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Euclidean QFT

Basic construction: Consider a functional S (action) on a space of fields.
Euclidean QFT boils down to constructing the measure

µ�(D') = e��S(') D' .

Above expression completely formal since Lebesgue measure D' on space of
fields makes no sense. Hope that it yields a well-defined probability measure by
some approximation procedure if S is coercive enough.

Interpretation as Gibbs measure for statistical mechanics model.

Example discussed today: Yang-Mills (d = 2, 3).
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Yang-Mills field theory

Setting (simplified): Fix compact Lie group G with Lie algebra g (structure
group). Fields: g-valued one-forms A on the torus Td (actually G-equivariant
connections on Td

⇥G).

Action S: L2-norm of curvature tensor

S(A) =

Z
kFA(x)k2 dx , FA

ij (x) =
�
@iAj � @jAi

�
(x) + [Ai, Aj](x) .

Distinguishing feature: action of gauge group G = C
1(Td, G) onto A by

(g, A) 7! Ag = gAg�1
� (dg)g�1 ,

such that FA (and therefore S(A)) is invariant under this action.

Gaso
1

C
G =U(1) =(2i0.0253



Yang-Mills field theory

Setting (simplified): Fix compact Lie group G with Lie algebra g (structure
group). Fields: g-valued one-forms A on the torus Td (actually G-equivariant
connections on Td

⇥G).

Action S: L2-norm of curvature tensor

S(A) =

Z
kFA(x)k2 dx , FA

ij (x) =
�
@iAj � @jAi

�
(x) + [Ai, Aj](x) .

Distinguishing feature: action of gauge group G = C
1(Td, G) onto A by

(g, A) 7! Ag = gAg�1
� (dg)g�1 ,

such that FA (and therefore S(A)) is invariant under this action.



Yang-Mills field theory

Setting (simplified): Fix compact Lie group G with Lie algebra g (structure
group). Fields: g-valued one-forms A on the torus Td (actually G-equivariant
connections on Td

⇥G).

Action S: L2-norm of curvature tensor

S(A) =

Z
kFA(x)k2 dx , FA

ij (x) =
�
@iAj � @jAi

�
(x) + [Ai, Aj](x) .

Distinguishing feature: action of gauge group G = C
1(Td, G) onto A by

(g, A) 7! Ag = gAg�1
� (dg)g�1 ,

such that FA (and therefore S(A)) is invariant under this action.

S(AP) =S(A) g.G



Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in
which G acts! There is no Lebesgue measure in infinite dimensions ) hints that
there exists no measure on any space of equivariant connections that is invariant
under the action of G.

Good news: All physical observables A 7! O(A) are gauge-invariant, namely
O(Ag) = O(A) for every g 2 G. Wilson loops: for loop � : [0, 1] ! Td and class
function h : G ! R, define O�,h(A) = h(�̂(1)�̂(0)�1) for �̂ the horizontal lift of
� to Td

⇥G.

Only need to build the measure µ on quotient space of gauge orbits.

Still: not clear how to build µ and what a good state space is.
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Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges,
Fröhlich, Seiler (’79–’81). Joint law of Wilson loop observables for free Abelian
Yang–Mills by Gross, King, Sengupta (’89). Non-abelian case by Sengupta in
90’s, refined by T. Lévy and others in 00’s. Realised as measure on space of
(distributional) connections by Chevyrev (’19).

In 3D: Approach inspired by Feldman, Glimm–Ja↵e, etc. Series of works by
Balaban, by Federbush, and by Magnen–Rivasseau–Sénéor (4D). No clear
understanding of what the state space and observables are. Candidate state
space by Cao–Chatterjee (’22).

(+ various results for G = O(N) with N ! 1, including recently from
probabilistic perspective: Shen–Smith–Zhu–Zhu, Driver–Gabriel–Hall–Kemp, etc)
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Fröhlich, Seiler (’79–’81). Joint law of Wilson loop observables for free Abelian
Yang–Mills by Gross, King, Sengupta (’89). Non-abelian case by Sengupta in
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understanding of what the state space and observables are. Candidate state
space by Cao–Chatterjee (’22).

(+ various results for G = O(N) with N ! 1, including recently from
probabilistic perspective: Shen–Smith–Zhu–Zhu, Driver–Gabriel–Hall–Kemp, etc)

"u



Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges,
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90’s, refined by T. Lévy and others in 00’s. Realised as measure on space of
(distributional) connections by Chevyrev (’19).

In 3D: Approach inspired by Feldman, Glimm–Ja↵e, etc. Series of works by
Balaban, by Federbush, and by Magnen–Rivasseau–Sénéor (4D). No clear
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Stochastic quantisation

Proposed by Parisi & Wu ’81, earliest rigorous works by Jona-Lasinio & Mitter
’85.

Basic idea: Consider discrete approximation to Gibbs measure e��S(') D'. This
is invariant for stochastic evolution

d' = �rS(') dt+
p

2/� dW ,

for W a Brownian motion with covariance structure adapted to the metric
determining the gradient r.

Hope: Maybe one can pass to the limit for the dynamic?
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Quantisation equation

In case of Yang–Mills, this procedure yields

@tA = �d⇤AFA + ⇠ = �d⇤AdAA+
1

2
d⇤A[A,A] + ⇠ ,

Not parabolic! DeTurck–Donaldson trick: adding dAH(A) formally preserves
dynamic on gauge orbits for any H. Choice H(A) = �d⇤AA yields parabolic
system. (Removes �@2

ijAj and changes l.o.t. in an inessential way)

Basic questions: interpretation of equation? State space? Gauge equivariance?
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Problem

Equation of the form

@tA = �A+B(A,DA) + T (A,A,A) + ⇠ .

Solution to linear equation distribution-valued, so B and T meaningless a priori.

Natural approximation: replace ⇠ by ⇠", smooth at scale ". Heuristic arguments
suggest no convergence. Renormalisation needed, should be of the form

@tA" = �A" +B(A", DA") + T (A", A", A")� C"A" + ⇠" .

Appears to break gauge equivariance! (But ⇠" does too, so maybe this can
magically cancel out?)
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Some results in 2D

Theorem (Chandra, Chevyrev, H., Shen, ’20): Can find Banach space ⌦↵

of distributional g-valued 1-forms and space G↵ of Hölder continuous gauge
transformations such that:

1. For every fixed C" = C, one has A" ! A in probability in C(R+,⌦↵)
(modulo possible blow-up).

2. Smooth connections dense in ⌦↵ and quotient space O↵ = ⌦↵/G↵ is Polish.

3. Wilson loop observables continuous on ⌦↵ and G-invariant.

4. Unique choice of C (but depending on smoothening of ⇠!) such that the
quotient process is Markov on O↵.

5. The process A on O↵ admits at most one invariant measure.

Conjecture: The process A has an invariant measure which coincides with the
measure constructed by Sengupta, Lévy & al.

5.



Some results in 2D

Theorem (Chandra, Chevyrev, H., Shen, ’20): Can find Banach space ⌦↵

of distributional g-valued 1-forms and space G↵ of Hölder continuous gauge
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transformations such that:

1. For every fixed C" = C, one has A" ! A in probability in C(R+,⌦↵)
(modulo possible blow-up).

2. Smooth connections dense in ⌦↵ and quotient space O↵ = ⌦↵/G↵ is Polish.

3. Wilson loop observables continuous on ⌦↵ and G-invariant.

4. Unique choice of C (but depending on smoothening of ⇠!) such that the
quotient process is Markov on O↵.

5. The process A on O↵ admits at most one invariant measure.

Conjecture: The process A has an invariant measure which coincides with the
measure constructed by Sengupta, Lévy & al.
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~ ↓v=B FL
97 x

F
--

(*(TB/=leCTSK (ACT) -ACIAA,



Problems in 3D

Some problems when trying to extend this to 3D:

1. Explicit expression for C" intractable which is problematic for uniqueness
argument. (C" ⇠ c1/"+ c2 log "+ c3 with c2 intractable.)

2. Wilson loop observables not expected to exist. (Blow up already for Abelian
case, cannot restrict free field to smooth line in 3D.)

3. Limiting process A belongs to C
� for � < �

1
2 , but even solutions to

deterministic Yang-Mills heat flow only exist for all i.c. in C
� when � > �

1
2 .

4. Natural gauge transformations associated to C
� are of regularity � + 1

(because of the term (dg)g�1) but G�+1 acts continuously on C
� if and only

if � > �
1
2 .
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2. Wilson loop observables not expected to exist. (Blow up already for Abelian
case, cannot restrict free field to smooth line in 3D.)
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Results in 3D

Theorem (Chandra, Chevyrev, H., Shen, ’21): Can find (non-linear) metric
space S of distributional g-valued 1-forms such that

1. There exists a choice of C" such that A" ! A in probability in C(R+,S)
(modulo possible blow-up).

2. Smooth connections dense in S.

3. YM heat flow well-posed on S ) natural notion of gauge equivalence.

4. Unique choice of C" (modulo sequence converging to 0) such that A
satisfies suitable notion of gauge equivariance.

Remark: Space S included in the state space of Cao–Chatterjee.
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Some open questions

• Long-time control of solutions?

• Link to lattice gauge theories?

• Renormalised Wilson loop observables in 3D?

• Polish space of gauge equivalence classes in 3D?

• Are gauge equivalence classes in 3D the orbits of a group action?

Thanks for your attention!
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