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Averaging of distributions

Some well-known objects in stochastic analysis are of the form

t
Le= / f(Xs) ds,
0

where f is a distribution and X is a stochastic process.
Example: f = §, X = Brownian motion ~» £ = local time at 0.

Integrand is not well-defined, but the integral is!
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where f is a distribution and X is a stochastic process.
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We are interested in general conditions on f and X that allow one
to define such integrals.

Main applications in mind concern SDEs with irregular drift b



Construction 1: explicit X

If X = B € {fractional Brownian motion, stable Lévy process},
then
Ef(B:) = P{'f(0),

where P! is a regularising kernel, e.g.:
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and H is the self-similatity exponent (either the Hurst parameter or
the inverse of the stability index). H > 1 is allowed!
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then
Ef(B:) = P{'f(0),

where P! is a regularising kernel, e.g.:
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and H is the self-similatity exponent (either the Hurst parameter or
the inverse of the stability index). H > 1 is allowed!

More generally, with Es(-) = E(+|Fs),
Esf(B:) = PH f(EsB:),

1Pl oy S 7 Fllcs,

where v >0, C# = Boﬁooo



Construction 1: explicit X

This already gives a lot:
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Everything converges if f € C%, 1+ fH > 1/2.
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This already gives a lot:
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Everything converges if f € C%, 1+ fH > 1/2.
A systematic generalisation of this argument can be provided by
the stochastic sewing lemma [L& '18].
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Construction 2: perturbed X

More often the process X is not known explicitly, but it admits a
“fast-slow” decomposition:

X=p+B

where B is as before and ¢ is “slower”: for some v > H, some
constant C, for all s, t, one has the bound almost surely:

Es|p: — Espr| < Clt — s[7. (SMO)
Remark: This is a natural analogue of a BMO condition, but

different from the existing BMO process concept (see [Lé '22] for
an overview and new results).



Construction 2: perturbed X

Theorem (G '20, Butkovsky-Dareiotis-G '22, Galeati-G '22)

Letbe C* a€(0,1], a >1—1/H, and X = ¢ + B satisfy

Then ¢ satisfies (SMO) with
e y=1+aH (BM);
e v =2A (14 aH) (stable Lévy).

Remark: So do approximate solutions, e.g. Picard iterates, Euler
scheme.
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Construction 2: perturbed X

Theorem (G '20, Butkovsky-Dareiotis-G '22, Galeati-G '22)

If ¢ satisfies (SMO), f € CP, and
(B—1)H+~ >0, 1+ 8H >1/2

then .
Ef’f:/ f(Xs) ds
0

is well-defined and belongs to C1tAH(LP(Q)), for all p < oo.

In many situations, f = Vb, so f = «a — 1. This leads to the
conditions (¢« —1)H+14+aH >0,1+ (o« —1)H > 1/2

=a>1-1/(2H).

Remark: With buckling (choosing f = b), this allows to extend
the previous theorem to certain ranges of negative a.



Application 1 - Stability (= existence & uniqueness)

Take X, X to be solutions of
dX; = b(X;) dt + dB;,  dX. = b(X;) dt + dB,
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Formally,

t 1
Xe — X¢ = / (Xs — >"<s)/ Vb(0Xs + (1 — 0)Xs) db ds
0 0

~/

-~

—dXFV




Application 1 - Stability (= existence & uniqueness)

Take X, X to be solutions of
dX; = b(X;) dt + dB;,  dX. = b(X;) dt + dB,
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t
+/ (b— B)(X.) ds.

0

Theorem (Galeati-G '22)

If a >1—1/(2H) and ¢, § satisfy (SMO) with v =1+ aH, then
| LXXVP| c1ia-1 has Gaussian moments. As a consequence,

| sup |X — )~<|HLP(Q) S 1Xo = Xolleo() + |16 — Bl ca-1.
te[0,1]




Application 2 - Malliavin regularity

Let X, B be as before. Take directional derivative in the noise in
the direction of h € C(0,1):

dahXt == Vb(Xt)ahXt dt + ht'
Based on the above, we can rewrite this as

dOpXe = OpXe dLVP + hy.

Theorem (Galeati-G '22)

Let q be such that g < ((1— a)H))™t. Then
—_———
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Based on the above, we can rewrite this as

dOpXe = OpXe dLVP + hy.
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Let q be such that g < ((1— a)H))™t. Then
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>2

I celo 1 = O Xell i (camvor e[ oy S 1

Recalling that the Cameron-Martin space of B is embedded in
C2—var this bounds the Malliavin derivative of X.



Application 3 - CLT

Let B be a standard BM and consider a multiplicative SDE

dXt = b(Xt) dt + O'(Xt) dBt
[Kurtz-Protter '91]: If b, € C1, the Euler-Maruyama scheme
satisfies a CLT : V" = /n(X — X") converges in law to V, where

th = Vb(Xt) Vt dt + VU(Xt) Vt dBt + (VO'O')(Xt) th

L
V2
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Let B be a standard BM and consider a multiplicative SDE
dXt = b(Xt) dt + O'(Xt) dBt

[Kurtz-Protter '91]: If b, € C1, the Euler-Maruyama scheme
satisfies a CLT : V" = /n(X — X") converges in law to V, where

th = Vb(Xt) Vt dt + VJ(Xt) Vt dBt + (VUO’)(Xt) th

1
V2
As before, we can rewrite this as

1
dVe = Ve dL3VP + Vo (Xe) Vs dB: + Evao(xt) dW,. (1)

Theorem (Dareiotis-G-L& '23+)

Suppose a > 0 and b € C®, o € C? and nondegenerate. Then
equation (1) is well-defined, well-posed, and V" converges in law
to its solution V.




Remarks/Outlook

Remarks:

@ In (SMO) one can replace |t — s| by a control w(s, t) (but w
can not be completely arbitrary)

@ ... which allows for extensions to time-dependent b

@ ... which is relevant, for example, in applications to
McKean-Vlasov equations
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Questions:

@ For Lévy-driven SDEs we get optimal condition on « only if
1/H > 2/3. Is there a better substitute for (SMO)?

@ The validity of (SMO) only requires « > (1 —1/H) Vv 0. Is
there any kind of (e.g. weak) well-posedness in this regime?



Thank you for the attention!



