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Motivation and longterm programme

0. Motivation and longterm programme: Recall classical case (linear!)

A
N
A
L
Y
S
I
S

Core example: Heat equation on Rd :

∂

∂t
u(t, x , y) = ∆xu(t, x , y), (t, x) ∈ (0,∞)× Rd ,

u(0, x , y) = δy (x) (= Dirac measure in y ∈ Rd ).

Solution: Classical heat kernel

u(t, x , y) =
1

(4πt)
d
2

e−
1
4t

|x−y|2 , (t, x) ∈ (0,∞)× Rd .

GENERAL
Linear
Parabolic
PDE
(more
precisely:
linear
Fokker-
Planck
equation)

P
R
O
B
A
B
I
L
I
T
Y

Wiener measure Wy on C([0,∞);Rd )y [Wiener 1923]
For W (t) : C([0,∞);Rd )y → Rd ,
W (t)(w) := w(t), t ≥ 0,

(W (t))∗(Wy )(dx)
“push forward”

= u(t, x , y)dx , t > 0,

(W (0))∗(Wy ) = δy

(W (t))t≥0,Wy )y∈Rd “Brownian motion”

Markov process!

xy
linear
Markov
process
(described
by SDE)
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Motivation and longterm programme

0. Motivation and longterm programme: Nonlinear case

A
N
A
L
Y
S
I
S

Core example: parabolic p–Laplace equation on Rd with p > 2:

∂

∂t
u(t, x , y) = div(|∇u|p−2∇u)(t, x , y), (t, x) ∈ (0,∞)× Rd ,

u(0, x , y) = δy (x) (= Dirac measure in y ∈ Rd ).

Solution: Barenblatt solution

u(t, x , y) = t−k (C1 − qt
− kp

d(p−1) |x − y |
p

p−1 )
p−1
p−2
+ ,

(t, x) ∈ (0,∞)× Rd , where k :=
(
p − 2 + p

d

)−1
,

q := p−2
p

(
k
d

) 1
p−1

and C1 > 0 s.th.
∫
Rd u(t, x , y) dx = 1.

GENERAL
Nonlinear
Parabolic
PDE
(more
precisely:
nonlinear
Fokker-
Planck
equation)

P
R
O
B
A
B
I
L
I
T
Y

Our result: ∃ prob. measure Py on C([0,∞);Rd )y s. th.

(X (t))∗(Py )(dx)
“push forward”

= u(t, x , y) dx , t > 0, (McKean!)

where X =
(
X (t)

)
t≥0

is the solution of

dX (t) = ∇(|∇u(t,X (t), y)|p−2)dt

+ |∇u(t,X (t), y)|
p−2
2 dW (t), t > 0, (X (0))∗(Py ) = δy .

((X (t))t≥0,Py )y∈Rd “p–Brownian motion”

Nonlinear Markov process!

xy
nonlinear
(time-
inhomo-
geneous)
Markov
process
(described
by MVSDE)
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Introduction

1. Introduction

Since fundamental work by Einstein [Einstein: Ann.Phys.1905], [von Smoluchowski:
Ann.Phys.1906], and [Wiener: J.Math.Phys.1923] the close relationship between Brownian
motion and the Laplace operator, more precisely the classical heat equation,

∂

∂t
u(t, x) = ∆u(t, x), (t, x) ∈ (0,∞)× Rd , (HE)

with

∆u := div∇u

is well known.

Open: Is the same true for the p–Laplace operator

∆pu = div
(
|∇u|p−2∇u

)
?

More precisely, is there a ”p-Brownian motion” related to the parabolic p-Laplace equation

∂u(t, x)
∂t

= ∆pu(t, x), (t, x) ∈ (0,∞)× Rd (p–LE)

in an analogous way (at least if p > 2)?

Here, ∆, div,∇ are spatial differential operators in x ∈ Rd and | · | := | · |Rd .
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Introduction

∆p extensively studied e.g. in

PDE, see e.g. monographs (and papers): [Ladyzhenskaya/Sollonikov/Uralceva 1988],
[Kamin/Vázquez 1991], [DiBenedetto 1993], [Lindqvist 2006], [Lindqvist 2019], ... and the
references therein.

Nonlinear Funct. Analysis, see e.g. monographs: [J.L. Lions 1969], [Brezis 1983], ...

Nonlinear Potential Theory, see e.g. monographs: [Adams/Hedberg 1996],
[Heinonen/Kilpeläinen/Martio 1993], [Mingione 2018], ... and the
references therein

Applications (Physics, Cimatology), see e.g. [Ladyzhenskaya 1967], [Pelissier 1975], etc. ...

Note: Linear Potential Theory has played a crucial role in developing and exploiting the relation
between the (2-) Laplacian and Brownian motion and, more generally, between large
classes of linear partial (and pseudo) differential operators and their associated Markov
processes for more than 60 years, see e.g. monographs:

[Dynkin 1965], [Stroock/Varadhan 1967], [Blumenthal/Getoor 1968], [Bliedtner/Hansen
1986], [Ethier/Kurtz 1986], [Sharpe 1988], [Freidlin 1996], [Rogers/Williams 2000], [Doob
2001], [Liggett 2010], [Fukushima/Oshima/Takeda 2011], [Kolokoltsov 2011],
[Stroock 2014], etc...
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Introduction

So, non-linear Potential Theory should play a key rôle to find the p-Brownian motion. First
approach in this direction in fundamental papers:

[Peres/Sheffield 2008],
[Peres/Schramm/Sheffield/Wilson 2009],

where a deep relation of a stochastic game, the “tug-of-war” game with noise, was exploited to
find a beautiful probabilistic description of the p–harmonic function solving the Dirichlet problem
for the p–Laplacian on a bounded domain in Rd .

In arXiv: 2409.18744v1 we propose a different approach, namely to construct the desired
probabilistic counterpart to the p–Laplacian as a Markov process which is related to the parabolic
p–Laplace equation (p–LE) in the same way as Brownian motion is to the classical heat equation
(HE), and which then may be called a “p–Brownian motion”.
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Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

2. Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov
stochastic differential equations (SDE)

Let P(Rd ) denote the space of all Borel probability measures on Rd , and for 1 ≤ i , j ≤ d consider
measurable maps

bi , aij : [0,∞)× Rd × P(Rd )→ R

such that the matrix (aij )i,j is pointwise symmetric and nonnegative definite. Then, a nonlinear
FPE is an equation of type

∂

∂t
µt =

d∑
i,j=1

∂

∂xi

∂

∂xj
(aij (t, x , µt)µt)−

d∑
i=1

∂

∂xi
(bi (t, x , µt)µt), (t, x) ∈ (0,∞)×Rd , (FPE)

where the solution [0,∞) ∋ t 7→ µt is a weakly continuous curve in P(Rd ) with some specified
initial condition µ0.
(FPE) is meant in the weak sense of Schwartz distributions. More precisely,
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Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

Definition 1

A distributional solution to (FPE) with initial condition ν is a weakly continuous curve (µt)t≥0

of signed Borel measures on Rd of bounded variation such that (t, x) 7→ aij (t, x , µt) and

(t, x) 7→ bi (t, x , µt) are measurable on (0,∞)× Rd ,

∫ T

0

∫
Rd

(
|aij (t, x , µt)|+ |bi (t, x , µt)|

)
µt(dx)dt <∞, ∀T > 0,

and ∀t ≥ 0

∫
Rd
φ dµt−

∫
Rd
φ dν =

∫ t

0

∫
Rd

 d∑
i,j=1

aij (s, x , µs)
∂

∂xi

∂

∂xj
φ(x) +

d∑
i=1

bi (s, x , µs)
∂

∂xi
φ(x)

µs(dx)ds,

for all φ ∈ C∞
0 (Rd ) and it is called probability solution, if, in addition, ν and each µt , t ≥ 0, are

in P(Rd ).
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Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

The (in space) dual operator to the operator on the right hand side of (FPE) is called the
corresponding Kolmogorov operator Lµ, i.e. its action on test functions φ ∈ C∞

0 (Rd ) is given as

Lµtφ(t, x) =
d∑

i,j=1

aij (t, x , µt)
∂

∂xi

∂

∂xj
φ(x) +

d∑
i=1

bi (t, x , µt)
∂

∂xi
φ(x), (K)

where (t, x) ∈ (0,∞)× Rd .

In turn, this operator determines the corresponding McKean–Vlasov SDE

dX (t) = b(t,X (t), µt)dt + σ(t,X (t), µt)dW (t), t > 0, (MVSDEa)

LX (t) = µt , t ≥ 0, (MVSDEb)

where σ = (σij )ij with σσ⊤ = (aij )ij , b = (b1, ..., bd ), W (t), t ≥ 0, is a d-dimensional Brownian

motion on some probability space (Ω,F ,P), and the maps X (t) : Ω→ Rd , t ≥ 0, form the
continuous in t solution process to (MVSDEa) such that its one-dimensional time marginals

LX (t) := (X(t))∗P, t ≥ 0,

i.e. the push forward or image measures of P under X (t), satisfy (MVSDEb).
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Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

Obviously, the special case of the classical heat equation and classical Brownian motion is the
case where aij (t, x , µ) = δij (= Kronecker delta), bi (t, x , µ) = 0, i.e. (FPE) turns into

∂

∂t
µt = ∆µt , (t, x) ∈ (0,∞)× Rd , (HE’)

and (MVSDEa,b) into

dX (t) = dW (t), t > 0, (BMa)

LX (t) = LW (t) = µt , t ≥ 0, (BMb)

where, of course, each µt is absolutely continuous with respect to Lebesgue measure dx on Rd

with density u(t, x), so (HE’) is really (HE).
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Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

Correspondence: McKean–Vlasov SDE ←→ nonlinear FPE

a) McKean–Vlasov SDE −→ nonlinear FPE:
Consider (MVSDEa,b) and assume there exists a solution. Let φ ∈ C∞

0 (Rd ). Then by Itô’s

formula, since µt = (X (t))∗P, t ≥ 0,∫∫∫
Rd

φ(x)µt(dx) =

∫
Ω
φ(X (t)(ω))P(dω)

=
Itô

∫
Ω
φ(X (0)(ω))P(dω) +

∫
Ω

∫ t

0
LLX (s)

φ(X (s)(ω))ds P(dω)

=

∫∫∫
Rd

φ(x)µ0(dx) +
∫∫∫ t

0

∫∫∫
Rd

Lµsφ(s, x)µs(dx)ds

Hence (µt)t≥0 is a distributional solution of (FPE), more precisely a probability solution.

M. Röckner (Bielefeld) p–Brownian motion and the p–Laplacian 12 / 22



Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

b) Nonlinear FPE −→ McKean–Vlasov SDE:

Theorem 0 ([Barbu/R: SIAM 2018, AOP 2020])

Assume there exists a probability solution [0,∞) ∋ t 7→ µt ∈ P(Rd ) of (FPE) such that:

(i) For all T > 0 and 1 ≤ i , j ≤ d

aij , bi ∈ L1([0,T ]× U, µtdt) for every ball U ⊂ Rd ,∫ T

0

∫
Rd

|aij (t, x , µt)|+ |⟨x , bi (t, x , µt)⟩|
1 + |x |2

µt(dx)dt <∞

(ii) [0,∞) ∋ t 7→ µt is weakly continuous.

Then there exists a d-dimensional (Ft)-Brownian motion W (t), t ≥ 0, on a stochastic basis
(Ω,F , (Ft)t≥0,P) and a continuous (Ft)-progressively measurable map X : [0,∞)× Ω→ Rd

satisfying (MVSDEa,b).

Remark

b, σ assumed to be only measurable in measure variable !
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Nonlinear Fokker–Planck equations (FPE) and McKean–Vlasov stochastic
differential equations (SDE)

Literature on MVSDEs: Huge! See e.g. [Carmona/Delarue: Vol. I + II, Springer 2018] and the
reference therein. Mostly, b, σ assumed to be weakly continuous in the measure variable µ. And:
[Barbu/R: Springer LN 2024].

Literature on FPEs: Huge! See e.g. [Bogachev/Krylov/R/Shaposhnikov: AMS Monograph
2015], [Barbu/R: Springer LN 2024] and the references therein..
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Key Step 1: Identifying the parabolic p–Laplace equation as a nonlinear FPE

3. Key Step 1: Identifying the parabolic p–Laplace equation as a nonlinear
FPE

Recall: Coefficients in FPE only need to be measurable in µ. So, if for the solutions µt , t ≥ 0, we
have µt(dx) = u(t, x)dx , t > 0, we can allow dependencies as

aij (t, x , µt) = ãij (t, x , Γ1(u)(t, x)),

bi (t, x , µt) = b̃i (t, x , Γ2(u)(t, x)),
(∗)

where b̃i , ãij : [0,∞)× Rd × Rk → R are measurable and each Γi is a functional on the space of
distributional solutions whose values are again measurable functions of t and x . Noting that

div(|∇u|p−2∇u) = div(∇(|∇u|p−2u)−∇(|∇u|p−2)u),

we can rewrite (p–LE) as

∂

∂t
u(t, x) = ∆(|∇u(t, x)|p−2u(t, x))−div(∇(|∇u(t, x)|p−2)u(t, x)), (t, x) ∈ (0,∞)×Rd .

(p-LE’)
Hence we see that (p–LE), respectively (p-LE’), is of type (FPE) with aij , bi as in (∗), where

ãij (t, x,Γ1(u)(t, x)) = δij |∇u(t, x)|p−2,

b̃(t, x,Γ2(u)(t, x)) = ∇(|∇u(t, x)|p−2).
(∗∗)
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Key Step 2: Solving the corresponding McKean–Vlasov SDE

4. Key Step 2: Solving the corresponding McKean–Vlasov SDE

The recipe to find the corresponding McKean–Vlasov SDE was already explained in Section 2,
namely consider the associated Kolmogorov operator

Luφ(t, x) = |∇u(t, x)|p−2∆φ(x) +∇(|∇u(t, x)|p−2) · ∇φ(x), (t, x) ∈ (0,∞)× Rd ,

φ ∈ C∞
0 (Rd ), and then the corresponding McKean–Vlasov SDE is given by

dX (t) = ∇(|∇u(t,X (t))|p−2)dt + |∇u(t,X (t))|
p−2
2 dW (t), t > 0, (MVSDEa’)

LX (t) = u(t, x)dx , t > 0. (MVSDEb’)

M. Röckner (Bielefeld) p–Brownian motion and the p–Laplacian 16 / 22



Key Step 2: Solving the corresponding McKean–Vlasov SDE

Theorem I (arXiv: 2409.18744v1)

Let u be a probability solution to (p-LE’) with initial condition ν ∈ P(Rd ) in the sense of
Definition 1 such that

|∇u|p−2 ∈ L1loc((0,∞);W 1,1
loc (R

d )).

and ∫ T

0

∫
Rd

(
|∇u|p−2 + |∇(|∇u|p−2)|

)
u dxdt <∞, ∀T > 0.

Then there exists a (probabilistically weak) solution X = (X (t))t≥0 to the McKean–Vlasov SDE
(MVSDEa’,b’) such that (X (0))∗P = ν.

Proof. Apply [Trevisan: EJP 2016] in the same way as in the proof of Theorem 0 in
[Barbu/R: AOP 2020].

Remark

The already challenging so-called Nemytskii-case, where Γi (u)(t, x) = u(t, x) in (∗) has received
more and more attention in the last years (see, for instance, [Barbu/R: Springer LN 2024] and the
references therein). The coefficients in (p-LE’), however, even depend on u via its first- and
second-order derivatives. To the best of our knowledge, the relation of such nonlinear FPEs to
McKean–Vlasov SDEs has not been studied before.

M. Röckner (Bielefeld) p–Brownian motion and the p–Laplacian 17 / 22



Key Step 3: The corresponding nonlinear Markov process: p-Brownian motion

5. Key Step 3: The corresponding nonlinear Markov process: p-Brownian
motion

To obtain the nonlinear Markov process from (MVSDEa’,b’), we need to take into account initial
conditions, which we choose to be Dirac measures δy , y ∈ Rd . So, we impose in (p-LE’) that
u(0, x)dx = δy and in (MVSDEb’) that LX (0) = δy . In both cases p = 2 and p > 2, for such
initial conditions the distributional solution to (HE) and (p-LE’) are explicitly known, namely in
case p = 2, for y ∈ Rd it is given by the classical Gaussian heat kernel

uy (t, x) :=
1

(4πt)
d
2

exp

(
−

1

4t
|x − y |2

)
, (t, x) ∈ (0,∞)× Rd ,

and in case p > 2 by the famous Barenblatt solution (see [Kamin/Vázquez 1988])

wy (t, x) := t−k

(
C1 − qt

− kp
d(p−1) |x − y |

p
p−1

) p−1
p−2

+

, (t, x) ∈ (0,∞)× Rd ,

where k :=
(
p − 2 + p

d

)−1
, q := p−2

p

(
k
d

) 1
p−1

, C1 ∈ (0,∞) such that
∫
Rd wy (t, x)dx = 1 for all

t > 0, and f+ := max(f , 0). Then, we consider the path laws of the corresponding solutions
X y (t), t ≥ 0, of (BMa,b), respectively, (MVSDEa’,b’) with wy replacing u, namely

Py := (X y )∗PPP, y ∈ RdRdRd , (MP)

i.e. the push forward or image measure of P under the map X y : Ω→ C([0,∞),Rd ) (= all
continuous paths in Rd ).
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Key Step 3: The corresponding nonlinear Markov process: p-Brownian motion

Classical case p = 2:

Py , y ∈ Rd , form a Markov process in the sense of e.g. [Dynkin 1965], also called Brownian
motion, which is uniquely determined by uy (t), y ∈ Rd , t > 0.

Our result in [arxiv:2409.18744v1]: For d ≥ 2, p > 2
(
1+ 1

d

)
:

Py , y ∈ Rd , form a nonlinear Markov process in the sense of McKean: [PNAS 1966], which is
uniquely determined by wy (t, ·), y ∈ Rd , t > 0, and (MVSDEa’,b’), hence may be called
p–Brownian motion.

To state the latter more precisely in Theorem II below, we define for 0 ≤ r ≤ t:

C([r ,∞),Rd ) := space of all continuous paths in Rd starting at r , equipped with its Borel
σ-algebra B(C([r ,∞),Rd )).

πr
t : C([r ,∞),Rd )→ Rd , πr

t (w) := w(t); Fr := σ({π0
s : 0 ≤ s ≤ r}).

Pr,wy (r,·) := (X r,wy (r,·))∗ P = path law of X r,wy (r,·) on C([r ,∞),Rd ), where X r,wy (r,·) for
r > 0 is the unique solution of the McKean–Vlasov SDE

dX (t) = ∇(|∇wy (t,X (t))|p−2)dt + |∇wy (t,X (t))|
p−2
2 dW (t), t ≥ r ,

LX (t) = wy (t, x)dx , t ≥ r .
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Key Step 3: The corresponding nonlinear Markov process: p-Brownian motion

Theorem II (arXiv: 2409.18744v1)

Let d ≥ 2, p > 2(1 + 1
d
). Then Py , y ∈ Rd , from (MP) above satisfy the nonlinear Markov

property of [McKean: PNAS 1966], i.e. for all y ∈ Rd , 0 < r ≤ t, A ∈ B(Rd )

Py
[
π0
t ∈ A|Fr

]
(w) = py,(r,π0

r (w))[π
r
t ∈ A] for Py − a.e. w ∈ C([0,∞),Rd ),

where py,(r,z), z ∈ Rd , is a regular conditional probability kernel from Rd to B(C([r ,∞),Rd )) of

Pr,wy (r,·)

[
·

∣∣∣∣πr
r = z

]
, z ∈ Rd ,

(i.e., in particular, py,(r,z) is a probability measure on C([r ,∞),Rd ) and

py,(r,z) [π
r
r = z] = 1 for all z ∈ Rd ).

Definition 2

Let d ≥ 2, p > 2(1 + 1
d
). We call the family (Py )y∈Rd of probability measures on C([0,∞),Rd )

from (MP), which form a nonlinear Markov process in the sense of McKean, by analogy to the
case p = 2, a p-Brownian motion.

The main ingredient of the proof of Theorem II, which is quite involved, is a restricted linearized
uniqueness result presented in the next section.
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Restricted linearized uniqueness

6. Restricted linearized uniqueness

For δ ∈ (0,∞) set

wδ(t, x) := w0(t + δ, x), ϱδ(t, x) := |∇wδ(t)|p−2(x), (t, x) ∈ [0,∞)× Rd ,

and consider the linearized version of equation (FPE)

d

dt
u = ∆

(
ϱδu

)
− div

(
∇ϱδu

)
, t > 0, (ℓFPE)

which is a linear Fokker–Planck equation obtained by a priori fixing the coefficients ϱδ and ∇ϱδ in
place of |∇u|p−2 and ∇(|∇u|p−2) in the nonlinear equation (FPE). Distributional and probability
solutions to (ℓFPE) are defined analogously to Definition 1.

Remark 1

(i) wδ is a probability solution to (ℓFPE) with initial condition w0(δ, x)dx and
wδ ∈

(
L1 ∩ L∞

)(
(0,T )× Rd

)
for all T > 0.

(ii) Since wδ(t, ·) has support in a ball in Rd and (ℓFPE) is considered on all of Rd , (ℓFPE) is a
highly degenerate linear PDE. This makes the proof of Theorem III below complicated.
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Restricted linearized uniqueness

Theorem III (“restricted linearized uniqueness after time δ ∈ (0,∞)”)

Let d ≥ 2, p > 2(1 + 1
d
), δ,T ∈ (0,∞). Let [0,T ] ∋ t 7→ νt ∈ P(Rd ) be a probability solution

of (ℓFPE) such that

(i) ν0(dx) = wδ(0, x)dx , νt(dx) = v(t, x)dx for a.e. t ∈ (0,T ),

(ii) ∃C ∈ (0,∞) such that v ≤ C wδ dtdx–a.e. on (0,T )× Rd .

Then v = wδ dtdx-a.e. on (0,T )× Rd .

Proof.

By PDE–methods. (Hard!) The special form of wδ, ϱδ and ∇ϱδ is heavily used. □
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