— i ZzdB, - (L5 — L5),
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Existence and uniqueness

where Y = u.(t, B;), Z¢ = dyu.(t, By) and

Li = Jy % [02ue(s By) + 20(Y5, Z0)| (),
e ( ue(s, By )+2h(17;5,2§)) d
- ~ +
Ot %52 <8§xu5(57 Bs) +2h(YE, Z5) ) ds.

L# is non-increasing with L§ = 0 under E and
<8§xug(s,BS) + 2h(VE, Z;))_ < C for e € (0,).

Applying 1t&’s formula to |V — Y;|2 on [0, T, we obtain

(/OT |Z¢ — Zt|2d<B>t)p/2] =0.

limE
el0
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Existence and uniqueness

Suppose that &, f and g satisfy (H1) and (H2). Then G-BSDE has a
unique LP-solution (Y, Z, K) for each given p € (1,p).
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Existence and uniqueness

The following example shows that f can not contain z in G-BSDE.

Example

Let B be a 1-dimensional G-Brownian motion with G(a) := $5%a* for

a € R. we can prove (((B)s) %) scior] € HG' (0, T; (B)) for each p > 1,
which implies fOT(<B>5)_1/5dBS € LY.(Qr) for each p > 1. Consider the
following linear G-BSDE:

T T T
Y; = / ((B)s)~Y/%dB, +/ Zyds — / ZdB, — (K1 — Ky),
0 t t
If the above G-BSDE has an LP-solution (Y, Z, K), then we can deduce
)
Yy > 1T4/55*2/5 for each ¢ > 0,

which contradicts to Yy € R. Thus, for each given p > 1, the above
G-BSDE has no LP-solution (Y, Z, K).

E




@ Application to the regularity of fully nonlinear PDEs
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Regularity of PDEs

For simplicity, we only consider 1-dimensional G-Brownian motion with
G(a) = 36%a™. For each fixed t € [0,T] and z € R, consider the following
G-FBSDE:

dX5" = b(s, Xb%)ds + h(s, X0%)d(B)s + o(s, Xt*)dB,,
dYS™ = f(s, X0, YE")ds — g(s, X07, YT, Z67)d(B),
+725%dB, + dKL,
X0 = x, YU = (X,
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Regularity of PDEs

We need the following assumptions:
(A1) b, h, o, f, g are continuous in (s,z,y, 2).

(A2) There exist a constant L; > 0 and a positive integer m such that for
any s € [0,7], z, 2/, y, v/, z, 2/ € R,

|b(s,z) — b(s,2")| + |h(s,x) — h(s,a')|

+lo(s,x) —o(s,2")| < L]z — 2],

lp(x) — ()| < Li(1+ [z[™ + [2'|™) ]z — 2],
’f(svm?y) - f(S,.%'I,y/)l + ’g(s7m?y> Z) - g(s,x’,y’, Z,)|
< Ly[(L A+ |z™ + [2'[™) ]z — 2| + |y — ¢/ + |2 = &']].
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Regularity of PDEs

Define
u(t,z) =Y for (t,x) € [0,T] x R.

Proposition

Suppose that (A1) and (A2) hold. Then
(i) For each (t,z) € [0,T) x R, we have Y2" = u(s, Xo™) for s € [t,T).
(ii) u(-,-) is the unique viscosity solution of the following fully nonlinear
PDE:

Byt + G(0 (¢, )02 + 2h(t, 2)0uts + 29(t, 3w, 0 (1, 2)0us))
+b(t, )0pu + f(t,z,u) =0,
W(T,7) = p(z).
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Regularity of PDEs

For each (t,z) € [0,T) x R, set

Piye = {P € P: Ep[K:*] = 0}.

In order to obtain d,u(t,z), we need the following assumption.
(A3) b, by 00 &'y frn fyo 9o 9y 9= are continuous in (s, z,y, 2).

Notation: ¢.(s) = g.(s, X2", Y&", ZL"), similar for 9y(5), g-(s), fr(s)
and f;(s).
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Regularity of PDEs

Suppose that (A1)-(A3) hold. Then, for each (t,z) € [0,T) x R, we have

Opsult, z) = suppemeP[ (X”)X”F”-I— JT fi(s) XEoTh ds

Bp_ul(t,z) = mfpe% Ep [ (X”)X“”r” + [T f1(s)XETh%ds
where (X&) se[t,r] and (F’;x) sc[t,) satisfy the following G-SDEs:

dX50" =0 (s, X" XU ds + b (s, X0") XL d(B)s + o/, (s, X2 ) X" d B,
dT5" = f(s)T5"ds + g, (s)T5"d(B)s + g4(s)[5"dBs,
X =1, Tp® =1.
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Regularity of PDEs

In order to obtain dyu(t,z), we need the following assumption.

(A4) b}, hy, oy, f{, g, are continuous in (s,z,y, z), and there exist a
constant Ly > 0 and a positive integer my such that for any s € [0, 77,
x, Yy, 2z €R,

Vi (s, )| + |hi(s, )| + |ot(s, )| + | fi (s, 2, y)| + |gi(s, x, y, )]
< Ly(1+ [a™ + [y]™ + |2[?).
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Regularity of PDEs

Suppose that (A1)-(A4) hold. Then, for each (t,x) € (0,T) x R, we have
Opru(t,x) = suppep, , Ep { (X;lx)thth—l—ft ( fh(s)Xs
—S S Zt
+E () — 7 () s + [T (54
+05(5)XE" + T3gi(s) — 7iy9(s)) T4 d(B >s} ,

B_ult, z) = mfpemEp[ (X;””)X”rt%rft (m
LI A f(s)) T%ds + [T ( >Zt
= t \ 27—t
oy >X +Ttgt<s> 739(s)) T d(B), | ,
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Regularity of PDEs

where f](s) = fi(s, Xo,Y"), similar for f(s), f4(s), g(s), ga(s), gL.(s)

and gi(s), (Xo° )sejt,1) Satisfies the following G--SDE:

e S [b' r, X”)X” =r b (r, X5%) — 2b(r, X”)} dr
+ J2 R G, X57) RE® 4 T=op(r, XB®) — TLh(r X;*)] d(B),
+ [ o X“’" X3 + Ebal(r, XE®) = siieyo(r, X0%)] dB;.
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Regularity of PDEs

The following theorem gives the condition for O, u(t, x) = Op—u(t, x).

Suppose that (A1)-(A4) hold. If o(t,2) # 0 for some (t,x) € (0,T) x R,
then Oy u(t,x) = Op—u(t, ).
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Regularity of PDEs

Finally, we study 92, u(t,x). We need the following assumption.

/! " 1 1! 1! 1 1! " ! ! i !
(AS) bmc' hxx' Ogzr Jza xzy' Jyyr Gz gxy' G2 gyyv gyzv gz, aAre
continuous in (s,x,y,z) and bounded by a constant L3 > 0.
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Regularity of PDEs

Suppose that (A1)-(A3) and (A5) hold. Then, for each (t,x) € [0,T) x R,
we have

AV [Oy_u(t,z + A) — Bypult, z)] > —C(1 + |z|>™) for A € (0,1],

A7 [0 ult, z + A) — 9p_u(t,x)] > —C(1 + |z|*™) for A € [-1,0),
where the constant C > 0 depends on L1, L3, & and T.

@ Mingshang Hu, Shaolin Ji, Xiaojuan Li, BSDEs driven by G-Brownian motion under

degenerate case and its application to the regularity of fully nonlinear PDEs, Preprint
Transactions of the American Mathematical Society.
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