Stochastic Quantisation of Yang-Mills

A. Chandra, I. Chevyrev, M. Hairer, H. Shen
EPFL / Imperial College London
International Seminar on SDEs and Related Topics

10 February 2023

$S(\varphi)=\int|\nabla|^{2} \quad$ Euclidean QFT

$S(\varphi)=\int|\nabla \varphi|^{2} d x$ $\Rightarrow \mu_{\beta} G F F$
Basic construction: Consider a functional S (action) on a space of fields.
Euclidean QFT boils down to constructing the measure

$$
\mu_{\beta}(D \varphi)=e^{-\beta S(\varphi)} D \varphi .
$$

Above expression completely formal since Lebesgue measure $D \varphi$ on space of fields makes no sense.
some approximation procedure if S is coercive enough
Interpretation as Gibbs measure for statistical mechanics model.
Example discussed today: Yang-Mills ($\quad(=2,3)$

Euclidean QFT

Basic construction: Consider a functional S (action) on a space of fields.
Euclidean QFT boils down to constructing the measure

$$
\mu_{\beta}(D \varphi)=e^{-\beta S(\varphi)} D \varphi .
$$

Above expression completely formal since Lebesgue measure $D \varphi$ on space of fields makes no sense. Hope that it yields a well-defined probability measure by some approximation procedure if S is coercive enough.

Interpretation as Gibbs measure for statistical mechanics model. Example discussed today: Yang-Mills $(d=2,3)$

Euclidean QFT

Basic construction: Consider a functional S (action) on a space of fields.
Euclidean QFT boils down to constructing the measure

$$
\mu_{\beta}(D \varphi)=e^{-\beta S(\varphi)} D \varphi .
$$

Above expression completely formal since Lebesgue measure $D \varphi$ on space of fields makes no sense. Hope that it yields a well-defined probability measure by some approximation procedure if S is coercive enough.

Interpretation as Gibbs measure for statistical mechanics model.
Example discussed today: Yang-Mills $(d=2,3)$.

Euclidean QFT

Basic construction: Consider a functional S (action) on a space of fields.
Euclidean QFT boils down to constructing the measure

$$
\mu_{\beta}(D \varphi)=e^{-\beta S(\varphi)} D \varphi .
$$

Above expression completely formal since Lebesgue measure $D \varphi$ on space of fields makes no sense. Hope that it yields a well-defined probability measure by some approximation procedure if S is coercive enough.

Interpretation as Gibbs measure for statistical mechanics model.
Example discussed today: Yang-Mills ($d=2,3$).

Setting (simplified): Fix compact Lie group G with Lie algebra \mathfrak{g} (structure group). Fields: \mathfrak{g}-valued one-forms A on th torus \mathbf{T}^{d} (actually G-equivariant connections on $\mathbf{T}^{d} \times G$).

$$
G=U(1)=\left\{e^{i \theta}, \theta \in S^{\prime}\right\}
$$

Action S: L^{2}-norm of curvature tensor

Distinguishing feature: action of gauge group $\mathcal{G}=\mathcal{C}^{\infty}\left(\mathbf{T}^{d}, G\right)$ onto A by

such that F^{A} (and therefore $\left.S(A)\right)$ is invariant under this action.

Yang-Mills field theory

Setting (simplified): Fix compact Lie group G with Lie algebra \mathfrak{g} (structure group). Fields: \mathfrak{g}-valued one-forms A on the torus \mathbf{T}^{d} (actually G-equivariant connections on $\mathbf{T}^{d} \times G$).

Action S : L^{2}-norm of curvature tensor

$$
S(A)=\int\left\|F^{A}(x)\right\|^{2} d x, \quad F_{i j}^{A}(x)=\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right)(x)+\left[A_{i}, A_{j}\right](x)
$$

Distinguishing feature: action of gauge group $\mathcal{G}=\mathcal{C}^{\infty}\left(\mathrm{T}^{d}, G\right)$ onto A by

Yang-Mills field theory

Setting (simplified): Fix compact Lie group G with Lie algebra \mathfrak{g} (structure group). Fields: \mathfrak{g}-valued one-forms A on the torus \mathbf{T}^{d} (actually G-equivariant connections on $\mathbf{T}^{d} \times G$).

Action S : L^{2}-norm of curvature tensor

$$
S(A)=\int\left\|F^{A}(x)\right\|^{2} d x, \quad F_{i j}^{A}(x)=\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right)(x)+\left[A_{i}, A_{j}\right](x)
$$

Distinguishing feature: action of gauge group $\mathcal{G}=\mathcal{C}^{\infty}\left(\mathbf{T}^{d}, G\right)$ onto A by

$$
(g, A) \mapsto A^{g}=g A g^{-1}-(d g) g^{-1}
$$

such that F^{A} (and therefore $S(A)$) is invariant under this action.

$$
S\left(A^{g}\right)=S(A) \quad \forall \quad A_{\pi}
$$

Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in which \mathcal{G} acts! There is no Lebesgue measure in infinite dimensions \Rightarrow hints that there exists no measure on any space of equivariant connections that is invariant under the action of \mathcal{G}

Good news: All physical observables $A \mapsto O(A)$ are gauge-invariant, namely $O\left(A^{g}\right)=O(A)$ for every $g \in \mathcal{G}$. Wilson loops: for loop $\gamma:[0,1] \rightarrow T^{d}$ and class function $h: G \rightarrow \mathbf{R}$, define $O_{\gamma, h}(A)=h\left(\hat{\gamma}(1) \hat{\gamma}(0)^{-1}\right)$ for $\hat{\gamma}$ the horizontal lift of γ to $\mathbf{T}^{d} \times G$.

Only need to build the measure μ on quotient space of gauge orbits.

Still: not clear how to build μ and what a good state space is.

Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in which \mathcal{G} acts! There is no Lebesgue measure in infinite dimensions \Rightarrow hints that there exists no measure on any space of equivariant connections that is invariant under the action of \mathcal{G}.

Good news: All physical observables $A \mapsto O(A)$ are gauge-invariant, namely $O\left(A^{g}\right)=O(A)$ for every $g \in \mathcal{G}$. Wilson loops: for loop $\gamma:[0,1] \rightarrow \mathbf{T}^{d}$ and class function $h: G \rightarrow \mathbf{R}$, define $O_{\gamma, h}(A)=h\left(\hat{\gamma}(1) \hat{\gamma}(0)^{-1}\right)$ for $\hat{\gamma}$ the horizontal lift of γ to $T^{d} \times G$.

Only need to build the measure μ on quotient space of gauge orbits.
Still: not clear how to build μ and what a good state space is.

Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in which \mathcal{G} acts! There is no Lebesgue measure in infinite dimensions \Rightarrow hints that there exists no measure on any space of equivariant connections that is invariant under the action of \mathcal{G}.

Good news: All physical observables $A \mapsto O(A)$ are gauge-invariant, namely $O\left(A^{g}\right)=O(A)$ for every $g \in \mathcal{G}$.
function $h: G \rightarrow \mathbf{R}$, define $O_{\gamma, h}(A)=h\left(\hat{\gamma}(1) \hat{\gamma}(0)^{-1}\right)$ for $\hat{\gamma}$ the horizontal lift of

Only need to build the measure μ on quotient space of gauge orbits.
Still: not clear how to build μ and what a good state space is.

Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in which \mathcal{G} acts! There is no Lebesgue measure in infinite dimensions \Rightarrow hints that there exists no measure on any space of equivariant connections that is invariant under the action of \mathcal{G}.

Good news: All physical observables $A \mapsto O(A)$ are gauge-invariant, namely $O\left(A^{g}\right)=O(A)$ for every $g \in \mathcal{G}$. Wilson loops: for loop $\gamma:[0,1] \rightarrow \mathbf{T}^{d}$ and class function $h: G \rightarrow \mathbf{R}$, define $O_{\gamma, h}(A)=h\left(\hat{\gamma}(1) \hat{\gamma}(0)^{-1}\right)$ for $\hat{\gamma}$ the horizontal lift of γ to $\mathbf{T}^{d} \times G$.

Only need to build the measure μ on quotient space of gauge orbits.
Still: not clear how to build μ and what a good state space is.

Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in which \mathcal{G} acts! There is no Lebesgue measure in infinite dimensions \Rightarrow hints that there exists no measure on any space of equivariant connections that is invariant under the action of \mathcal{G}.

Good news: All physical observables $A \mapsto O(A)$ are gauge-invariant, namely $O\left(A^{g}\right)=O(A)$ for every $g \in \mathcal{G}$. Wilson loops: for loop $\gamma:[0,1] \rightarrow \mathbf{T}^{d}$ and class function $h: G \rightarrow \mathbf{R}$, define $O_{\gamma, h}(A)=h\left(\hat{\gamma}(1) \hat{\gamma}(0)^{-1}\right)$ for $\hat{\gamma}$ the horizontal lift of γ to $\mathbf{T}^{d} \times G$.

$$
A \sim A^{g} \quad \forall g: \pi^{d} \rightarrow G
$$

Only need to build the measure μ on quotient space of gauge orbits.
Still: not clear how to build μ and what a good state space is.

Gauge invariance

Problem: The action functional S is flat in the (infinitely many) directions in which \mathcal{G} acts! There is no Lebesgue measure in infinite dimensions \Rightarrow hints that there exists no measure on any space of equivariant connections that is invariant under the action of \mathcal{G}.

Good news: All physical observables $A \mapsto O(A)$ are gauge-invariant, namely $O\left(A^{g}\right)=O(A)$ for every $g \in \mathcal{G}$. Wilson loops: for loop $\gamma:[0,1] \rightarrow \mathbf{T}^{d}$ and class function $h: G \rightarrow \mathbf{R}$, define $O_{\gamma, h}(A)=h\left(\hat{\gamma}(1) \hat{\gamma}(0)^{-1}\right)$ for $\hat{\gamma}$ the horizontal lift of γ to $\mathbf{T}^{d} \times G$.

Only need to build the measure μ on quotient space of gauge orbits.
Still: not clear how to build μ and what a good state space is.

Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89). Non-abelian case by Sengupta in 90 's, refined by T. Lévy and others in 00 's. Realised as measure on space of (distributional) connections by Chevyrev ('19),

In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D). No clear understanding of what the state space and observables are. Candidate state space by Cao-Chatterjee ('22)
(+ various results for $G=O(N)$ with $N \rightarrow \infty$, including recently from probabilistic perspective: Shen-Smith-Zhu-Zhu, Driver-Gabriel-Hall-Kemp, etc)

Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89).
(distributional) connections by Chevyrev ('19)
In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D). No clear understanding of what the state space and observables are. Candidate state space by Cao-Chatterjee ('22)
(+ various results for $G=O(N)$ with $N \rightarrow \infty$, including recently from probabilistic perspective: Shen-Smith-Zhu-Zhu, Driver-Gabriel-Hall-Kemp, etc)

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89). Non-abelian case by Sengupta in 90 's, refined by T . Lévy and others in 00 's. Realised as measure on space of (distributional) connections by Chevyrev ('19).

In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D). No clear understanding of what the state space and observables are. Candidate state space by Cao-Chatterjee ('22)
(+ various results for $G=O(N)$ with $N \rightarrow \infty$, including recently from probabilistic perspective: Shen-Smith-Zhu-Zhu, Driver-Gabriel-Hall-Kemp, etc)

Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89). Non-abelian case by Sengupta in 90 's, refined by T . Lévy and others in 00 's. Realised as measure on space of (distributional) connections by Chevyrev ('19).

In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D).
understanding of what the state space and observables are. Candidate state space by Cao-Chatterjee ('22)
(+ various results for $G=O(N)$ with $N \rightarrow \infty$, including recently from probabilistic perspective: Shen-Smith-Zhu-Zhu, Driver-Gabriel-Hall-Kemp, etc)

Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89). Non-abelian case by Sengupta in 90 's, refined by T . Lévy and others in 00 's. Realised as measure on space of (distributional) connections by Chevyrev ('19).

In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D). No clear understanding of what the state space and observables are. \qquad space by Cao-Chatterjee ('22)
(+ various results for $G=O(N)$ with $N \rightarrow \infty$, including recently from probabilistic perspective: Shen-Smith-Zhu-Zhu, Driver-Gabriel-Hall-Kemp, etc)

Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89). Non-abelian case by Sengupta in 90 's, refined by T . Lévy and others in 00 's. Realised as measure on space of (distributional) connections by Chevyrev ('19).

In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D). No clear understanding of what the state space and observables are. Candidate state space by Cao-Chatterjee ('22).

Some previous results

In 2D: Construction of Abelian YM field interacting with Higgs field by Brydges, Fröhlich, Seiler ('79-'81). Joint law of Wilson loop observables for free Abelian Yang-Mills by Gross, King, Sengupta ('89). Non-abelian case by Sengupta in 90 's, refined by T . Lévy and others in 00 's. Realised as measure on space of (distributional) connections by Chevyrev ('19).

In 3D: Approach inspired by Feldman, Glimm-Jaffe, etc. Series of works by Balaban, by Federbush, and by Magnen-Rivasseau-Sénéor (4D). No clear understanding of what the state space and observables are. Candidate state space by Cao-Chatterjee ('22).
(+ various results for $G=O(N)$ with $N \rightarrow \infty$, including recently from probabilistic perspective: Shen-Smith-Zhu-Zhu, Driver-Gabriel-Hall-Kemp, etc)

Stochastic quantisation

Proposed by Parisi \& Wu '81, earliest rigorous works by Jona-Lasinio \& Mitter '85.

Basic idea: Consider discrete approximation to Gibbs measure $e^{-\beta S(\varphi)} D \varphi$. This is invariant for stochastic evolution
for W a Brownian motion with covariance structure adapted to the metric determining the gradient ∇.

Hope: Maybe one can pass to the limit for the dynamic?

Stochastic quantisation

Proposed by Parisi \& Wu '81, earliest rigorous works by Jona-Lasinio \& Mitter '85.

Basic idea: Consider discrete approximation to Gibbs measure $e^{-\beta S(\varphi)} D \varphi$. This is invariant for stochastic evolution

$$
d \varphi=-\nabla S(\varphi) d t+\sqrt{2 / \beta} d W
$$

for W a Brownian motion with covariance structure adapted to the metric determining the gradient ∇.

Hope: Maybe one can pass to the limit for the dynamic?

Stochastic quantisation

Proposed by Parisi \& Wu '81, earliest rigorous works by Jona-Lasinio \& Mitter '85.

Basic idea: Consider discrete approximation to Gibbs measure $e^{-\beta S(\varphi)} D \varphi$. This is invariant for stochastic evolution

$$
d \varphi=-\nabla S(\varphi) d t+\sqrt{2 / \beta} d W
$$

for W a Brownian motion with covariance structure adapted to the metric determining the gradient ∇.

Hope: Maybe one can pass to the limit for the dynamic?

Quantisation equation

$$
\left[A_{i}, A_{j}\right]
$$

In case of Yang-Mills, this procedure yields

$$
\partial_{t} A=-d_{A}^{*} F_{A}+\xi=-d_{A}^{*} d_{A} A+\frac{1}{2} d_{A}^{*}[A, A]+\xi,
$$

Not parabolic! DeTurck-Donaldson trick: adding $d_{A} H(A)$ formally preserves dynamic on gauge orbits for any H. Choice $H(A)=-d_{A}^{*} A$ yields parabolic system. (Removes $-\partial_{i j}^{2} A_{j}$ and changes l.o.t. in an inessential way)

Quantisation equation

In case of Yang-Mills, this procedure yields

$$
\partial_{t} A_{i}=\Delta A_{i}-\partial_{i j}^{2} A_{j}+\text { l.o.t. }+\xi_{i} .
$$

Not parabolic! DeTurck-Donaldson trick: adding $d_{A} H(A)$ formally preserves dynamic on gauge orbits for any H. Choice $H(A)=-d_{A}^{*} A$ yields parabolic system. (Removes $-\partial_{i j}^{2} A_{j}$ and changes l.o.t. in an inessential way)

Basic questions: interpretation of equation? State space? Gauge equivariance?

Quantisation equation

In case of Yang-Mills, this procedure yields

$$
\partial_{t} A_{i}=\Delta A_{i}-\partial_{i j}^{2} A_{j}+\text { I.o.t. }+\xi_{i} .
$$

Not parabolic! DeTurck-Donaldson trick: adding $d_{A} H(A)$ formally preserves dynamic on gauge orbits for any H. Choice $H(A)=-d_{A}^{*} A$ yields parabolic system. (Removes $-\partial_{i j}^{2} A_{j}$ and changes I.o.t. in an inessential way)

Basic questions: interpretation of equation? State space? Gauge equivariance?

Quantisation equation

Problem

Equation of the form

$$
\partial_{t} A=\Delta A+B(A, D A)+T(A, A, A)+\xi
$$

Solution to linear equation distribution-valued, so B and T meaningless a priori.
Natural approximation: replace ξ by ξ_{ε}, smooth at scale ε. Heuristic arguments suggest no convergence. Renormalisation needed, should be of the form

Appears to break gauge equivariance! (But ξ_{ε} does too, so maybe this can magically cancel out?)

Problem

Equation of the form

$$
\partial_{t} A=\Delta A+B(A, D A)+T(A, A, A)+\xi
$$

Solution to linear equation distribution-valued, so B and T meaningless a priori.
Natural approximation: replace ξ by ξ_{ε}, smooth at scale ε. Heuristic arguments suggest no convergence. Renormalisation needed, should be of the form

Appears to break gauge equivariance! (But ξ_{ε} does too, so maybe this can magically cancel out?)

Problem

Equation of the form

$$
\partial_{t} A=\Delta A+B(A, D A)+T(A, A, A)+\xi
$$

Solution to linear equation distribution-valued, so B and T meaningless a priori.
Natural approximation: replace ξ by ξ_{ε}, smooth at scale ε. Heuristic arguments suggest no convergence. Renormalisation needed, should be of the form

$$
\partial_{t} A_{\varepsilon}=\Delta A_{\varepsilon}+B\left(A_{\varepsilon}, D A_{\varepsilon}\right)+T\left(A_{\varepsilon}, A_{\varepsilon}, A_{\varepsilon}\right)-C_{\varepsilon} A_{\varepsilon}+\xi_{\varepsilon}
$$

Appears to break gauge equivariance! (But ξ_{e} does too, so maybe this can magically cancel out?)

Problem

Equation of the form

$$
\partial_{t} A=\Delta A+B(A, D A)+T(A, A, A)+\xi
$$

Solution to linear equation distribution-valued, so B and T meaningless a priori.
Natural approximation: replace ξ by ξ_{ε}, smooth at scale ε. Heuristic arguments suggest no convergence. Renormalisation needed, should be of the form

$$
\partial_{t} A_{\varepsilon}=\Delta A_{\varepsilon}+B\left(A_{\varepsilon}, D A_{\varepsilon}\right)+T\left(A_{\varepsilon}, A_{\varepsilon}, A_{\varepsilon}\right)-C_{\varepsilon} A_{\varepsilon}+\xi_{\varepsilon}
$$

Appears to break gauge equivariance! (But ξ_{ε} does too, so maybe this can magically cancel out?)

Some results in $2 D$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1 -forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

Conjecture: The process A has an invariant measure which coincides with the measure constructed by Sengupta. Lévy \& al

$\theta: \pi^{2} \rightarrow \pi$
 Some results in $2 D$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1 -forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

1. For every fixed $C_{\varepsilon}=C$, one has $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \Omega_{\alpha}\right)$ (modulo possible blow-up).

Some results in $2 D$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1 -forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

1. For every fixed $C_{\varepsilon}=C$, one has $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \Omega_{\alpha}\right)$ (modulo possible blow-up).
2. Smooth connections dense in Ω_{α} and quotient space $\mathcal{O}_{\alpha}=\Omega_{\alpha} / \mathcal{G}_{\alpha}$ is Polish.

Some results in $2 D$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1 -forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

1. For every fixed $C_{\varepsilon}=C$, one has $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \Omega_{\alpha}\right)$ (modulo possible blow-up).
2. Smooth connections dense in Ω_{α} and quotient space $\mathcal{O}_{\alpha}=\Omega_{\alpha} / \mathcal{G}_{\alpha}$ is Polish.
3. Wilson loop observables continuous on Ω_{α} and \mathcal{G}-invariant.

Conjecture: The process A has an invariant measure which coincides with the
measure constructed by Sengupta, Lévy \& al.

Some results in $2 D$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1-forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

1. For every fixed $C_{\varepsilon}=C$, one has $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \Omega_{\alpha}\right)$ (modulo possible blow-up).
2. Smooth connections dense in Ω_{α} and quotient space $\mathcal{O}_{\alpha}=\Omega_{\alpha} / \mathcal{G}_{\alpha}$ is Polish.
3. Wilson loop observables continuous on Ω_{α} and \mathcal{G}-invariant.
4. Unique choice of C (but depending on smoothening of $\xi!$) such that the quotient process is Markov on \mathcal{O}_{α}.

Some results in $2 D$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1 -forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

1. For every fixed $C_{\varepsilon}=C$, one has $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \Omega_{\alpha}\right)$ (modulo possible blow-up).
2. Smooth connections dense in Ω_{α} and quotient space $\mathcal{O}_{\alpha}=\Omega_{\alpha} / \mathcal{G}_{\alpha}$ is Polish.
3. Wilson loop observables continuous on Ω_{α} and \mathcal{G}-invariant.
4. Unique choice of C (but depending on smoothening of $\xi!$) such that the quotient process is Markov on \mathcal{O}_{α}.
5. The process A on \mathcal{O}_{α} admits at most one invariant measure.

Some results in $2 D$
$|\hat{A}(r)| \leqslant|e(r)|^{\alpha}$

Theorem (Chandra, Chevyrev, H., Shen, '20): Can find Banach space Ω_{α} of distributional \mathfrak{g}-valued 1-forms and space \mathcal{G}_{α} of Hölder continuous gauge transformations such that:

1. For every fixed $C_{\varepsilon}=C$, one has $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \Omega_{\alpha}\right)$ (modulo possible blow-up).
2. Smooth connections dense in Ω_{α} and quotient space $\mathcal{O}_{\alpha}=\Omega_{\alpha} / \mathcal{G}_{\alpha}$ is Polish.
3. Wilson loop observables continuous on Ω_{α} and \mathcal{G}-invariant.
4. Unique choice of C (but depending on smoothening of $\xi!$) such that the quotient process is Markov on \mathcal{O}_{α}.
5. The process A on \mathcal{O}_{α} admits at most one invariant measure.

Conjecture: The process A has an invariant measure which coincides with the measure constructed by Sengupta, Lévy \& al.

Problems in $3 D$

Some problems when trying to extend this to $3 D$:

1. Explicit expression for C_{ε} intractable which is problematic for uniqueness argument. $\left(C_{\varepsilon} \sim c_{1} / \varepsilon+c_{2} \log \varepsilon+c_{3}\right.$ with c_{2} intractable.)
2. Wilson loop observables not expected to exist. (Blow up already for Abelian case, cannot restrict free field to smooth line in 3D.)
3. Limiting process A belongs to \mathcal{C}^{β} for $\beta<-\frac{1}{2}$, but even solutions to deterministic Yang-Mills heat flow only exist for all i.c. in \mathcal{C}^{β} when $\beta>-\frac{1}{2}$
4. Natural gauge transformations associated to \mathcal{C}^{β} are of regularity $\beta+1$ (because of the term $(d g) g^{-1}$) but $\mathcal{G}_{\beta+1}$ acts continuously on \mathcal{C}^{β} if and only if $\beta>-\frac{1}{2}$.

Problems in $3 D$

Some problems when trying to extend this to $3 D$:

1. Explicit expression for C_{ε} intractable which is problematic for uniqueness argument. ($C_{\varepsilon} \sim c_{1} / \varepsilon+c_{2} \log \varepsilon+c_{3}$ with c_{2} intractable.)
2. Wilson loop observables not expected to exist. (Blow up already for Abelian case, cannot restrict free field to smooth line in $3 D$.)
3. Limiting process A belongs to \mathcal{C}^{β} for $\beta<-\frac{1}{2}$, but even solutions to deterministic Yang-Mills heat flow only exist for all i.c. in \mathcal{C}^{β} when $\beta>-\frac{1}{2}$
4. Natural gauge transformations associated to \mathcal{C}^{β} are of regularity $\beta+1$ (because of the term $(d g) g^{-1}$) but $\mathcal{G}_{\beta+1}$ acts continuously on \mathcal{C}^{β} if and only if $\beta>-\frac{1}{2}$

Problems in $3 D$

Some problems when trying to extend this to $3 D$:

1. Explicit expression for C_{ε} intractable which is problematic for uniqueness argument. ($C_{\varepsilon} \sim c_{1} / \varepsilon+c_{2} \log \varepsilon+c_{3}$ with c_{2} intractable.)
2. Wilson loop observables not expected to exist. (Blow up already for Abelian case, cannot restrict free field to smooth line in $3 D$.)
3. Limiting process A belongs to C^{β} for $\beta<-\frac{1}{2}$, but even solutions to deterministic Yang-Mills heat flow only exist for all i.c. in \mathcal{C}^{β} when β
4. Natural gauge transformations associated to C^{β} are of regularity $\beta+1$ (because of the term $(d g) g^{-1}$) but $\mathcal{G}_{\beta+1}$ acts continuously on \mathcal{C}^{β} if and only if $\beta>-\frac{1}{2}$

Problems in $3 D$

Some problems when trying to extend this to $3 D$:

1. Explicit expression for C_{ε} intractable which is problematic for uniqueness argument. ($C_{\varepsilon} \sim c_{1} / \varepsilon+c_{2} \log \varepsilon+c_{3}$ with c_{2} intractable.)
2. Wilson loop observables not expected to exist. (Blow up already for Abelian case, cannot restrict free field to smooth line in $3 D$.)
3. Limiting process A belongs to \mathcal{C}^{β} for $\beta<-\frac{1}{2}$, but even solutions to deterministic Yang-Mills heat flow only exist for all i.c. in \mathcal{C}^{β} when $\beta>-\frac{1}{2}$.
4. Natural gauge transformations associated to \mathcal{C}^{β} are of regularity $\beta+1$
(because of the term $(d g) g^{-1}$) but $\mathcal{G}_{\beta+1}$ acts continuously on \mathcal{C}^{β} if and only if $\beta>-\frac{1}{2}$.

Problems in $3 D$

Some problems when trying to extend this to $3 D$:

1. Explicit expression for C_{ε} intractable which is problematic for uniqueness argument. ($C_{\varepsilon} \sim c_{1} / \varepsilon+c_{2} \log \varepsilon+c_{3}$ with c_{2} intractable.)
2. Wilson loop observables not expected to exist. (Blow up already for Abelian case, cannot restrict free field to smooth line in $3 D$.)
3. Limiting process A belongs to \mathcal{C}^{β} for $\beta<-\frac{1}{2}$, but even solutions to deterministic Yang-Mills heat flow only exist for all i.c. in \mathcal{C}^{β} when $\beta>-\frac{1}{2}$.
4. Natural gauge transformations associated to \mathcal{C}^{β} are of regularity $\beta+1$ (because of the term $(d g) g^{-1}$) but $\mathcal{G}_{\beta+1}$ acts continuously on \mathcal{C}^{β} if and only if $\beta>-\frac{1}{2}$.

Results in $3 D$

Theorem (Chandra, Chevyrev, H., Shen, '21): Can find (non-linear) metric space \mathcal{S} of distributional \mathfrak{g}-valued 1 -forms such that

Remark: Space \mathcal{S} included in the state space of Cao-Chatterjee

Results in $3 D$

Theorem (Chandra, Chevyrev, H., Shen, '21): Can find (non-linear) metric space \mathcal{S} of distributional \mathfrak{g}-valued 1 -forms such that

1. There exists a choice of C_{ε} such that $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \mathcal{S}\right)$ (modulo possible blow-up).

Remark: Space \mathcal{S} included in the state space of Cao-Chatterjee

Results in $3 D$

Theorem (Chandra, Chevyrev, H., Shen, '21): Can find (non-linear) metric space \mathcal{S} of distributional \mathfrak{g}-valued 1 -forms such that

1. There exists a choice of C_{ε} such that $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \mathcal{S}\right)$ (modulo possible blow-up).
2. Smooth connections dense in \mathcal{S}.

Results in $3 D$

Theorem (Chandra, Chevyrev, H., Shen, '21): Can find (non-linear) metric space \mathcal{S} of distributional \mathfrak{g}-valued 1 -forms such that

1. There exists a choice of C_{ε} such that $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \mathcal{S}\right)$ (modulo possible blow-up).
2. Smooth connections dense in \mathcal{S}.
3. YM heat flow well-posed on $\mathcal{S} \Rightarrow$ natural notion of gauge equivalence.

Results in $3 D$

Theorem (Chandra, Chevyrev, H., Shen, '21): Can find (non-linear) metric space \mathcal{S} of distributional \mathfrak{g}-valued 1 -forms such that

1. There exists a choice of C_{ε} such that $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \mathcal{S}\right)$ (modulo possible blow-up).
2. Smooth connections dense in \mathcal{S}.
3. YM heat flow well-posed on $\mathcal{S} \Rightarrow$ natural notion of gauge equivalence.
4. Unique choice of C_{ε} (modulo sequence converging to 0) such that A satisfies suitable notion of gauge equivariance.

Remark: Space \mathcal{S} included in the state space of Cao-Chatterjee

Results in $3 D$

Theorem (Chandra, Chevyrev, H., Shen, '21): Can find (non-linear) metric space \mathcal{S} of distributional \mathfrak{g}-valued 1 -forms such that

1. There exists a choice of C_{ε} such that $A_{\varepsilon} \rightarrow A$ in probability in $\mathcal{C}\left(\mathbf{R}_{+}, \mathcal{S}\right)$ (modulo possible blow-up).
2. Smooth connections dense in \mathcal{S}.
3. YM heat flow well-posed on $\mathcal{S} \Rightarrow$ natural notion of gauge equivalence.
4. Unique choice of C_{ε} (modulo sequence converging to 0) such that A satisfies suitable notion of gauge equivariance.

Remark: Space \mathcal{S} included in the state space of Cao-Chatterjee.

Some open questions

- Long-time control of solutions?
- Link to lattice gauge theories?
- Renormalised Wilson loop observables in $3 D$?
- Polish space of gauge equivalence classes in $3 D$?
- Are gauge equivalence classes in $3 D$ the orbits of a group action?
Thanks for your attention!

Some open questions

- Long-time control of solutions?
- Link to lattice gauge theories?
- Renormalised Wilson loop observables in $3 D$?
- Polish space of gauge equivalence classes in $3 D$?
- Are gauge equivalence classes in $3 D$ the orbits of a group action?

Thanks for your attention!

Some open questions

- Long-time control of solutions?
- Link to lattice gauge theories?
- Renormalised Wilson loop observables in $3 D$?
- Polish space of gauge equivalence classes in $3 D$?
- Are gauge equivalence classes in $3 D$ the orbits of a group action?

Thanks for your attention!
 $$
\left.\partial_{t} \Phi=c_{1} \Delta \Phi-c_{2} \Phi^{3}+c_{3}\right\}+c_{4} \Phi
$$

