Integration along stochastic processes

Máté Gerencsér

TU Wien

May 5, 2023
based on joint works with Oleg Butkovsky, Konstantinos Dareiotis, Lucio Galeati, Khoa Lê

Averaging of distributions

Some well-known objects in stochastic analysis are of the form

$$
\mathcal{L}_{t}=\int_{0}^{t} f\left(X_{s}\right) d s
$$

where f is a distribution and X is a stochastic process.
Example: $f=\delta, X=$ Brownian motion $\rightsquigarrow \mathcal{L}=$ local time at 0 .
Integrand is not well-defined, but the integral is!
We are interested in general conditions on f and X that allow one
to define such integrals.
Main applications in mind concern SDEs with irregular drift b

$$
d X_{t}=b\left(X_{t}\right) d t+d B_{t}
$$

Averaging of distributions

Some well-known objects in stochastic analysis are of the form

$$
\mathcal{L}_{t}=\int_{0}^{t} f\left(X_{s}\right) d s
$$

where f is a distribution and X is a stochastic process.
Example: $f=\delta, X=$ Brownian motion $\rightsquigarrow \mathcal{L}=$ local time at 0 .
Integrand is not well-defined, but the integral is!
We are interested in general conditions on f and X that allow one to define such integrals.
Main applications in mind concern SDEs with irregular drift b

$$
d X_{t}=b\left(X_{t}\right) d t+d B_{t}
$$

Construction 1: explicit X

If $X \equiv B \in\{$ fractional Brownian motion, stable Lévy process $\}$, then

$$
\mathbb{E} f\left(B_{t}\right)=\mathcal{P}_{t}^{H} f(0)
$$

where \mathcal{P}_{t}^{H} is a regularising kernel, e.g.:

$$
\left\|\nabla \mathcal{P}_{t}^{H} f\right\|_{\infty} \lesssim t^{-H}\|f\|_{\infty},
$$

and H is the self-similatity exponent (either the Hurst parameter or the inverse of the stability index). $H \gg 1$ is allowed!
More generally, with $\mathbb{E}_{s}(\cdot)=\mathbb{E}\left(\cdot \mid \mathcal{F}_{s}\right)$,

$$
\mathbb{E}_{s} f\left(B_{t}\right)=\mathcal{P}_{t-s}^{H} f\left(\mathbb{E}_{s} B_{t}\right),
$$

where $\gamma \geq 0, C^{\beta}=B_{\infty, \infty}^{\beta}$.

Construction 1: explicit X

If $X \equiv B \in\{$ fractional Brownian motion, stable Lévy process $\}$, then

$$
\mathbb{E} f\left(B_{t}\right)=\mathcal{P}_{t}^{H} f(0)
$$

where \mathcal{P}_{t}^{H} is a regularising kernel, e.g.:

$$
\left\|\nabla \mathcal{P}_{t}^{H} f\right\|_{\infty} \lesssim t^{-H}\|f\|_{\infty}
$$

and H is the self-similatity exponent (either the Hurst parameter or the inverse of the stability index). $H \gg 1$ is allowed!
More generally, with $\mathbb{E}_{s}(\cdot)=\mathbb{E}\left(\cdot \mid \mathcal{F}_{s}\right)$,

$$
\begin{gathered}
\mathbb{E}_{s} f\left(B_{t}\right)=\mathcal{P}_{t-s}^{H} f\left(\mathbb{E}_{s} B_{t}\right), \\
\left\|\mathcal{P}_{t}^{H} f\right\|_{C^{\beta+\gamma}} \lesssim t^{-\gamma H}\|f\|_{C^{\beta}},
\end{gathered}
$$

where $\gamma \geq 0, C^{\beta}=B_{\infty, \infty}^{\beta}$.

Construction 1: explicit X

This already gives a lot:

$$
\begin{aligned}
\int_{0}^{1} f\left(B_{s}\right) d s & =\lim _{n \rightarrow \infty} \sum_{i=0}^{2^{n}-1} \mathbb{E}_{i 2^{-n}} \int_{i 2^{-n}}^{(i+1) 2^{-n}} f\left(B_{s}\right) d s \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{2^{n}-1} \int_{i 2^{-n}}^{(i+1) 2^{-n}}\left(\mathcal{P}_{s-i 2^{-n}}^{H} f\right)\left(\mathbb{E}_{i 2^{-n}} B_{(i+1) 2^{-n}}\right) d s \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{2^{n}-1} \underbrace{\int_{(i+1 / 2) 2^{-n}}^{(i+1) 2^{-n}}\left(\mathbb{E}_{(i+1 / 2) 2^{-n}}-\mathbb{E}_{i 2^{-n}}\right) f\left(B_{s}\right) d s}_{\text {martingale! }}
\end{aligned}
$$

Everything converges if $f \in C^{\beta}, 1+\beta H>1 / 2$.
A systematic generalisation of this argument can be provided by the stochastic sewing lemma [Lê '18].

Construction 1: explicit X

This already gives a lot:

$$
\begin{aligned}
\int_{0}^{1} f\left(B_{s}\right) d s & =\lim _{n \rightarrow \infty} \sum_{i=0}^{2^{n}-1} \mathbb{E}_{i 2^{-n}} \int_{i 2^{-n}}^{(i+1) 2^{-n}} f\left(B_{s}\right) d s \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{2^{n}-1} \int_{i 2^{-n}}^{(i+1) 2^{-n}}\left(\mathcal{P}_{s-i 2^{-n}}^{H} f\right)\left(\mathbb{E}_{i 2^{-n}} B_{(i+1) 2^{-n}}\right) d s \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{2^{n}-1} \underbrace{\int_{(i+1 / 2) 2^{-n}}^{(i+1) 2^{-n}}\left(\mathbb{E}_{(i+1 / 2) 2^{-n}}-\mathbb{E}_{i 2^{-n}}\right) f\left(B_{s}\right) d s}_{\text {martingale! }}
\end{aligned}
$$

Everything converges if $f \in C^{\beta}, 1+\beta H>1 / 2$.
A systematic generalisation of this argument can be provided by the stochastic sewing lemma [Lê '18].

Construction 2: perturbed X

More often the process X is not known explicitly, but it admits a "fast-slow" decomposition:

$$
X=\varphi+B
$$

where B is as before and φ is "slower": for some $\gamma>H$, some constant C, for all s, t, one has the bound almost surely:

Remark: This is a natural analogue of a BMO condition, but different from the existing BMO process concept (see [Lê '22] for an overview and new results)

Construction 2: perturbed X

More often the process X is not known explicitly, but it admits a "fast-slow" decomposition:

$$
X=\varphi+B
$$

where B is as before and φ is "slower": for some $\gamma>H$, some constant C, for all s, t, one has the bound almost surely:

$$
\begin{equation*}
\mathbb{E}_{s}\left|\varphi_{t}-\mathbb{E}_{s} \varphi_{t}\right| \leq C|t-s|^{\gamma} \tag{SMO}
\end{equation*}
$$

Remark: This is a natural analogue of a BMO condition, but different from the existing BMO process concept (see [Lê '22] for an overview and new results)

Construction 2: perturbed X

More often the process X is not known explicitly, but it admits a "fast-slow" decomposition:

$$
X=\varphi+B
$$

where B is as before and φ is "slower": for some $\gamma>H$, some constant C, for all s, t, one has the bound almost surely:

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{s}}\left|\varphi_{t}-\mathbb{E}_{\boldsymbol{s}} \varphi_{t}\right| \leq C|t-s|^{\gamma} \tag{SMO}
\end{equation*}
$$

Remark: This is a natural analogue of a BMO condition, but different from the existing BMO process concept (see [Lê '22] for an overview and new results).

Construction 2: perturbed X

Theorem (G '20, Butkovsky-Dareiotis-G '22, Galeati-G '22)
Let $b \in C^{\alpha}, \alpha \in(0,1], \alpha>1-1 / H$, and $X=\varphi+B$ satisfy

$$
d X_{t}=b\left(X_{t}\right) d t+d B_{t}
$$

Then φ satisfies (SMO) with

- $\gamma=1+\alpha H$ (fBM);
- $\gamma=2 \wedge(1+\alpha H)$ (stable Lévy).

Remark: So do approximate solutions, e.g. Picard iterates, Euler scheme.

Construction 2: perturbed X

Theorem (G '20, Butkovsky-Dareiotis-G '22, Galeati-G '22)
If φ satisfies (SMO), $f \in C^{\beta}$, and

$$
(\beta-1) H+\gamma>0, \quad 1+\beta H>1 / 2
$$

then

$$
\mathcal{L}_{t}^{X, f}=\int_{0}^{t} f\left(X_{s}\right) d s
$$

is well-defined and belongs to $C^{1+\beta H}\left(L^{p}(\Omega)\right)$, for all $p<\infty$.
In many situations, $f=\nabla b$, so $\beta=\alpha-1$. This leads to the conditions $(\alpha-1) H+1+\alpha H>0,1+(\alpha-1) H>1 / 2$

Remark: With buckling (choosing $f=b$), this allows to extend the previous theorem to certain ranges of negative α.

Construction 2: perturbed X

Theorem (G '20, Butkovsky-Dareiotis-G '22, Galeati-G '22)

If φ satisfies (SMO), $f \in C^{\beta}$, and

$$
(\beta-1) H+\gamma>0, \quad 1+\beta H>1 / 2
$$

then

$$
\mathcal{L}_{t}^{X, f}=\int_{0}^{t} f\left(X_{s}\right) d s
$$

is well-defined and belongs to $C^{1+\beta H}\left(L^{p}(\Omega)\right)$, for all $p<\infty$.
In many situations, $f=\nabla b$, so $\beta=\alpha-1$. This leads to the conditions $(\alpha-1) H+1+\alpha H>0,1+(\alpha-1) H>1 / 2$

$$
\Rightarrow \alpha>1-1 /(2 H)
$$

Remark: With buckling (choosing $f=b$), this allows to extend the previous theorem to certain ranges of negative α.

Construction 2: perturbed X

Theorem (G '20, Butkovsky-Dareiotis-G '22, Galeati-G '22)

If φ satisfies (SMO), $f \in C^{\beta}$, and

$$
(\beta-1) H+\gamma>0, \quad 1+\beta H>1 / 2
$$

then

$$
\mathcal{L}_{t}^{X, f}=\int_{0}^{t} f\left(X_{s}\right) d s
$$

is well-defined and belongs to $C^{1+\beta H}\left(L^{p}(\Omega)\right)$, for all $p<\infty$.
In many situations, $f=\nabla b$, so $\beta=\alpha-1$. This leads to the conditions $(\alpha-1) H+1+\alpha H>0,1+(\alpha-1) H>1 / 2$

$$
\Rightarrow \alpha>1-1 /(2 H) .
$$

Remark: With buckling (choosing $f=b$), this allows to extend the previous theorem to certain ranges of negative α.

Application 1 - Stability (\Rightarrow existence \& uniqueness)

Take X, \tilde{X} to be solutions of

$$
d X_{t}=b\left(X_{t}\right) d t+d B_{t}, \quad d \tilde{X}_{t}=\tilde{b}\left(\tilde{X}_{t}\right) d t+d B_{t}
$$

where $b \in C^{\alpha}, \alpha<1$, and $B=$ fractional Brownian motion. Formally,

$$
\begin{aligned}
X_{t}-\tilde{X}_{t}= & \int_{0}^{t}\left(X_{s}-\tilde{X}_{s}\right) \underbrace{\int_{0}^{1} \nabla b\left(\theta \tilde{X}_{s}+(1-\theta) X_{s}\right) d \theta d s}_{=: d \mathcal{L}_{s}^{X, \tilde{X}, \nabla b}} \\
& +\int_{0}^{t}(b-\tilde{b})\left(\tilde{X}_{s}\right) d s .
\end{aligned}
$$

Application 1 - Stability (\Rightarrow existence \& uniqueness)

Take X, \tilde{X} to be solutions of

$$
d X_{t}=b\left(X_{t}\right) d t+d B_{t}, \quad d \tilde{X}_{t}=\tilde{b}\left(\tilde{X}_{t}\right) d t+d B_{t}
$$

where $b \in C^{\alpha}, \alpha<1$, and $B=$ fractional Brownian motion. Formally,

$$
\begin{aligned}
X_{t}-\tilde{X}_{t}= & \int_{0}^{t}\left(X_{s}-\tilde{X}_{s}\right) \underbrace{\int_{0}^{1} \nabla b\left(\theta \tilde{X}_{s}+(1-\theta) X_{s}\right) d \theta d s}_{=: d \mathcal{L}_{s}^{X, \tilde{X}, \nabla b}} \\
& +\int_{0}^{t}(b-\tilde{b})\left(\tilde{X}_{s}\right) d s
\end{aligned}
$$

Theorem (Galeati-G '22)

If $\alpha>1-1 /(2 H)$ and $\varphi, \tilde{\varphi}$ satisfy (SMO) with $\gamma=1+\alpha H$, then $\left\|\mathcal{L}^{X ; \tilde{X}, \nabla b}\right\|_{C^{1+(\alpha-1) H}}$ has Gaussian moments. As a consequence,

$$
\left\|\sup _{t \in[0,1]} \mid X-\tilde{X}\right\|_{L^{p}(\Omega)} \lesssim\left\|X_{0}-\tilde{X}_{0}\right\|_{L^{p}(\Omega)}+\|b-\tilde{b}\|_{C^{\alpha-1}}
$$

Application 2 - Malliavin regularity

Let X, B be as before. Take directional derivative in the noise in the direction of $h \in C(0,1)$:

$$
d \partial_{h} X_{t}=\nabla b\left(X_{t}\right) \partial_{h} X_{t} d t+h_{t}
$$

Based on the above, we can rewrite this as

$$
d \partial_{h} X_{t}=\partial_{h} X_{t} d \mathcal{L}_{t}^{X, \nabla b}+h_{t}
$$

Theorem (Galeati-G '22)

Let q be such that $q<\underbrace{((1-\alpha) H))^{-1}}_{>2}$. Then

$$
\left\|\sup _{t \in[0,1]}\right\| h \mapsto \partial_{h} X_{t}\left\|_{L\left(C^{q-v a r}, \mathbb{R}^{d}\right)}\right\|_{L^{p}(\Omega)} \lesssim 1
$$

Recalling that the Cameron-Martin space of B is embedded in $C^{2-v a r}$, this bounds the Malliavin derivative of X.

Application 2 - Malliavin regularity

Let X, B be as before. Take directional derivative in the noise in the direction of $h \in C(0,1)$:

$$
d \partial_{h} X_{t}=\nabla b\left(X_{t}\right) \partial_{h} X_{t} d t+h_{t}
$$

Based on the above, we can rewrite this as

$$
d \partial_{h} X_{t}=\partial_{h} X_{t} d \mathcal{L}_{t}^{X, \nabla b}+h_{t}
$$

Theorem (Galeati-G '22)

Let q be such that $q<\underbrace{((1-\alpha) H))^{-1}}_{>2}$. Then

$$
\left\|\sup _{t \in[0,1]}\right\| h \mapsto \partial_{h} X_{t}\left\|_{L\left(C^{q-v a r}, \mathbb{R}^{d}\right)}\right\|_{L^{p}(\Omega)} \lesssim 1
$$

Recalling that the Cameron-Martin space of B is embedded in $C^{2-v a r}$, this bounds the Malliavin derivative of X.

Application 3 - CLT

Let B be a standard BM and consider a multiplicative SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}
$$

[Kurtz-Protter '91]: If $b, \sigma \in C^{1}$, the Euler-Maruyama scheme satisfies a CLT : $V^{n}=\sqrt{n}\left(X-X^{n}\right)$ converges in law to V, where

$$
d V_{t}=\nabla b\left(X_{t}\right) V_{t} d t+\nabla \sigma\left(X_{t}\right) V_{t} d B_{t}+\frac{1}{\sqrt{2}}(\nabla \sigma \sigma)\left(X_{t}\right) d W_{t}
$$

As before, we can rewrite this as

Application 3 - CLT

Let B be a standard BM and consider a multiplicative SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}
$$

[Kurtz-Protter '91]: If $b, \sigma \in C^{1}$, the Euler-Maruyama scheme satisfies a CLT : $V^{n}=\sqrt{n}\left(X-X^{n}\right)$ converges in law to V, where

$$
d V_{t}=\nabla b\left(X_{t}\right) V_{t} d t+\nabla \sigma\left(X_{t}\right) V_{t} d B_{t}+\frac{1}{\sqrt{2}}(\nabla \sigma \sigma)\left(X_{t}\right) d W_{t}
$$

As before, we can rewrite this as

$$
\begin{equation*}
d V_{t}=V_{t} d \mathcal{L}_{t}^{X, \nabla b}+\nabla \sigma\left(X_{t}\right) V_{t} d B_{t}+\frac{1}{\sqrt{2}} \nabla \sigma \sigma\left(X_{t}\right) d W_{t} \tag{1}
\end{equation*}
$$

Theorem (Dareiotis-G-Lê '23+)

Suppose $\alpha>0$ and $b \in C^{\alpha}, \sigma \in C^{2}$ and nondegenerate. Then equation (1) is well-defined, well-posed, and V^{n} converges in law to its solution V.

Remarks/Outlook

Remarks:

- In (SMO) one can replace $|t-s|$ by a control $w(s, t)$ (but w can not be completely arbitrary)
- ... which allows for extensions to time-dependent b
- ... which is relevant, for example, in applications to McKean-Vlasov equations

Questions:

- For Iévy-driven SDEs we get optimal condition on α only if $1 / H \geq 2 / 3$. Is there a better substitute for (SMO)?
- The validity of (SMO) only requires $\alpha>(1-1 / H) \vee 0$. Is there any kind of (e.g. weak) well-posedness in this regime?

Remarks/Outlook

Remarks:

- In (SMO) one can replace $|t-s|$ by a control $w(s, t)$ (but w can not be completely arbitrary)
- ... which allows for extensions to time-dependent b
- ... which is relevant, for example, in applications to McKean-Vlasov equations

Questions:

- For Lévy-driven SDEs we get optimal condition on α only if $1 / H \geq 2 / 3$. Is there a better substitute for (SMO)?
- The validity of (SMO) only requires $\alpha>(1-1 / H) \vee 0$. Is there any kind of (e.g. weak) well-posedness in this regime?

Thank you for the attention!

