Regularisation of differential equations by multiplicative fractional noise

Konstantinos Dareiotis

Joint work with M. Gerencsér

International Seminar on SDEs and Related Topics

April 2023

Overview

Introduction

Equations with fractional noise

The Young case $H \in(1 / 2,1)$

The rough case $H \in(1 / 3,1 / 2)$

Summary

Introduction

Regularization by noise: adding noise to certain deterministic systems makes them behave better.

Example: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and consider the following differential equation

$$
d X_{t}=f\left(X_{t}\right) d t, \quad X_{0}=x_{0}
$$

- Cauchy-Lipschitz/Picard-Lindelöf theorem: If $f \in \mathcal{C}_{x}^{1}$, then there exists a unique solution.
- For all $\alpha \in(0,1)$, there exists $f \in \mathcal{C}_{x}^{\alpha}$ such that it has infinitely many solutions. Indeed: for $f(x)=|x|^{\alpha}, x_{0}=0$, all of the below are solutions

$$
X_{t}^{c}= \begin{cases}0 & 0 \leq t \leq c \\ N_{\alpha}(t-c)^{1 /(1-\alpha)} & t>c\end{cases}
$$

Introduction

- For $\alpha=0$, it might even have a solution. For example, take $x_{0}=0$ and

$$
f(x)= \begin{cases}-1 & x \geq 0 \\ 1 & x<0\end{cases}
$$

Theorem (Zvonkin '74; Veretennikov '80)
Let σ be strongly elliptic $+\ldots$. For all $f \in \mathcal{C}_{x}^{0}$ and all $x_{0} \in \mathbb{R}^{d}$, the equation

$$
d X_{t}=f\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}, \quad X_{0}=x_{0}
$$

admits a unique strong solution.

Introduction

Further works:

- [Krylov \& Röckner; 05]: $f \in L_{q}^{t} L_{p}^{x}, d / p+2 / q<1$, and recently crititcal cases [Röckner \& Zhao; 21], $19 \times[K r y l o v ;$ 20-22],
[Flandoli, Russo, Wolf; 03, 04], [Flandoli, Issoglio, Russo; '14]

$$
\begin{gathered}
X_{t}-Y_{t}=\int_{0}^{t}\left(f\left(X_{s}\right)-f\left(Y_{s}\right)\right) d s+\int_{0}^{t}\left(\sigma\left(X_{s}\right)-\sigma\left(Y_{s}\right)\right) d W_{s} \\
\partial_{t} u^{i}+L u^{i}=-f^{i}, \quad u^{i}(T, x)=0 \\
\int_{0}^{t} f^{i}\left(X_{s}\right) d s=u^{i}(0, x)-u^{i}\left(t, X_{t}\right)+\int_{0}^{t} u_{x_{j}}^{i}\left(s, X_{s}\right) d B_{s}^{j}
\end{gathered}
$$

Key points:

- Markovianity
- Itô calculus

Introduction

- [Davie '07]: path-by-path uniqueness for $f \in \mathcal{C}_{X}^{0}$.

$$
\begin{gathered}
x_{t}=x_{0}+\int_{0}^{t} f\left(X_{s}\right) d s+B_{t} \\
x \mapsto \int_{0}^{t} f\left(B_{s}+x\right) d s
\end{gathered}
$$

Figure: $x \mapsto f(x)$
Figure: $x \mapsto \int_{0}^{1} f\left(B_{s}+x\right) d s$

[Catellier \& Gubinelli '16]: $f \in \mathcal{C}_{x}^{\alpha}, \alpha>1-1 / 2 H$

$$
X_{t}=x_{0}+\int_{0}^{t} f\left(X_{s}\right) d s+B_{s}^{H}
$$

[Harang, Perkowski; 20], $f \in \mathcal{S}^{\prime}$
[Galeatti Gubinelli; 21], "noiseless" regularization by noise

- [Galeatti \& Gerencsér; 22], $f \in L_{t}^{q} \mathcal{C}_{x}^{\alpha}, q \in(1,2]$,
$\alpha>1-1 / q^{*} H$
- [D. \& Gerencsér; 22], multiplicative noise $\alpha \in(1-1 /(2 H)) \vee 0, H>1 / 3$
- [Catellier, Duboscq; 22], multiplicative noise $\alpha \in(3 / 2-1 /(2 H)) \vee 0, H \in(1 / 4,1 / 2)$

Equations with fractional noise

We are interested in the equation

$$
d X_{t}=f\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}^{H}, \quad X_{0}=x \cdot 0
$$

B^{H} is a fractional Brownian motion of Hurst parameter $H \in(0,1)$:

$$
\begin{aligned}
& \mathbb{E}\left[B_{t}^{H} \otimes B_{s}^{H}\right]=\frac{1}{2}\left(|t|^{2 H}-|s|^{2 H}-|t-s|^{2 H}\right) \mathbb{I} \\
& B_{t}^{H}:=\int_{-\infty}^{t}|t-s|^{H-1 / 2}+|s-|^{H-1 / 2} d W_{s} \\
& \mathcal{F}_{t}=\sigma\left(W_{s}, s \leq t\right), \quad B_{t}^{H}-\mathbb{E}^{s} B_{t}^{H} \Perp \mathcal{F}_{s}
\end{aligned}
$$

- $\mathbb{P}\left(\Omega_{H}\right)=1$, where $\Omega_{H}=\left\{B^{H} \in \mathcal{C}^{H-}\right\}$
- Young differential equation for $H \in(1 / 2,1)$
$>$ Rough DE for $H \in(1 / 3,1 / 2)$

The Young case $H \in(1 / 2,1)$

Assumption
$f \in \mathcal{C}_{x}^{\alpha}$ for some $\alpha>1-1 /(2 H), \sigma \in \mathcal{C}_{x}^{2}$, and $\sigma \sigma^{\top} \succeq \lambda /$ for some $\lambda>0$.

Definition

Given $\omega \in \Omega_{H}$, and $x_{0} \in \mathbb{R}^{d}$, we say that a function $Y:[0,1] \rightarrow \mathbb{R}^{d}$ is a solution if $Y \in \mathcal{C}_{t}^{\beta}$ for some $\beta>1-H$ and it satisfies the equation.

Definition

a stochastic process $\left(X_{t}\right)_{t \in\left[s_{0}, 1\right]}$ is a strong solution if it is adapted and for almost all $\omega \in \Omega_{H}$, the function $X(\omega):[0,1] \rightarrow \mathbb{R}^{d}$ is a solution.

Theorem

There exists a strong solution. Moreover, there exists an event $\widehat{\Omega} \subset \Omega_{H}$ of full probability such that for any $\omega \in \widehat{\Omega}, x_{0} \in \mathbb{R}^{d}$, any two solutions coincide.

The Young case $H \in(1 / 2,1)$

$$
X_{t}-Y_{t}=\int_{0}^{t} f\left(X_{s}\right)-f\left(Y_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right)-\sigma\left(Y_{s}\right) d B_{s}^{H}
$$

Strategy: We want to study the regularity of the map

$$
Z \mapsto \int_{0}^{t}\left(f\left(X_{r}+Z_{r}\right)-f\left(X_{r}\right)\right) d r
$$

Main tool: Stochastic Sewing Lemma and its modifications

The Young case $H \in(1 / 2,1)$

Theorem (K. Lê ; 18)
Let $p \geq 2,0 \leq S<T$ and let $A_{s, t} \in L_{p}(\Omega)$ for $S \leq s \leq t \leq T$ with $A_{s, t} \in \mathcal{F}_{t}$. Suppose that for some $\varepsilon_{1}, \varepsilon_{2}>0$ and C_{1}, C_{2}

$$
\begin{aligned}
\left\|A_{s, t}\right\|_{L_{p}(\Omega)} & \leq C_{1}|t-s|^{1 / 2+\varepsilon_{1}} \\
\left\|\mathbb{E}^{s}\left(A_{s, t}-A_{s, u}-A_{u, t}\right)\right\|_{L_{p}(\Omega)} & \leq C_{2}|t-s|^{1+\varepsilon_{2}}
\end{aligned}
$$

Then \exists ! adapted process $\left(\mathcal{A}_{t}\right)_{t \in[S, T]}$ such that $\mathcal{A}_{S}=0$,

$$
\begin{aligned}
\left\|\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right\|_{L_{p}(\Omega)} & \leq N_{1}|t-s|^{1 / 2+\varepsilon_{1}} \\
\left\|\mathbb{R}^{s}\left(\mathcal{A}_{t}-\mathcal{A}_{s}-A_{s, t}\right)\right\|_{L_{p}(\Omega)} & \leq N_{2}|t-s|^{1+\varepsilon_{2}}
\end{aligned}
$$

Moreover, \mathcal{A} satisfies the bounds

$$
\left\|\mathcal{A}_{s}-\mathcal{A}_{t}\right\|_{L_{p}(\Omega)} \leq N C_{1}|t-s|^{1 / 2+\varepsilon_{1}}+N C_{2}|t-s|^{1+\varepsilon_{2}} .
$$

Lemma

Let X be a strong solution. There exists $N \geq 0$ such that for all adapted stochastic processes Z the following bound holds

$$
\begin{aligned}
& \left\|\int_{s}^{t}\left(f\left(\tilde{X}_{r}+Z_{r}\right)-f\left(\tilde{X}_{r}\right)\right) d r\right\|_{L_{p}(\Omega)} \leq N\|f\|_{\mathcal{C}_{x}^{\alpha}}\|Z\|_{\mathscr{C}_{p}^{0}}|t-s|^{1 / 2+\varepsilon} \\
& +N\|f\|_{\mathcal{C}_{x}^{\alpha}}\left(\left\|\left(1+\left[B^{H}\right]_{\mathcal{C}^{H^{-}} \mid \mathbb{F}}\right) Z\right\|_{\mathscr{C}_{p}^{0}}+[Z]_{\mathscr{C}_{p}^{1 / 2}}\right)|t-s|^{1+\varepsilon} .
\end{aligned}
$$

Skech: The increments of the process that we want to study are

$$
\mathcal{A}_{t}-\mathcal{A}_{s}=\int_{s}^{t} f\left(B_{r}^{H}+z\right)-f\left(B_{r}^{H}\right) d r
$$

we will study instead

$$
A_{s, t}=\int_{s}^{t} \mathbb{E}^{s}\left(f\left(B_{r}^{H}+z\right)-f\left(B_{r}^{H}\right)\right) d r
$$

The Young case $H \in(1 / 2,1)$

$$
\begin{aligned}
\left|A_{s, t}\right| & \leq \int_{s}^{t}\left|\mathbb{B}^{s}\left(f\left(B_{r}^{H}+z\right)-f\left(B_{r}^{H}\right)\right)\right| d r\left(B_{r}^{H}=\left(B_{r}^{H}-\mathbb{E}^{s} B_{r}^{H}\right)+\mathbb{B}^{s} B_{r}^{H}\right) \\
& =\int_{s}^{t}\left|\mathcal{P}_{(r-s)^{2 H}} f\left(\mathbb{B}^{s} B_{r}+z\right)-\mathcal{P}_{(r-s)^{2 H}} f\left(\mathbb{B}^{s} B_{r}\right)\right| d r \\
& \lesssim|z| \int_{s}^{t}\left[\mathcal{P}_{(r-s)^{2 H}}\right]_{C^{1}} d r \lesssim|z| \int_{s}^{t}(r-s)^{-H(1-\alpha)}\|f\|_{C^{\alpha}} d r \\
& \leq|z|\|f\|_{C_{\alpha}^{\alpha}}(t-s)^{1+H(\alpha-1)}=N|z|\|f\|_{C_{\alpha}^{\alpha}}(t-s)^{1 / 2+\varepsilon}
\end{aligned}
$$

$$
\left\|A_{s, t}\right\|_{L_{p}} \leq N|z|\|f\|_{\mathcal{C}_{x}^{\alpha}}(t-s)^{1+H(\alpha-1)} .
$$

Also $\mathbb{E}^{s}\left(A_{s, t}-A_{s, u}-A_{u, t}\right)=0$. Moreover, $A_{s, t}$ is "close" to $\mathcal{A}_{s}-\mathcal{A}_{t}$, so by SSL

$$
\left\|\int_{s}^{t} f\left(B_{r}^{H}+z\right)-f\left(B_{r}^{H}\right) d r\right\|_{L_{p}} \leq N|z|\|f\|_{C_{x}^{\alpha}}(t-s)^{1+H(\alpha-1)}
$$

ie.,
$z \mapsto \int_{0} f\left(B_{r}^{H}+z\right) d z=T(z), \quad T: \mathbb{R} \rightarrow \mathcal{C}^{1+H(\alpha-1)}\left([0,1] ; L_{p}(\Omega)\right)$
is "Lipschitz" continuous
For the real estimate we consider something like

$$
\begin{aligned}
& A_{s, t}=\mathbb{E}^{s} \int_{s}^{t} f\left(\Xi_{s, r}+Z_{s}\right)-f\left(\Xi_{s, r}\right) d r \\
& \Xi_{s, r} \approx X_{r} \\
& \Xi_{s, r} \approx X_{s}+f\left(X_{s}\right)(r-s)+\sigma\left(X_{s}\right) B_{s, t}^{H}
\end{aligned}
$$

The Young case $H \in(1 / 2,1)$

Lemma

Let X and Y be strong solutions with initial conditions anf drifts $\left(x_{0}, f^{X}\right)$ and $\left(y_{0}, f^{Y}\right)$, respectively. Then for all $C \geq 1$, we have

$$
\left.\left.\left.\begin{array}{rl}
& \left\|X_{\cdot \wedge \tau}-Y_{\cdot \wedge \tau}\right\|_{\mathscr{C}_{p}^{1 / 2}} \\
\leq & N^{C^{2-\gamma}}\left(\left|x_{0}-y_{0}\right|+\left(\mathbb { P } \left(\left[B^{H}\right]_{\mathcal{C}^{-}} \mid \mathbb{F}\right.\right.\right.
\end{array} \geq C\right)\right)^{1 / 2 p}+\left\|f^{X}-f^{Y}\right\|_{C_{x}^{0}}\right), ~ l
$$

N and $\gamma \in(0,2)$ depend only on structural constants.
Consequences:

1) stability with respect to the drift
2) Hölder dependence on initial condition
3) 4) \Longrightarrow existence of strong a solution
1) 2$)+\ldots \Longrightarrow$ existence of regular semiflow $\hat{X}_{t}^{s, x}$
2) The existence of the regular semiflow implies path-by-path uniqueness by an argument of [Shaposhnikov; 16]

The rough case $H \in(1 / 3,1 / 2)$

$$
d X_{t}=f\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}^{H}, \quad X_{0}=x
$$

Integral can not be defined as a Young integral. Rough path setting.
Notation:

- \mathcal{R}^{β} denotes the collection of rough paths $(Z, \mathbb{Z}) \in \mathcal{C}^{\beta} \times \mathcal{C}_{2}^{2 \beta}$
- For $\gamma \in(\beta, 2 \beta]$, \mathcal{D}_{Z}^{γ} denotes the space of controlled paths $\left(Y, Y^{\prime}\right)$ with

$$
\begin{gathered}
Y_{s, t}=Y_{s}^{\prime} Z_{s, t}+R_{s, t}^{Y}, \quad Y^{\prime} \in \mathcal{C}^{\gamma-\beta}, \quad R^{Y} \in \mathcal{C}_{2}^{\gamma} \\
{\left[\left(Y, Y^{\prime}\right)\right]_{\mathcal{D}_{Z}^{\gamma}}=\left[Y^{\prime}\right]_{\mathcal{C}^{\gamma-\beta}}+\left[R^{Y}\right]_{\mathcal{C}_{2}^{\gamma}}}
\end{gathered}
$$

If $\gamma+\beta>1$, then

$$
\int_{0}^{t} Y d Z_{r}:=\lim _{|\mathcal{P}| \rightarrow 0} \sum_{[u, v] \in \mathcal{P}} Y_{u} Z_{u, v}+Y_{u}^{\prime} \mathbb{Z}_{u, v}
$$

The rough case $H \in(1 / 3,1 / 2)$

Assumption

$f \in \mathcal{C}_{x}^{\alpha}$ for some $\alpha>0, \sigma \in \mathcal{C}_{x}^{3}$, and $\sigma \sigma^{\top} \succeq \lambda I$ for some $\lambda>0$.
$\mathbb{B}_{s, t}^{H} \in \mathcal{F}_{t}$, and $\mathbb{P}\left(\left(B^{H}, \mathbb{B}^{H}\right) \in \mathcal{R}^{\beta}, \forall \beta<H\right)=1$.

Definition

Given $\omega \in \Omega_{H}$ and $x_{0} \in \mathbb{R}^{d}$, we say that a function $Y:[0,1] \rightarrow \mathbb{R}^{d}$ is a solution if $(Y, \sigma(Y)) \in \mathcal{D}_{B^{H}(\omega)}^{\gamma}([0,1])$ for some $\gamma>1-H$ and it satisfies the equation.

Definition

a stochastic process $\left(X_{t}\right)_{t \in\left[s_{0}, 1\right]}$ is a strong solution if it is adapted and for almost all $\omega \in \Omega_{H}$, the function $X(\omega):[0,1] \rightarrow \mathbb{R}^{d}$ is a solution.

Theorem

There exists a strong solution. Moreover, there exists an event $\widehat{\Omega} \subset \Omega_{H}$ of full probability such that for any $\omega \in \widehat{\Omega}, x_{0} \in \mathbb{R}^{d}$, any two solutions coincide.

The rough case $H \in(1 / 3,1 / 2)$

\checkmark Lipschitz estimates for the drift as $\mathcal{C}_{t}^{H} \rightarrow \mathcal{C}_{t}^{1+(\alpha-1) H}$.
$>$ Stability estimates in $L_{p}\left(\Omega ; \mathcal{D}_{B^{H}}^{1-H^{-}}\right)$(buckling)

$$
\begin{aligned}
\|X-Y\|_{\mathcal{D}_{B H}^{1-H^{-}}} & \leq\|d r i f t\|_{\mathcal{D}_{B H}^{1-H^{-}}}+\| \text {stoch } \|_{\mathcal{D}_{B}^{1-H^{-}}} \\
& \lesssim\|d r i f t\|_{\mathcal{C}_{t}^{1+(\alpha-1) H}}+\|X-Y\|_{\mathcal{D}_{B}^{1-H^{-}}} \\
& \lesssim\|X-Y\|_{\mathcal{C}_{t}^{H}}+\|X-Y\|_{\mathcal{D}_{B^{H}}^{1-H^{-}}} \\
& \lesssim\|X-Y\|_{\mathcal{D}_{B}^{1-H^{-}}}
\end{aligned}
$$

- Existence of strong solution and regular semi-flow
- Path-by-path uniqueness

The rough case $H \in(1 / 3,1 / 2)$

Why not $1-1 /(2 H)<\alpha<0$?

- for $\alpha<0, f$ is not a function but a distribution, hence, $f\left(X_{s}\right)$ can not be defined.
- This is not really a problem. $\int_{0}^{t} f\left(X_{s}\right) d s$ can be defined.
- Real problem: For $\alpha<0$ we do not have $\mathcal{C}^{1+(\alpha-1) H} \subset \mathcal{D}_{B^{H}}^{1-H}$.

To buckle the equation, we need to find a space \mathcal{S}, such that

$$
\begin{array}{r}
\|\operatorname{drift}(X)-\operatorname{drift}(X+Z)\| \mathcal{S} \lesssim\|Z\|_{\mathcal{S}} \\
\left\|\int_{0} \sigma(X)-\sigma(Y) d B^{H}\right\| \mathcal{S} \lesssim\|X-Y\|_{\mathcal{S}}
\end{array}
$$

In particular $\int_{0} \nabla f\left(B_{r}^{H}\right) d r \in \mathcal{S}$. Next goal: Qive meaning to

$$
\mathbb{Q}_{s, t}=\int_{s}^{t} \int_{s}^{r} \nabla f\left(B_{u}^{H}\right) d u d B^{H} r
$$

The rough case $H \in(1 / 3,1 / 2)$

Theorem
Assume $\alpha>1 / 2-1 /(2 H), f \in \mathcal{C}_{x}^{\alpha}, \sigma \in \mathcal{C}_{x}^{2}$, and $x_{0} \in \mathbb{R}^{d}$. Then there exists a (probabilistically) weak solution.

$$
X_{t}=x_{0}+D_{t}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}^{H}
$$

For any sequence $\left(f^{n}\right)_{n \in \mathbb{N}} \subset \mathcal{C}_{x}^{\infty}$ with $f^{n} \rightarrow f$ in \mathcal{C}_{x}^{α} one has almost surely

$$
D=\lim _{n \rightarrow \infty} \int_{0} f^{n}\left(X_{s}\right) d s
$$

Summary

- For $H>1 / 2$: strong existence, path by path uniqueness provided that $\alpha>1-1 /(2 H)$.
- For $H \in(1 / 3,1 / 2)$: strong existence, path by path uniqueness provided that $\alpha>0$. Existence of weak solutions for $1 / 2-1 /(2 H)<\alpha<0$.

