A dual approach to partial hedging

J-F Chassagneux (Université Paris Cité & LPSM) based on a *work in progress* with C. Bénézet (ENSIIE) & M. Yang (Université Paris Cité)

International Seminar on SDEs and Related Topics 27 January 2022, online

Introduction

Quantile hedging problem Several constraints

Weak hedging

First properties Dual approach Formulation

Example & Numerics

Back to the quantile hedging problem Numerical experiments

Quantile hedging problem Several constraints

Framework

• Controlled wealth process: $y \in \mathbb{R}, Z \in \mathcal{H}^2$,

$$Y_t^{y,Z} = y - \int_0^t \mathfrak{f}(s, Y_s^{y,Z}, Z_s) \,\mathrm{d}s + \int_0^t Z_s \,\mathrm{d}W_s, \tag{1}$$

- ▶ **BSDEs**: For any $\xi \in \mathcal{L}^2(\mathcal{F}_T)$, there exist unique $\mathcal{Y}_0, \mathcal{Z}$ such that $Y_T^{\mathcal{Y}_0, \mathcal{Z}} = \xi$. Notation $\mathcal{Y}_0[\xi], \mathcal{Z}[\xi]$
- ► This talk: mostly linear case i.e. $f(s, y, z) = a_t y + b_t z$, a, b bounded processes. Then setting $d\Gamma_t = \Gamma_t(a_t dt + b_t^\top dW_t)$ and $\Gamma_0 = 1$, one has

$$y = \mathbb{E}\Big[\Gamma_T Y_T^{y,Z}\Big]$$

- Financial interpretation:
 - \rightarrow Γ_T is the pricing kernel. The market is 'linear'.
 - \rightarrow the asset price process is denoted by X (for numerics in markovian framework solution of a SDE),
 - \rightarrow European option with terminal payoff ξ (e.g. $g(X_{\cdot})$ or $g(X_{\tau})$)
 - \rightarrow replication price $\mathcal{Y}_0 = \mathbb{E}[\Gamma_T \xi]$ and Z (almost) the Delta of the option.

Quantile hedging problem Several constraints

Quantile hedging [FL99]

• Quantile hedging price of payoff $\xi \ge 0$: Given $p \in [0, 1]$,

$$\mathcal{V}_{\text{QH}}(p) := \inf\{y \ge 0 \mid \exists Z \in \mathscr{H}^2, \ \mathbb{P}(Y^{y,Z}_T \ge \xi) \ge p \text{ and } Y^{y,Z}_T \ge 0\}$$
(2)

- Basic properties:
 - $\rightarrow \mathcal{V}_{\mathrm{QH}}(1) =$ replication price
 - $\rightarrow \mathcal{V}_{\mathrm{QH}}$ non-decreasing in *p*
 - $\rightarrow \mathcal{V}_{\text{QH}} = 0$ for $p \leqslant p_{\min} := \mathbb{P}[\xi = 0]$ indeed: $0 = Y^{0,0}$
- Well studied problem [FL99, BET10, BBC16]
- **Reformulation**: set $\mathcal{P}_{p} = \{P \in \mathcal{L}^{2}(\mathcal{F}_{T}) | P \in [0, 1], \mathbb{E}[P] = p\}$

$$\mathcal{V}_{\text{QH}}(p) := \inf\{y \ge 0 \mid \exists P \in \mathcal{P}_p, \exists Z \in \mathscr{H}^2, \ Y_T^{y,Z} \ge \xi \mathbf{1}_{\{P>0\}}\}$$
(3)

Quantile hedging problem Several constraints

Proof of QH problem reformulation

Sketch of the "classical" proof The random variable P is seen as the terminal condition of a controled martingale : $P^{p,\alpha}$ for some $\alpha \in \mathscr{H}^2$.

$$\begin{split} &\Gamma(p) := \{ y \ge 0 \ : \ \exists Z, \text{ s.t. } \mathbb{P}[Y_T^{y,Z} \ge \xi] \ge p \text{ and } Y_T^{y,Z} \ge 0 \} \\ &\bar{\Gamma}(p) = \left\{ y \ge 0 : \exists (Z,\alpha) \text{ s.t. } Y_T^{y,Z} \ge \xi \mathbf{1}_{\{P_T^{p,\alpha} > 0\}} \right\}. \end{split}$$

► Let
$$y \in \overline{\Gamma}$$
, then $\exists Z, \alpha$ s.t. $Y_T^{y,Z} \ge \xi \mathbf{1}_{\{P_T^{p,\alpha}\}>0\}}$.
In particular $\{P_T^{p,\alpha} > 0\} \subset \{Y_T^{y,Z} \ge \xi\}$ which implies
 $\mathbb{P}[Y_T^{y,Z} \ge \xi] \ge \mathbb{E}[\mathbf{1}_{\{P_T^{p,\alpha}>0\}}] \ge \mathbb{E}[P_T^{p,\alpha}] \ge p$.

▶ Let now $y \in \Gamma$ and denote $p_0 := \mathbb{P}[Y_T^{y,Z} \ge \xi] (\ge p)$. We also have $Y_T^{y,Z} \ge 0$. For some α (martingale representation theorem), $\mathbf{1}_{\{Y_T^{y,Z} \ge \xi\}} = P_T^{p_0,\alpha} \ge P_T^{p,\alpha}$. Restrict $P^{p,\alpha}$ to [0,1] by stopping and check that $\mathbf{1}_{\{Y_T^{y,Z} \ge \xi\}} \ge P_T^{p,\alpha}$ is equivalent to $Y_T^{y,Z} \ge \xi \mathbf{1}_{\{P_T^{p,\alpha} > 0\}}$.

Quantile hedging problem Several constraints

Known solution

From the stochastic target formulation,

$$\mathcal{V}_{\text{QH}}(p) = \inf\{y \ge 0 \mid \exists \alpha \text{ s.t. } P^{p,\alpha} \in \mathcal{P}_p, Z \in \mathscr{H}^2, \ Y^{y,Z}_T \ge \xi \mathbf{1}_{\{P^{p,\alpha}_T > 0\}}\}$$
(4) one obtains

$$\mathcal{V}_{\mathrm{QH}}(\boldsymbol{p}) = \inf_{\alpha} \mathbb{E} \Big[\Gamma_{\mathcal{T}} \xi \mathbf{1}_{\{P_{\mathcal{T}}^{\boldsymbol{p},\alpha} > 0\}} \Big]$$

One proves (convexification)

$$\mathcal{V}_{\rm QH}(\boldsymbol{p}) = \inf_{\alpha} \mathbb{E}[\Gamma_T \xi P_T^{\boldsymbol{p},\alpha}]$$

- Markovian framework: this is the starting point for PDE methods.
 One can also use duality in the *p*-variable (see below!)
- Numerical methods available problem is challenging! [BBC16, BCR21]

Quantile hedging problem Several constraints

PnL matching

BNV12] considers finitely many quantile constraints

$$\mathbb{P}(Y_T^{y,Z} \ge \xi + \gamma_i) \ge q_i \tag{5}$$

Solve the problem in the Markovian case using PDE techniques (and imposing constraints on Z)

A **natural extension** would be to consider a probability law μ and the following constraints:

$$\mathbb{P}(Y_T^{y,Z} \ge \xi + \gamma) \ge \mu([\gamma, +\infty)) \tag{6}$$

 \hookrightarrow "PnL hedging with given probability law"

Problem formulation:

 $\mathcal{V}_{\mathrm{WH}}(\mu) = \inf\{y \in \mathbb{R} \mid \exists Z \in \mathscr{H}^2, \mathbb{P}(Y_T^{y,Z} \ge \xi + \gamma) \ge \mu([\gamma, +\infty)), \ \forall \gamma\}$ (7)

• Notations. First order stochastic dominance between ν and μ :

$$\nu \geq \mu \Leftrightarrow \nu([\gamma,+\infty)) \geqslant \mu([\gamma,+\infty)) \,, \, \forall \gamma \in \mathbb{R}.$$

 \hookrightarrow Observe that in (7), one imposes $\mathcal{L}(Y_T^{y,Z} - \xi) \geq \mu$.

Quantile hedging problem Several constraints

Solving PnL hedging problem

- One shows: $\mathcal{V}_{WH}(\mu) = \inf\{y \in \mathbb{R} \mid \exists \chi \sim \nu \geq \mu, \exists Z \in \mathscr{H}^2, Y_T^{y,Z} \xi \geq \chi\}$
- Look first at problem with $\chi \sim \mu$

$$\mathcal{V}_{\rm OT}(\mu) = \inf_{\chi \sim \mu} \mathbb{E}[\Gamma_{\mathcal{T}}(\xi + \chi)] = \mathcal{V}_{\rm QH}(1) + \inf_{\chi \sim \mu} \mathbb{E}[\Gamma_{\mathcal{T}}\chi]$$
(8)

 \hookrightarrow Optimal transport problem with explicit solution

$$\mathcal{V}_{\mathrm{OT}}(\mu) = \mathbb{E}[\Gamma_{\mathcal{T}}\xi] - \frac{1}{2}\mathbb{E}\Big[(\Gamma_{\mathcal{T}})^2\Big] - \frac{1}{2}\int x^2\mu(\,\mathrm{d} x) + \frac{1}{2}\mathcal{W}_2^2(\mathcal{L}(-\Gamma_{\mathcal{T}}),\mu).$$

• Moreover, replication result: $\mathcal{V}_{OT}(\mu) = \mathbb{E}[\Gamma_T (\xi + \chi^*)]$, with

$$\chi^{\star} = N_{\mu}^{-1} \circ N_{\mathcal{L}(-\Gamma_{\mathcal{T}})}(-\Gamma_{\mathcal{T}}),$$

assuming $\mathcal{L}(\Gamma_T)$ is abs. cont. (N_μ stands for the c.d.f. of the law μ)

- conclusion: One proves $V_{WH}(\mu) = V_{OT}(\mu)$ 'the constraint is saturated'
- we shall use the above result in the numerics.

Quantile hedging problem Several constraints

the two problems as one?

Set $\mu = (1-p)\delta_{\ell} + p\delta_0$ ($\ell < 0$)

Recall:

$$\begin{split} \mathcal{V}_{\mathrm{QH}}(p) &= \inf\{y \in \mathbb{R} \,|\, \exists Z \in \mathscr{H}^2, \ \mathbb{P}(Y_T^{y,Z} \ge \xi) \ge p \text{ and } Y_T^{y,Z} \ge 0\} \\ \mathcal{V}_{\mathrm{WH}}(\mu) &= \inf\{y \in \mathbb{R} \,|\, \exists Z \in \mathscr{H}^2, \mathbb{P}(Y_T^{y,Z} \ge \xi + \ell) \ge 1, \mathbb{P}(Y_T^{y,Z} \ge \xi) \ge p\} \end{split}$$

- ► The super-replication constraint are not the same (whatever ℓ).
- The solutions are different. In one case the constraint is saturated: the law μ is attained. In the other case there is a lower limit threshold $p_{\min} = \mathbb{P}(\xi = 0)$ in some cases.
- Is it possible to have a common framework for both problem?

First properties Dual approach

Generic problem formulation

• Take a $(\mathcal{F}_T \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -measurable random function

 $\Omega\times\mathbb{R}\ni(\omega,\gamma)\mapsto {\sf G}(\omega,\gamma)\in\mathbb{R}$

such that $\gamma\mapsto {\sf G}(\gamma)$ is non-decreasing and left-continuous.

▶ Introduce, for $\mu \in \mathcal{P}(\mathbb{R})$, the set of super weak hedging price by

$$\mathfrak{H}(\mu) := \{ \mathbf{y} \in \mathbb{R} \,|\, \exists \mathbf{Z} \in \mathscr{H}^2, \mathbb{P}(\mathbf{Y}^{\mathbf{y}, \mathbf{Z}}_T \ge \mathbf{G}(\gamma)) \ge \mu([\gamma, +\infty)), \forall \gamma \in \mathbb{R} \}.$$
(9)

We now define the weak hedging price as

$$\mathcal{V}_{WH}(\mu) := \inf \mathfrak{H}(\mu) , \text{ for } \mu \in \mathcal{P}(\mathbb{R}).$$
 (10)

First properties Dual approach

Example of PnL matching

Discrete case for μ, 'generic' G: For n≥ 1 and 0 ≤ ξ₁ ≤ · · · ≤ ξ_n ∈ L²(F_T), we define

$$G(\omega, i) := \xi_i(\omega), \omega \in \Omega, 1 \leq i \leq n,$$

and $p_1, \ldots, p_n > 0$ such that $\sum_{i=1}^n p_i = 1$, we set $\mu = \sum_{i=1}^n p_i \delta_i$. \hookrightarrow Here, $\gamma_i = i$ simply.

• General case for μ , structure on G: Let $\xi \in \mathcal{L}^2(\mathcal{F}_T)$ and $\mu \in \mathcal{P}_2(\mathbb{R})$. Set $G(\omega, \gamma) = \xi(\omega) + \gamma$, for $(\omega, \gamma) \in \overline{\Omega}$

First properties Dual approach

Monge Problem

Let $\mu \in \mathcal{P}_4(\mathbb{R})$. Assume some mild structural conditions on G and let Ψ denotes the right continuous inverse of G. We have the equivalent formulations

Weak stochastic target version:

$$\mathcal{V}_{\mathrm{WH}}(\mu) = \inf \tilde{\mathfrak{H}}(\mu), \text{ with } \tilde{\mathfrak{H}}(\mu) := \{ y \in \mathbb{R} | \exists Z \in \mathscr{H}^2, \mathcal{L}(\Psi(Y_T^{y,Z})) \ge \mu \}, \quad (11)$$

 \hookrightarrow weak hedging problem is an example of a more generic problem ([BER15]).

'Lifted' version:

$$\mathcal{V}_{\mathrm{WH}}(\mu) = \inf\{y \in \mathbb{R} | \exists \chi \sim \nu \ge \mu, \exists Z \in \mathscr{H}^2, \Psi(Y_T^{y,Z}) \ge \chi\},$$
(12)

• 'Monge' version: Denote $\mathcal{T}_+(\mu) = \{\chi \in \mathcal{L}^4(\mathcal{F}_T) \mid \mathcal{L}(\chi) \geq \mu\}$, then

$$\mathcal{V}_{\rm WH}(\mu) = \hat{\mathcal{V}}_{\rm RM} := \inf_{\chi \in \mathcal{T}_+(\mu)} \mathcal{Y}_0[\mathcal{G}(\chi)],$$
(13)

 $\hookrightarrow \text{Linear case: denote } H(\omega,\gamma):= {\sf \Gamma}_{{\sf T}}(\omega){\sf G}(\omega,\gamma).$

$$\begin{split} \hat{\mathcal{V}}_{\mathrm{RM}}(\mu) &= \inf_{\chi \in \mathcal{T}_{+}(\mu)} \mathbb{E}[\Gamma_{T} \mathcal{G}(\chi)] = \inf_{\chi \in \mathcal{T}_{+}(\mu)} \int \mathcal{H}(\omega, \chi(\omega)) \, \mathrm{d}\mathbb{P}(\omega), \\ &= \inf_{\chi \in \mathcal{T}_{+}(\mu)} \int \int \mathcal{H}(\omega, \gamma) \delta_{\chi(\omega)}(\,\mathrm{d}\gamma) \, \mathrm{d}\mathbb{P}(\omega) \end{split}$$

First properties Dual approach

Kantorovich problem

▶ Linear case: $C^{\mathrm{r}}(\mathbb{P},\mu)$ is the set of coupling between \mathbb{P} and $\nu \geq \mu$, then

$$\mathcal{V}_{\mathrm{KP}}(\mu) = \inf_{\Pi \in \mathcal{C}^{\mathrm{r}}(\mathbb{P}, \mu)} \int \Gamma_{\mathcal{T}}(\omega) \mathcal{G}(\omega, \gamma) \, \mathrm{d}\Pi(\omega, \gamma).$$

• Using disintegration $d\Pi(\omega, \gamma) = \rho^{\Pi}(\omega, d\gamma) d\mathbb{P}(\omega)$, we obtain

$$\begin{aligned} \mathcal{V}_{\mathrm{KP}}(\mu) &= \inf_{\Pi \in \mathcal{C}^{\mathrm{r}}(\mathbb{P},\mu)} \int \int \Gamma_{\mathcal{T}}(\omega) \mathcal{G}(\omega,\gamma) \rho^{\Pi}(\omega,\,\mathrm{d}\gamma) \,\mathrm{d}\mathbb{P}(\omega) \\ &= \inf_{\Pi \in \mathcal{C}^{\mathrm{r}}(\mathbb{P},\mu)} \mathbb{E} \bigg[\Gamma_{\mathcal{T}} \int \mathcal{G}(\gamma) \rho^{\Pi}(\,\mathrm{d}\gamma) \bigg]. \end{aligned}$$

Non linear version:

$$\mathcal{V}_{\mathrm{KP}}(\mu) := \inf_{\Pi \in \mathcal{C}^{\mathrm{r}}(\mathbb{P},\mu)} \mathcal{Y}_{0}\left[\int \mathcal{G}(\gamma) \rho^{\Pi}(\mathrm{d}\gamma)\right].$$
(14)

First properties Dual approach

Towards dual formulation

Theorem

 μ has discrete and finite support, namely $\mathrm{supp}[\mu]=\{\gamma_1,\ldots,\gamma_d\}$ with $\gamma_1<\cdots<\gamma_d.$ Then,

$$\mathcal{V}_{\rm RM}(\mu) = \mathcal{V}_{\rm KP}(\mu).$$

(true in the non-linear setting)

- In the **linear setting**, we work towards a dual formulation by characterising the polar of $C^{r}(\mathbb{P}, \mu)$ when μ is **discrete with finite support**.
- This gives access to numerical methods.

Back to the quantile hedging problem Numerical experiments

Quantile hedging with our approach

Let's look at the special case d = 2. Namely, $\mu = (1 - q)\delta_{\gamma_1} + q\delta_{\gamma_2}$ for 0 < q < 1.

• For $d\Pi(\omega, \gamma) = \rho^{\Pi}(\omega, d\gamma) d\mathbb{P}(\omega) \in \mathcal{C}^{r}(\mathbb{P}, \mu)$, we have simply

$$\int G(\gamma)\rho^{\Pi}(\mathrm{d}\gamma) = G(\gamma_1)(1-Q) + G(\gamma_2)Q$$

with $Q \in \mathfrak{Q}_q$ and $\mathfrak{Q}_q := \{Q \in \mathcal{L}^2(\mathcal{F}_T) | 1 \ge Q \ge 0, \mathbb{E}[Q] \ge q\}$

• Setting $G(\gamma_1) = 0$ and $G(\gamma_2) = \xi$, (this is the quantile hedging problem we started with...)

$$\mathcal{V}_{\mathrm{KP}}(\mu) := \inf_{\Pi \in C^{\mathrm{r}}(\mathbb{P},\mu)} \mathbb{E}\bigg[\Gamma_{\mathcal{T}} \int \mathcal{G}(\gamma) \rho^{\Pi}(\mathrm{d}\gamma)\bigg] = \inf_{Q \in \mathfrak{Q}_{q}} \mathbb{E}[\Gamma_{\mathcal{T}} \mathcal{G}(\gamma_{2})Q]$$

Back to the quantile hedging problem Numerical experiments

Dual formulation

▶ In this context, one obtains $V_{\rm KP}(\mu) \ge V_{\rm DP}(\mu)$ where

$$\mathcal{V}_{\mathrm{DP}}(\mu) = \sup_{\theta \ge 0} w(\theta) \quad \text{with} \quad w(\theta) := \theta q - \mathbb{E} \big[(\theta - \Gamma_T G(\gamma_2))^+ \big]$$
(15)

▶ Complete characterization: Let $\theta^* \in \operatorname{argmax} w$, set

$$Q^{\star} := \mathbf{1}_{\{\tilde{\Gamma}_{T}G(\gamma_{2}) < \theta^{\star}\}} + \frac{q - \mathbb{P}[\Gamma_{T}G(\gamma_{2}) < \theta^{\star}]}{\mathbb{P}[\Gamma_{T}G(\gamma_{2}) = \theta^{\star}]} \mathbf{1}_{\{\Gamma_{T}G(\gamma_{2}) = \theta^{\star}\}} \in \mathfrak{Q}_{q}$$
(16)

we have (recall $G(\gamma_1) = 0$, $G(\gamma_2) = \xi$)

$$\mathcal{V}_{\rm DP}(\mu) = \mathbb{E}[\Gamma_T Q^* G(\gamma_2)].$$

• Moreover, if $\mathbb{P}[\tilde{\Gamma}_T G(\gamma_2) = \theta^*] = 0$, then

 $\mathcal{V}_{\mathrm{DP}}(\mu) = \mathbb{E}[\Gamma_{\mathcal{T}} \mathcal{G}(\chi^{\star})], \text{ with } \chi^{\star} := \gamma_1 \mathbf{1}_{\{\Gamma_{\mathcal{T}} \mathcal{G}(\gamma_2) \ge \theta^{\star}\}} + \gamma_2 \mathbf{1}_{\{\tilde{\Gamma}_{\mathcal{T}} \mathcal{G}(\gamma_2) < \theta^{\star}\}} \in \mathcal{T}_{+}^{\mathrm{r}}(\mu).$

(Monge problem has a solution)

Back to the quantile hedging problem Numerical experiments

Stochastic gradient algorithm

• When duality holds, we have more generally (if $G(\gamma_1) = 0$),

$$\mathcal{V}_{\mathrm{WH}}(\mu) = \sup_{\theta \in \mathbb{R}^{d-1}_+} \sum_{j=1}^{d-1} \theta_j q_{j+1} - \mathbb{E}\left[\max_{1 \leq i \leq d-1} \left(\sum_{j=1}^i \theta_j - \Gamma_T \mathcal{G}(\gamma_{i+1})\right)_+\right].$$

- One cannot resist to use SGD to compute the optimal θ (which allows to obtain the payoff to replicate)
- The numerical tests are performed in the Black Scholes model for put or call option.
- SGD results are compared to proxy: closed form solution from [FL99] or Optimal Transport approach, depending on the context.

Back to the quantile hedging problem Numerical experiments

Sanity check

Two quantile constraints (3 points in the support of μ). Computations for Call option.

Quantiles p_1, p_2	γ_1, γ_2	SGD	ОТ	Computation time of SGD
(0.3,0.5)	(10,20)	17.38	17.48	30.66s
(0.05,0.05)		8.48	8.41	30.31s
(0.05,0.9)		24.41	24.44	29.46s
(0.3,0.5)	(10,100)	42.07	42.19	32.47s
(0.05,0.05)		9.57	9.62	31.40s
(0.05,0.9)		87.89	87.57	30.68s

Table: Numerics of measure $\mu = (1 - p_1 - p_2)\delta_0 + p_1\delta_{\gamma_1} + p_2\delta_{\gamma_2}$ with different probabilities and quantiles with SGD algorithm and OT-APPROACH.

Back to the quantile hedging problem Numerical experiments

Quantile hedging

See also [BFP09].

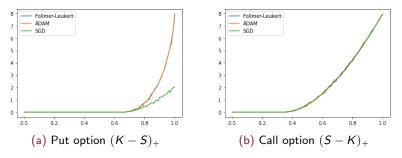


Figure: Comparison of the three methods: SGD algorithm, ADAM optimizer & Exact solution [BCR21, FL99] for put and call options, with parameters $X_0 = 100$, r = 0, $\sigma = 0.2$ and $\hat{b} = 0.1$, strike K = 100, terminal time T = 1.

Back to the quantile hedging problem Numerical experiments

Conclusion

- We introduce 'weak hedging problem' extending previous formulation of quantile hedging and PnL matching problem.
- It is a special case of a weak stochastic target problem and turns out to be closely related to optimal transport type problem.
- In good cases, dual approach allows to develop alternative numerical methods using SGD algorithm.

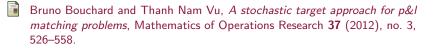
Back to the quantile hedging problem Numerical experiments

References I

- Bruno Bouchard, Géraldine Bouveret, and Jean-François Chassagneux, A backward dual representation for the quantile hedging of bermudan options, SIAM Journal on Financial Mathematics 7 (2016), no. 1, 215–235.
- Cyril Bénézet, Jean-François Chassagneux, and Christoph Reisinger, A numerical scheme for the quantile hedging problem, SIAM Journal on Financial Mathematics 12 (2021), no. 1, 110–157.
- Bruno Bouchard, Romuald Elie, and Antony Réveillac, *Bsdes with weak terminal condition*, The Annals of Probability **43** (2015), no. 2, 572–604.
- Bruno Bouchard, Romuald Elie, and Nizar Touzi, Stochastic target problems with controlled loss, SIAM Journal on Control and Optimization 48 (2010), no. 5, 3123–3150.
- Olivier Bardou, Noufel Frikha, and Gilles Pages, *Computing var and cvar using stochastic approximation and adaptive unconstrained importance sampling.*

Back to the quantile hedging problem Numerical experiments

References II



Hans Föllmer and Peter Leukert, Quantile hedging, Finance and Stochastics 3 (1999), no. 3, 251–273.