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Averaging of distributions

Some well-known objects in stochastic analysis are of the form

Lt =

∫ t

0
f (Xs) ds,

where f is a distribution and X is a stochastic process.

Example: f = δ, X = Brownian motion ⇝ L = local time at 0.

Integrand is not well-defined, but the integral is!

We are interested in general conditions on f and X that allow one
to define such integrals.

Main applications in mind concern SDEs with irregular drift b

dXt = b(Xt) dt + dBt .
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Construction 1: explicit X

If X ≡ B ∈ {fractional Brownian motion, stable Lévy process},
then

Ef (Bt) = PH
t f (0),

where PH
t is a regularising kernel, e.g.:

∥∇PH
t f ∥∞ ≲ t−H∥f ∥∞,

and H is the self-similatity exponent (either the Hurst parameter or
the inverse of the stability index). H ≫ 1 is allowed!

More generally, with Es(·) = E(·|Fs),

Es f (Bt) = PH
t−s f (EsBt),

∥PH
t f ∥Cβ+γ ≲ t−γH∥f ∥Cβ ,

where γ ≥ 0, Cβ = Bβ
∞,∞.
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Construction 1: explicit X

This already gives a lot:∫ 1

0
f (Bs) ds = lim

n→∞

2n−1∑
i=0

Ei2−n

∫ (i+1)2−n

i2−n

f (Bs) ds

= lim
n→∞

2n−1∑
i=0

∫ (i+1)2−n

i2−n

(PH
s−i2−n f )(Ei2−nB(i+1)2−n) ds

=
∞∑
n=0

2n−1∑
i=0

∫ (i+1)2−n

(i+1/2)2−n

(
E(i+1/2)2−n − Ei2−n

)
f (Bs) ds︸ ︷︷ ︸

martingale!

Everything converges if f ∈ Cβ, 1 + βH > 1/2.
A systematic generalisation of this argument can be provided by
the stochastic sewing lemma [Lê ’18].
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Construction 2: perturbed X

More often the process X is not known explicitly, but it admits a
“fast-slow” decomposition:

X = φ+ B

where B is as before and φ is “slower”: for some γ > H, some
constant C , for all s, t, one has the bound almost surely:

Es |φt − Esφt | ≤ C |t − s|γ . (SMO)

Remark: This is a natural analogue of a BMO condition, but
different from the existing BMO process concept (see [Lê ’22] for
an overview and new results).
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Construction 2: perturbed X

Theorem (G ’20, Butkovsky-Dareiotis-G ’22, Galeati-G ’22)

Let b ∈ Cα, α ∈ (0, 1], α > 1− 1/H, and X = φ+ B satisfy

dXt = b(Xt) dt + dBt .

Then φ satisfies (SMO) with

γ = 1 + αH (fBM);

γ = 2 ∧ (1 + αH) (stable Lévy).

Remark: So do approximate solutions, e.g. Picard iterates, Euler
scheme.



Construction 2: perturbed X

Theorem (G ’20, Butkovsky-Dareiotis-G ’22, Galeati-G ’22)

If φ satisfies (SMO), f ∈ Cβ, and

(β − 1)H + γ > 0, 1 + βH > 1/2

then

LX ,f
t =

∫ t

0
f (Xs) ds

is well-defined and belongs to C 1+βH(Lp(Ω)), for all p < ∞.

In many situations, f = ∇b, so β = α− 1. This leads to the
conditions (α− 1)H + 1 + αH > 0, 1 + (α− 1)H > 1/2

⇒ α > 1− 1/(2H).

Remark: With buckling (choosing f = b), this allows to extend
the previous theorem to certain ranges of negative α.
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Application 1 - Stability (⇒ existence & uniqueness)

Take X , X̃ to be solutions of

dXt = b(Xt) dt + dBt , dX̃t = b̃(X̃t) dt + dBt ,

where b ∈ Cα, α < 1, and B = fractional Brownian motion.
Formally,

Xt − X̃t =

∫ t

0
(Xs − X̃s)

∫ 1

0
∇b(θX̃s + (1− θ)Xs) dθ ds︸ ︷︷ ︸

=:dLX ;X̃ ,∇b
s

+

∫ t

0
(b − b̃)(X̃s) ds.

Theorem (Galeati-G ’22)

If α > 1− 1/(2H) and φ, φ̃ satisfy (SMO) with γ = 1 + αH, then

∥LX ;X̃ ,∇b∥C1+(α−1)H has Gaussian moments. As a consequence,∥∥ sup
t∈[0,1]

|X − X̃ |
∥∥
Lp(Ω)

≲ ∥X0 − X̃0∥Lp(Ω) + ∥b − b̃∥Cα−1 .



Application 1 - Stability (⇒ existence & uniqueness)

Take X , X̃ to be solutions of

dXt = b(Xt) dt + dBt , dX̃t = b̃(X̃t) dt + dBt ,

where b ∈ Cα, α < 1, and B = fractional Brownian motion.
Formally,

Xt − X̃t =

∫ t

0
(Xs − X̃s)

∫ 1

0
∇b(θX̃s + (1− θ)Xs) dθ ds︸ ︷︷ ︸

=:dLX ;X̃ ,∇b
s

+

∫ t

0
(b − b̃)(X̃s) ds.

Theorem (Galeati-G ’22)

If α > 1− 1/(2H) and φ, φ̃ satisfy (SMO) with γ = 1 + αH, then

∥LX ;X̃ ,∇b∥C1+(α−1)H has Gaussian moments. As a consequence,∥∥ sup
t∈[0,1]

|X − X̃ |
∥∥
Lp(Ω)

≲ ∥X0 − X̃0∥Lp(Ω) + ∥b − b̃∥Cα−1 .



Application 2 - Malliavin regularity

Let X , B be as before. Take directional derivative in the noise in
the direction of h ∈ C (0, 1):

d∂hXt = ∇b(Xt)∂hXt dt + ht .

Based on the above, we can rewrite this as

d∂hXt = ∂hXt dLX ,∇b
t + ht .

Theorem (Galeati-G ’22)

Let q be such that q < ((1− α)H))−1︸ ︷︷ ︸
>2

. Then

∥∥ sup
t∈[0,1]

∥h 7→ ∂hXt∥L(Cq−var ,Rd )

∥∥
Lp(Ω)

≲ 1.

Recalling that the Cameron-Martin space of B is embedded in
C 2−var, this bounds the Malliavin derivative of X .
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Application 3 - CLT

Let B be a standard BM and consider a multiplicative SDE

dXt = b(Xt) dt + σ(Xt) dBt

[Kurtz-Protter ’91]: If b, σ ∈ C 1, the Euler-Maruyama scheme
satisfies a CLT : V n =

√
n(X − X n) converges in law to V , where

dVt = ∇b(Xt)Vt dt +∇σ(Xt)Vt dBt +
1√
2
(∇σσ)(Xt) dWt .

As before, we can rewrite this as

dVt = Vt dLX ,∇b
t +∇σ(Xt)Vt dBt +

1√
2
∇σσ(Xt) dWt . (1)

Theorem (Dareiotis-G-Lê ’23+)

Suppose α > 0 and b ∈ Cα, σ ∈ C 2 and nondegenerate. Then
equation (1) is well-defined, well-posed, and V n converges in law
to its solution V .
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Suppose α > 0 and b ∈ Cα, σ ∈ C 2 and nondegenerate. Then
equation (1) is well-defined, well-posed, and V n converges in law
to its solution V .



Remarks/Outlook

Remarks:

In (SMO) one can replace |t − s| by a control w(s, t) (but w
can not be completely arbitrary)

... which allows for extensions to time-dependent b

... which is relevant, for example, in applications to
McKean-Vlasov equations

Questions:

For Lévy-driven SDEs we get optimal condition on α only if
1/H ≥ 2/3. Is there a better substitute for (SMO)?

The validity of (SMO) only requires α > (1− 1/H) ∨ 0. Is
there any kind of (e.g. weak) well-posedness in this regime?
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Thank you for the attention!


